I. A BIBLIOGRAPHY OF THE MEXICAN BEAN BEETLE

Epilachna varivestis Mulsant (Coleoptera: Coccinellidae)

M.P. NICHOLS • M. KOGAN

Biological Notes No. 77

ILLINOIS NATURAL HISTORY SURVEY

Urbana, Illinois—February, 1972

STATE OF ILLINOIS
Department of Registration and Education
Natural History Survey Division
This paper is a contribution of the Illinois Soybean Entomology Team with support from the Illinois Natural History Survey, the Program for International Research Improvement and Development of the Soybean (PIRIDS), the University of Illinois Departments of Entomology and Horticulture, the Illinois Agricultural Experiment Station, the Rockefeller Foundation, the U.S. Agency for International Development, and the U.S. Department of Agriculture.

Illinois Soybean Entomology Team:

E. J. Armbrust—Biology, Ecology, and Control
G. L. Godfrey—Taxonomy
E. R. Jaycox—Pollination
M. Kogan—Host Selection and Nutrition
W. H. Luckmann—Pest Management
M. P. Nichols—Library, Information Storage and Retrieval
P. W. Price—Community Ecology
L. J. Stannard—Taxonomy
G. P. Waldbauer—Bionomics

Distribution of Mexican Bean Beetle

Episelia variicrata

Prepared by Economic Insect Survey and Detection
Plant Protection Division
Agricultural Research Service USDA
September 17, 1972
The Literature of Arthropods Associated with Soybeans

I. A BIBLIOGRAPHY OF THE MEXICAN BEAN BEETLE, *Epilachna varivestis* Mulsant (Coleoptera: Coccinellidae)

M. P. Nichols and M. Kogan

The organization of a center to search out, store, and retrieve the literature on insects associated with soybeans is part of a broad program of research and information on soybean entomology at the Illinois Natural History Survey and the University of Illinois (Kogan & Luckmann 1971).

In establishing this center the main objective was to assemble, for easy and rapid access, the vast mass of data on soybeans that is scattered throughout the entomological literature. Furthermore, it was decided to develop this center as a service-oriented unit to support the Illinois Soybean Entomology Team and its cooperative research and extension personnel. Three parallel activities are under way: (1) Establish and maintain a collection of scientific reports and extension publications, computerized for rapid retrieval; (2) make bibliographic surveys and provide specialized bibliographies to workers in soybean entomology; and (3) compile and publish bibliographies on species or subjects of key importance to soybean entomology.

A bibliography of the Mexican bean beetle—*Epilachna varivestis* Mulsant (Coleoptera: Coccinellidae)—was originally compiled to provide information on nutrition and host selection of soybean insects in support of ongoing research at the Natural History Survey and the University of Illinois. The interest in, and economic importance of, this species in many soybean-producing areas of the United States prompted us to expand the original scope of this literature file and present this as the first of a series of bibliographies of insects associated with soybeans.

The Mexican bean beetle is considered in many soybean-producing areas of the United States as one of the most serious pests of the crop. Research on chemical control of the beetle and breeding for plant resistance is being conducted in several institutions. The species is also a convenient laboratory animal for basic research. Its oligophagous relationship to certain genera of Leguminosae has prompted its use in studies of host plant selection. It has become a standard test animal in pesticide toxicology since its metabolism of DDT was studied and reported in a classical work in toxicology (Sternburg & Kearns 1952).

This bibliography is not limited to papers dealing with the Mexican bean beetle on soybeans. Many of the listed references do not even mention soybeans. It is intended, however, that the bibliographies in this series be as complete as possible; consequently, they will be of interest beyond the scope of soybean entomology.

The nearly 800 titles in the present list were obtained primarily from standard reference sources and current references. In addition, a questionnaire was sent to 120 institutions in the United States requesting information on past and current use of the Mexican bean beetle in local research programs. Other references were secured through replies to this questionnaire.

There was little deliberate screening of references for this bibliography in contrast to other entomological bibliographies that have appeared in recent years. Books on general and applied entomology were deleted, as were certain outdated articles of a popular nature on plant damage and insecticidal control. Many short notes and extension type publications, however, were included as they may have some value in tracing the dispersal of the Mexican bean beetle and the evolution of its economic role.

References to the species in brief paragraphs which are parts of annual reports (mostly by agricultural experiment stations) are included as an appendix to the literature and were not tabulated or numbered. The year that appears in this list is that covered by the report and not necessarily the year of publication. It was not intended that this appendix of annual reports be complete, but that it serve primarily as a guide.

In addition, interested researchers are urged to consult the USDA Cooperative Economic Insect Report, the USDA Insect Pest Survey Bulletin, and the Canadian Insect Pest Review for further information concerning the Mexican bean beetle.

The references are numbered and tabulated (see table following the appendix) by subject and periods of publication. Each reference appears only once in the tabulation, under the subject to which it seemed to the authors to make the most significant contribution. However, in the case of those articles which deal with soybeans, the references are listed under the heading SOYBEANS, as well as under one other subject heading. Those interested in more complex areas are advised to peruse also related subjects (e.g., biology and life history, ecology, and distribution). The paucity of references in certain areas led us to combine subjects such as morphology and taxonomy, and physiology and anatomy. The tabulation is offered, therefore, as a simplified subject index to serve as a preliminary key to the literature.

This paper is published by authority of the State of Illinois, IRs Ch. 127, Pat 38:21. M. P. Nichols is a Research Assistant in Agricultural Entomology at the University of Illinois College of Agriculture and the Illinois Natural History Survey. Dr. M. Kogan is an Associate Entomologist at the Survey and Assistant Professor at the College of Agriculture.
Abbreviations used in the reference entries appear in full in a listing at the end of the paper.

This bibliography is part of Illinois' contribution to the regional USDA project S-74, "Biology and Control of Arthropods on Soybeans."

Mrs. Nancy DeWitt did portions of the search. Mr. Ray Kotek worked in the organization of the files and provided general technical assistance, and O. F. Glissendorf edited the manuscript. Their collaboration is gratefully acknowledged.

BIBLIOGRAPHY

7. 1932. Mexican bean beetle can be controlled. Bean Bag 14:11-12.
19. Angalet, G. W., L. W. Coles, and J. A. Stewart. 1968. Two potential parasites of the Mexican bean beetle from India. J. Econ. Entomol. 61:1073-1075.
45. , and O. C. Boyd. 1937. Pest control in the home.

94. ________. 1924. Evidence that the Mexican bean beetle was present in the United States as early as 1850. Proc. Entomol. Soc. Wash. 26:19.
116. ________, and W. T. Hensley. 1930. Some phases of the Mexican bean beetle campaign. J. Econ. Entomol. 23:146-149. illus.
120. ________. 1933. The more important insect outbreaks on the eastern shore of Maryland, 1933. Trans. Peninsula Hort. Soc. 47:75-78.
139. ________, and R. G. Weyen. 1958. The effectiveness of several insecticides for control of insects on snap beans. J. Econ. Entomol. 51:258-259.
144. DOUGLASS, J. R. 1928. Precipitation as a factor in the emergence of Epilachna varivestis Mulsant from hibernation. J. Econ. Entomol. 21:201-213. illus.

146. ———. 1930. Longevity of the Mexican bean beetle in the southwest. J. Econ. Entomol. 23:645-646.

149. ———. 1933. Additional information on precipitation as a factor in the emergence of Epilachna varivestis Mulsant from hibernation. Ecology 14:286-297. illus. refs.

152. dowell, F. H., AND J. V. Karainos. 1968. Mexican bean beetle egg hatching inhibition and sieva bean chlorosis induced by plastic petri dish extractants. J. Econ. Entomol. 61:865-866. illus. refs.

158. ———. 1939. Mexican bean beetle in Louisiana. J. Econ. Entomol. 32:753.

193. Gauthier, G., AND A. Doyle. 1945. La Coccinelle mexi-
caine des horticos. Agriculture 2:28-34. map.

228. __________. 1944. Laboratory tests with DDT against the pea aphid and the Mexican bean beetle. J. Econ. Entomol. 37:151.

229. __________. 1959. Effects of physical properties of derris dust on their toxicity to the Mexican bean beetle. J. Econ. Entomol. 52:1017. illus.

293. — 1934. The situation in the vegetable industry with respect to the use of arsenicals and arsenical substitutes. J. Econ. Entomol. 27: 157-161.
308. Indiana Division of Agriculture. 1938. Spray under side of bean leaves to control Mexican bean beetle. Outdoor Indiana 5: 13. 27 illus.
325. — 1949. The toxicity of some substituted phenyl benzoates to the two-spotted spider mite and Mexican bean beetle. J. Econ. Entomol. 42: 999-1000. illus. refs.
327. — 1957. Some biological, chemical and physical properties of sulfuryl fluoride as an insecticidal fumigant. J. Econ. Entomol. 50: 1-6. illus. refs.
361. ——. 1922. Mexican bean beetle. J. Econ. Entomol. 15:373.
365. ——. 1943. Results of 1942 experiments for control of the Mexican bean beetle at Fort Collins, Colorado. J. Econ. Entomol. 36:624-625. illus.
366. ——. 1944. Tests indicate several materials can be used for control of Mexican bean beetle. Colo. Farmers Bull. 6:11-13.
380. ——, and P. G. Piquett. 1944. Toxicity of DDT for bedbugs, cockroaches, the Mexican bean beetle, and housefly larvae. J. Econ. Entomol. 37:139-140.

Parks, T. H. 1924. The Mexican bean beetle - another foe makes attack on Ohio gardens. Ohio Farmer 15:713.

the residual activity of dichlorvos and mevinphos in the laboratory. J. Econ. Entomol. 62:1347-1351.

508. ___ AND ___ 1952. Metabolic fate of DDIT when applied to certain naturally tolerant insects. J. Econ. Entomol. 45:97-103. illus. refs.

510. SUN, Y. P. 1948. Synergistic action of chlordane in dusts containing nicotine or rotenone. J. Econ. Entomol. 41:89-91. illus. refs.

514. ___ 1930. The external morphology of the Mexican bean beetle, Epilachna corru'ta Muls. (Coleoptera, Chlo-

519. SWIFT, F. C. 1958. A monometric assay for DDIT-dehydrochlorin and its application to the investigation of the in vitro metabolism of DDIT, TDE, and methoxychlor by the

522. ___ 1934. The Mexican bean beetle Epilachna varie

523. ___ 1934. The Mexican bean beetle Epilachna varie

524. ___ 1934. The Mexican bean beetle Epilachna varie

525. ___ 1934. The Mexican bean beetle Epilachna varie

526. ___ 1934. The Mexican bean beetle Epilachna varie

527. ___ 1934. The Mexican bean beetle Epilachna varie

528. ___ 1934. The Mexican bean beetle Epilachna varie

529. ___ 1934. The Mexican bean beetle Epilachna varie

530. ___ 1944. Fluorine compounds as alternatives for rotenone-bearing dusts. J. Econ. Entomol. 37:243-245. illus. refs.

531. ___ 1945. The coverage factor in the application of dusts. J. Econ. Entomol. 38:359-364. illus. refs.

533. ___ AND ___ 1933. Cultural practices in relation to Mexican bean beetle control. J. Econ. Entomol. 26:115-123. illus. refs.

536. TURNIPSEED, S. G. 1967. Systemic insecticides for control of
soybean insects in South Carolina. J. Econ. Entomol. 60: 1054-1056. illus. refs.

Appendix—Annual Reports

Colo. State Entomol.

Conn. State Entomol.

Entomol. Soc. Ont.

Ga. State Entomol.

Ind. Agr. Exp. Sta. (Purdue)

Ind. Dep. Conserv.

Iowa Agr. Exp. Sta.

Iowa State Entomol.

Maine Agr. Exp. Sta.

N. Y. Agr. Exp. Sta. Cornell

N. C. Agr. Exp. Sta.

N. C. Dep. Agr.

Ohio Agr. Exp. Sta.

S. C. Agr. Exp. Sta. (Clemson)

Va. State Entomol.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXONOMY & MORPHOLOGY</td>
<td>27,38,83</td>
<td>121,122,132</td>
<td>185,203,246</td>
<td>352,613</td>
<td>46,101,315</td>
<td>42,356,512</td>
<td>86,341,345</td>
<td>509,345,582</td>
<td>37</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>460</td>
<td>75,227,345</td>
<td>382</td>
<td>138,276</td>
<td>76,80,579</td>
<td>205,245</td>
<td>542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICOLOGY</td>
<td></td>
<td>163,322</td>
<td>175,176,177</td>
<td>338</td>
<td>25,26,77,78</td>
<td>96,178,331</td>
<td>348,415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONOMIC ROLE & DAMAGE</td>
<td>14,493</td>
<td>15,97,188</td>
<td>287,439,497</td>
<td>344</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULTURAL CONTROL</td>
<td></td>
<td>436</td>
<td>91,211,586</td>
<td>545</td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICAL CONTROL</td>
<td></td>
<td>436</td>
<td>91,211,586</td>
<td>545</td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANT RESISTANCE</td>
<td></td>
<td>436</td>
<td>91,211,586</td>
<td>545</td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PERIODICAL ABBREVIATIONS

Agr. Leaders Dig. Agricultural Leader's Digest.
Econ. Geogr. Economic Geography.
Fla. Entomol. Florida Entomologist.
Grain Dealers J. Grain Dealers Journal.
Indiana Agr. Exp. Sta. Circ. Indiana Agricultural Experiment Station Circular.
Mo. Farmer. Missouri Farmer.