

JavaScript Allongé

A	long	pull	of	functions,	combinators,	&	decorators

$19.00
MINIMUM PRICE

$29.00
SUGGESTED PRICE

	
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

Buy Ebook At LeanpubBuy Ebook At Leanpub 	

raganwald

https://leanpub.com/javascript-allonge
https://leanpub.com/u/raganwald
https://leanpub.com/javascript-allonge
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
https://leanpub.com/javascript-allonge

JavaScript	Allongé

Table	of	Contents

A	Pull	of	the	Lever:	Prefaces

Foreword	by	Michael	Fogus

Foreword	by	Matthew	Knox

Why	JavaScript	Allongé?

A	Personal	Word	About	The	Recipes

Legend

JavaScript	Spessore

Prelude:	Values	and	Expressions

values	and	expressions

values	and	identity

1.	 The	first	sip:	Basic	Functions

As	Little	As	Possible	About	Functions,	But	No	Less

Ah.	I’d	Like	to	Have	an	Argument,	Please.

Closures	and	Scope

Let’s	Talk	Var

Naming	Functions

Combinators	and	Function	Decorators

Building	Blocks

I’d	Like	to	Have	Some	Arguments.	Again.

Summary

2.	 The	Recipe	Cheat	Sheet

3.	 Recipes	with	Basic	Functions

Partial	Application

Ellipses	and	improved	Partial	Application

Unary

Tap

Maybe

4.	 The	Pause	That	Refreshes:	Rebinding	and	References

Arguments	and	Arrays

References	and	Objects

Reassignment	and	Mutation

How	to	Shoot	Yourself	in	the	Foot	With	Var

When	Rebinding	Meets	Recursion

From	Let	to	Modules

Summary

5.	 Recipes	with	Rebinding	and	References

Once

mapWith

Flip

Extend

Why?

6.	 Stir	the	Allongé:	Objects,	Mutation,	and	State

Encapsulating	State	with	Closures

Composition	and	Extension

This	and	That

What	Context	Applies	When	We	Call	a	Function?

Method	Decorators

Summary

7.	 Recipes	with	Objects,	Mutations,	and	State

Memoize

getWith

pluckWith

Deep	Mapping

8.	 Finish	the	Cup:	Instances	and	Classes

Prototypes	are	Simple,	it’s	the	Explanations	that	are	Hard	To	Understand

Binding	Functions	to	Contexts

Partial	Application,	Binding,	and	Currying

A	Class	By	Any	Other	Name

Object	Methods

Extending	Classes	with	Inheritance

Summary

9.	 Recipes	with	Instances	and	Classes

Currying

Bound

Unbinding

Send

Invoke

Fluent

Once	Again

10.	 Sequence

Introduction:	Compose	and	Pipeline

11.	 New	Ideas

How	Prototypes	and	Constructors	differ	from	Classes

New-Agnostic	Constructors

Another	New-Agnostic	Constructor	Pattern

Mixins

Class	Decorators

Interlude:	Tortoises,	Hares,	and	Teleporting	Turtles

Functional	Iterators

Refactoring	to	Functional	Iterators

A	Drunken	Walk	Across	A	Chequerboard

Trampolining

12.	 Recipes	for	New	Ideas

Before

After

Provided	and	Except

A	Functional	Mixin	Factory

A	Class	Decorator	Factory

Iterator	Recipes

The	Golden	Crema

Author’s	Notes

How	to	run	the	examples

Thanks!

JavaScript	Spessore

Copyright	Notice

About	The	Author

A	Pull	of	the	Lever:	Prefaces

Caffe Molinari

“Café Allongé, also called Espresso Lungo, is a drink midway between an Espresso
and Americano in strength. There are two different ways to make it. The first, and
the one I prefer, is to add a small amount of hot water to a double or quadruple
Espresso Ristretto. Like adding a splash of water to whiskey, the small dilution
releases more of the complex flavours in the mouth.

“The second way is to pull an extra long double shot of Espresso. This achieves
approximately the same ratio of oils to water as the dilution method, but also
releases a different mix of flavours due to the longer extraction. Some complain
that the long pull is more bitter and detracts from the best character of the coffee,
others feel it releases even more complexity.

“The important thing is that neither method of preparation should use so much
water as to result in a sickly, pale ghost of Espresso. Moderation in all things.”

Foreword	by	Michael	Fogus
As a life-long bibliophile and long-time follower of Reg’s online work, I was excited when
he started writing books. However, I’m very conservative about books – let’s just say that

if there was an aftershave scented to the essence of “Used Book Store” then I would be
first in line to buy. So as you might imagine I was “skeptical” about the decision to release
JavaScript Allongé as an ongoing ebook, with a pay-what-you-want model. However, Reg
sent me a copy of his book and I was humbled. Not only was this a great book, but it was
also a great way to write and distribute books. Having written books myself, I know the
pain of soliciting and receiving feedback.

The act of writing is an iterative process with (very often) tight revision loops. However,
the process of soliciting feedback, gathering responses, sending out copies, waiting for
people to actually read it (if they ever do), receiving feedback and then ultimately making
sense out of how to use it takes weeks and sometimes months. On more than one
occasion I’ve found myself attempting to reify feedback with content that either no longer
existed or was changed beyond recognition. However, with the Leanpub model the read-
feedback-change process is extremely efficient, leaving in its wake a quality book that
continues to get better as others likewise read and comment into infinitude.

In the case of JavaScript Allongé, you’ll find the Leanpub model a shining example of
effectiveness. Reg has crafted (and continues to craft) not only an interesting book from
the perspective of a connoisseur, but also an entertaining exploration into some of the
most interesting aspects of his art. No matter how much of an expert you think you are,
JavaScript Allongé has something to teach you… about coffee. I kid.

As a staunch advocate of functional programming, much of what Reg has written rings
true to me. While not exclusively a book about functional programming, JavaScript
Allongé will provide a solid foundation for functional techniques. However, you’ll not be
beaten about the head and neck with dogma. Instead, every section is motivated by
relevant dialog and fortified with compelling source examples. As an author of
programming books I admire what Reg has managed to accomplish and I envy the fine
reader who finds JavaScript Allongé via some darkened channel in the Internet sprawl
and reads it for the first time.

Enjoy.

– Fogus, fogus.me

Foreword	by	Matthew	Knox
A different kind of language requires a different kind of book.

JavaScript holds surprising depths–its scoping rules are neither strictly lexical nor strictly
dynamic, and it supports procedural, object-oriented (in several flavors!), and functional
programming. Many books try to hide most of those capabilities away, giving you recipes
for writing JavaScript in a way that approximates class-centric programming in other

http://www.fogus.me/

languages. Not JavaScript Allongé. It starts with the fundamentals of values, functions,
and objects, and then guides you through JavaScript from the inside with exploratory bits
of code that illustrate scoping, combinators, context, state, prototypes, and constructors.

Like JavaScript itself, this book gives you a gentle start before showing you its full depth,
and like a Cafe Allongé, it’s over too soon. Enjoy!

–Matthew Knox, mattknox.com

Why	JavaScript	Allongé?
JavaScript Allongé solves two important problems for the ambitious JavaScript
programmer. First, JavaScript Allongé gives you the tools to deal with JavaScript bugs,
hitches, edge cases, and other potential pitfalls.

There are plenty of good directions for how to write JavaScript programs. If you follow
them without alteration or deviation, you will be satisfied. Unfortunately, software is a
complex thing, full of interactions and side-effects. Two perfectly reasonable pieces of
advice when taken separately may conflict with each other when taken together. An
approach may seem sound at the outset of a project, but need to be revised when new
requirements are discovered.

When you “leave the path” of the directions, you discover their limitations. In order to
solve the problems that occur at the edges, in order to adapt and deal with changes, in
order to refactor and rewrite as needed, you need to understand the underlying principles
of the JavaScript programming language in detail.

You need to understand why the directions work so that you can understand how to
modify them to work properly at or beyond their original limitations. That’s where
JavaScript Allongé comes in.

JavaScript Allongé is a book about programming with functions, because JavaScript is a
programming language built on flexible and powerful functions. JavaScript Allongé begins
at the beginning, with values and expressions, and builds from there to discuss types,
identity, functions, closures, scopes, and many more subjects up to working with classes
and instances. In each case, JavaScript Allongé takes care to explain exactly how things
work so that when you encounter a problem, you’ll know exactly what is happening and
how to fix it.

Second, JavaScript Allongé provides recipes for using functions to write software that is
simpler, cleaner, and less complicated than alternative approaches that are object-centric
or code-centric. JavaScript idioms like function combinators and decorators leverage
JavaScript’s power to make code easier to read, modify, debug and refactor, thus

http://mattknox.com/
https://developer.mozilla.org/en-US/docs/JavaScript

avoiding problems before they happen.

JavaScript Allongé teaches you how to handle complex code, and it also teaches you how
to simplify code without dumbing it down. As a result, JavaScript Allongé is a rich read
releasing many of JavaScript’s subtleties, much like the Café Allongé beloved by coffee
enthusiasts everywhere.

how	the	book	is	organized
JavaScript Allongé introduces new aspects of programming with functions in each
chapter, explaining exactly how JavaScript works. Code examples within each chapter
are small and emphasize exposition rather than serving as patterns for everyday use.

Following each chapter are a series of recipes designed to show the application of the
chapters ideas in practical form. While the content of each chapter builds naturally on
what was discussed in the previous chapter, the recipes may draw upon any aspect of the
JavaScript programming language.

A	Personal	Word	About	The	Recipes
As noted, JavaScript Allongé alternates between chapters describing the semantics of
JavaScript’s functions with chapters containing recipes for writing programs with
functions. You can read the book in order or read the chapters explaining JavaScript first
and return to the recipes later.

The recipes share a common theme: They hail from a style of programming inspired by
the creation of small functions that compose with each other. Using these recipes, you’ll
learn when it’s appropriate to write:

1	return	mapWith(maybe(getWith('name')))(customerList);

Instead of:

1	return	customerList.map(function	(customer)	{

2			if	(customer)	{

3					return	customer.name

4			}

5	});

As well as how it works and how to refactor it when you need. This style of programming
is hardly the most common thing anyone does in JavaScript, so the argument can be
made that more “practical” or “commonplace” recipes would be helpful. If you never read
any other books about JavaScript, if you avoid blog posts and screen casts about

JavaScript, if you don’t attend workshops or talks about JavaScript, then I agree that this
is not One Book to Rule Them All.

But given that there are other resources out there, and that programmers are curious
creatures with an unslakable thirst for personal growth, we choose to provide recipes that
you are unlikely to find anywhere else in anything like this concentration. The recipes
reinforce the lessons taught in the book about functions in JavaScript.

You’ll find all of the recipes collected online at http://allong.es. They’re free to share under
the MIT license.

Reginald Braithwaite
reg@braythwayt.com
@raganwald

Legend
Some text in monospaced type like this in the text represents some code being discussed.
Some monospaced code in its own lines also represents code being discussed:

1	this.async	=	do	(async	=	undefined)	->

2	

3			async	=	(fn)	->

4					(argv...,	callback)	->

5							callback(fn.apply(this,	argv))

Sometimes it will contain some code for you to type in for yourself. When it does, the
result of typing something in will often be shown using //=>, like this:

1	2	+	2

2			//=>	4

A paragraph marked like this is a “key fact.” It summarizes an idea without
adding anything new.

A paragraph marked like this is a suggested exercise to be performed on
your own.

http://allong.es/
http://braythwayt.com/

A paragraph marked like this is an aside. It can be safely ignored. It contains
whimsey and other doupleplusunserious logorrhea that will not be on the test.

JavaScript	Spessore

JavaScript Spessore

FYI, the companion book to JavaScript Allongé is JavaScript Spessore:

Programming languages are (loosely) defined by their basic activity. In FORTRAN, we
program with numbers. In C, we program with pointers. In ML, we program with types.
And as will JavaScript Allongé explain, in JavaScript we program with functions.

Functions are very interesting building blocks for programs, because they compose: It’s
easy to build a programming style based on making many small things that can be
combined and recombined to make bigger things.

This is the basis of the vaunted “Unix Philosophy:” Write small utilities and scripts that
compose neatly. This is also the JavaScript philosophy: Make small things that can be
combined and recombined to make bigger things.

Programming with objects can be done in this style, and JavaScript makes it particularly
easy to combine and recombine small parts. Classes can be built from traits instead of
from superclasses. Objects can delegate and forward behaviour to helpers and meta-
objects. Adaptors can be written to change an object’s interface without needing to create
another class in a hierarchy.

JavaScript Spessore is a book that describes this approach to working with objects and
metaobjects in JavaScript. It’s exactly the same philosophy as you find in JavaScript
Allongé, only it speaks to programming with objects instead of programming with
functions.

JavaScript Spessore describes how to build JavaScript programs that scale in code, in
time, and across a team, using the one technique that has passed the test of time:
Objects and metaobjects that have a single responsibility, are decoupled from each other,
and can be composed freely.

Once you’ve read JavaScript Allongé, JavaScript Spessore should be next.

https://leanpub.com/javascript-spessore
https://leanpub.com/javascript-allonge
https://leanpub.com/javascript-spessore
https://leanpub.com/javascript-spessore

Prelude:	Values	and	Expressions

The following material is extremely basic, however like most stories, the best way to begin
is to start at the very beginning.

Imagine we are visiting our favourite coffee shop. They will make for you just about any
drink you desire, from a short, intense espresso ristretto through a dry cappuccino, up to
those coffee-flavoured desert concoctions featuring various concentrated syrups and
milks. (You tolerate the existence of sugary drinks because they provide a sufficient profit
margin to the establishment to finance your hanging out there all day using their WiFi and
ordering a $3 drink every few hours.)

You express your order at one end of their counter, the folks behind the counter perform
their magic, and deliver the coffee you value at the other end. This is exactly how the
JavaScript environment works for the purpose of this book. We are going to dispense with
web servers, browsers and other complexities and deal with this simple model: You give
the computer an expression, and it returns a value, just as you express your wishes to a
barista and receive a coffee in return.

values	and	expressions
All values are expressions. Say you hand the barista a café Cubano. Yup, you hand over
a cup with some coffee infused through partially caramelized sugar. You say, “I want one
of these.” The barista is no fool, she gives it straight back to you, and you get exactly what
you want. Thus, a café Cubano is an expression (you can use it to place an order) and a
value (you get it back from the barista).

Let’s try this with something the computer understands easily:

1	42

Is this an expression? A value? Neither? Or both?

The answer is, this is both an expression and a value.1 The way you can tell that it’s both
is very easy: When you type it into JavaScript, you get the same thing back, just like our
café Cubano:

1	42

2			//=>	42

All values are expressions. That’s easy! Are there any other kinds of expressions? Sure!
let’s go back to the coffee shop. Instead of handing over the finished coffee, we can hand

https://en.wikipedia.org/wiki/Expression_
https://en.wikipedia.org/wiki/Value_

over the ingredients. Let’s hand over some ground coffee plus some boiling water.

Astute readers will realize we’re omitting something. Congratulations! Take a
sip of espresso. We’ll get to that in a moment.

Now the barista gives us back an espresso. And if we hand over the espresso, we get the
espresso right back. So, boiling water plus ground coffee is an expression, but it isn’t a
value.2 Boiling water is a value. Ground coffee is a value. Espresso is a value. Boiling
water plus ground coffee is an expression.

Let’s try this as well with something else the computer understands easily:

1	"JavaScript"	+	"	"	+	"Allonge"

2			//=>	"JavaScript	Allonge"

Now we see that “strings” are values, and you can make an expression out of strings and
an operator +. Since strings are values, they are also expressions by themselves. But
strings with operators are not values, they are expressions. Now we know what was
missing with our “coffee grounds plus hot water” example. The coffee grounds were a
value, the boiling hot water was a value, and the “plus” operator between them made the
whole thing an expression that was not a value.

values	and	identity
In JavaScript, we test whether two values are identical with the === operator, and whether
they are not identical with the !== operator:

1		 2	===	2

2		 	 //=>	true

3		 	

4		 'hello'	!==	'goodbye'

5		 	 //=>	true

How does === work, exactly? Imagine that you’re shown a cup of coffee. And then you’re
shown another cup of coffee. Are the two cups “identical?” In JavaScript, there are four
possibilities:

First, sometimes, the cups are of different kinds. One is a demitasse, the other a mug.
This corresponds to comparing two things in JavaScript that have different types. For
example, the string "2" is not the same thing as the number 2. Strings and numbers are

different types, so strings and numbers are never identical:

1	2	===	'2'

2			//=>	false

3			

4	true	!==	'true'

5			//=>	true

Second, sometimes, the cups are of the same type–perhaps two espresso cups–but they
have different contents. One holds a single, one a double. This corresponds to comparing
two JavaScript values that have the same type but different “content.” For example, the
number 5 is not the same thing as the number 2.

1	true	===	false

2			//=>	false

3			

4	2	!==	5

5			//=>	true

6			

7	'two'	===	'five'

8			//=>	false

What if the cups are of the same type and the contents are the same? Well, JavaScript’s
third and fourth possibilities cover that.

value	types
Third, some types of cups have no distinguishing marks on them. If they are the same
kind of cup, and they hold the same contents, we have no way to tell the difference
between them. This is the case with the strings, numbers, and booleans we have seen so
far.

1	2	+	2	===	4

2			//=>	true

3			

4	(2	+	2	===	4)	===	(2	!==	5)

5			//=>	true

Note well what is happening with these examples: Even when we obtain a string, number,
or boolean as the result of evaluating an expression, it is identical to another value of the
same type with the same “content.” Strings, numbers, and booleans are examples of what
JavaScript calls “value” or “primitive” types. We’ll use both terms interchangeably.

We haven’t encountered the fourth possibility yet. Stretching the metaphor somewhat,

some types of cups have a serial number on the bottom. So even if you have two cups of
the same type, and their contents are the same, you can still distinguish between them.

Cafe Macchiato is also a fine drink, especially when following up on the fortunes of the
Azzurri or the standings in the Giro D’Italia

reference	types
So what kinds of values might be the same type and have the same contents, but not be
considered identical to JavaScript? Let’s meet a data structure that is very common in
contemporary programming languages, the Array (other languages sometimes call it a
List or a Vector).

An array looks like this: [1, 2, 3]. This is an expression, and you can combine [] with other
expressions. Go wild with things like:

1	[2-1,	2,	2+1]

2	[1,	1+1,	1+1+1]

Notice that you are always generating arrays with the same contents. But are they
identical the same way that every value of 42 is identical to every other value of 42? Try
these for yourself:

1	[2-1,	2,	2+1]	===	[1,2,3]

2	[1,2,3]	===	[1,	2,	3]

3	[1,	2,	3]	===	[1,	2,	3]

How about that! When you type [1, 2, 3] or any of its variations, you are typing an
expression that generates its own unique array that is not identical to any other array,
even if that other array also looks like [1, 2, 3]. It’s as if JavaScript is generating new cups of
coffee with serial numbers on the bottom.

Arrays look exceedingly simple, but this word “reference” is so laden with
possibilities that there’s an entire chapter devoted to discussing rebinding and
references. Try typing this code out:

1	var	ouroboros	=	[];

2	ouroboros[0]	=	ouroboros;

3			//=>	[[Circular]]

You’ve just created an ouroborian array, an array that contains itself.

They look the same, but if you examine them with ===, you see that they are different.
Every time you evaluate an expression (including typing something in) to create an array,
you’re creating a new, distinct value even if it appears to be the same as some other array
value. As we’ll see, this is true of many other kinds of values, including functions, the main
subject of this book.

https://en.wikipedia.org/wiki/Ouroboros

Technically,	it’s	a	representation	of	a	value	using	Base10	notation,	but	we	needn’t	worry	about	that
in	this	book.	You	and	I	both	understand	that	this	means	“42,”	and	so	does	the	computer.↩

In	some	languages,	expressions	are	a	kind	of	value	unto	themselves	and	can	be	manipulated.	The
grandfather	of	such	languages	is	Lisp.	JavaScript	is	not	such	a	language,	expressions	in	and	of
themselves	are	not	values.↩

1.	 The	first	sip:	Basic	Functions

The perfect Café Allongé begins with the right beans, properly roasted. JavaScript
Allongé begins with functions, properly dissected.

As	Little	As	Possible	About	Functions,	But	No	Less

In JavaScript, functions are values, but they are also much more than simple numbers,
strings, or even complex data structures like trees or maps. Functions represent
computations to be performed. Like numbers, strings, and arrays, they have a
representation. Let’s start with the very simplest possible function. In JavaScript, it looks
like this:

1	function	()	{}

This is a function that is applied to no values and produces no value. How do we
represent “no value” in JavaScript? We’ll find out in a minute. First, let’s verify that our
function is a value:

1	(function	()	{})

2			//=>	[Function]

What!? Why didn’t it type back function () {} for us? This seems to break our rule that if an
expression is also a value, JavaScript will give the same value back to us. What’s going
on? The simplest and easiest answer is that although the JavaScript interpreter does
indeed return that value, displaying it on the screen is a slightly different matter. [Function] is
a choice made by the people who wrote Node.js, the JavaScript environment that hosts
the JavaScript REPL. If you try the same thing in a browser, you’ll see the code you
typed.

I’d prefer something else, but I must accept that what gets typed back to us on
the screen is arbitrary, and all that really counts is that it is somewhat useful
for a human to read. But we must understand that whether we see [Function] or
function () {}, internally JavaScript has a full and proper function.

functions	and	identities
You recall that we have two types of values with respect to identity: Value types and
reference types. Value types share the same identity if they have the same
contents.Reference types do not.

Which kind are functions? Let’s try it. For reasons of appeasing the JavaScript parser,
we’ll enclose our functions in parentheses:

1	(function	()	{})	===	(function	()	{})

2			//=>	false

Like arrays, every time you evaluate an expression to produce a function, you get a new
function that is not identical to any other function, even if you use the same expression to
generate it. “Function” is a reference type.

applying	functions
Let’s put functions to work. The way we use functions is to apply them to zero or more
values called arguments. Just as 2 + 2 produces a value (in this case 4), applying a
function to zero or more arguments produces a value as well.

Here’s how we apply a function to some values in JavaScript: Let’s say that fn_expr is an
expression that when evaluated, produces a function. Let’s call the arguments args.
Here’s how to apply a function to some arguments:

fn_expr(args)

Right now, we only know about one such expression: function () {}, so let’s use it. We’ll put it
in parentheses1 to keep the parser happy, like we did above: (function () {}). Since we aren’t
giving it any arguments, we’ll simply write () after the expression. So we write:

1	(function	()	{})()

2			//=>	undefined

What is this undefined?

undefined

In JavaScript, the absence of a value is written undefined, and it means there is no value. It
will crop up again. undefined is its own type of value, and it acts like a value type:

1	undefined

2			//=>	undefined

Like numbers, booleans and strings, JavaScript can print out the value undefined.

1	undefined	===	undefined

2			//=>	true

3	(function	()	{})()	===	(function	()	{})()

4			//=>	true

5	(function	()	{})()	===	undefined

6			//=>	true

No matter how you evaluate undefined, you get an identical value back. undefined is a value

that means “I don’t have a value.” But it’s still a value :-)

You might think that undefined in JavaScript is equivalent to NULL in SQL. No. In
SQL, two things that are NULL are not equal to nor share the same identity,
because two unknowns can’t be equal. In JavaScript, every undefined is
identical to every other undefined.

void
We’ve seen that JavaScript represents an undefined value by typing undefined, and we’ve
generated undefined values in two ways:

1.	 By	evaluating	a	function	that	doesn’t	return	a	value	(function	()	{})(),	and;

2.	 By	writing	undefined	ourselves.

There’s a third way, with JavaScript’s void operator. Behold:

1	void	0

2			//=>	undefined

3	void	1

4			//=>	undefined

5	void	(2	+	2)

6			//=>	undefined

void is an operator that takes any value and evaluates to undefined, always. So, when we
deliberately want an undefined value, should we use the first, second, or third form?2 The
answer is, use void. By convention, use void 0.

The first form works but it’s cumbersome. The second form works most of the time, but it
is possible to break it by reassigning undefined to a different value, something we’ll discuss
in Reassignment and Mutation. The third form is guaranteed to always work, so that’s
what we will use.3

functions	with	no	arguments	and	their	bodies
Back to our function. We evaluated this:

1	(function	()	{})()

2			//=>	undefined

Let’s recall that we were applying the function function () {} to no arguments (because there

was nothing inside of ()). So how do we know to expect undefined? That’s easy:

When we define a function4, we write the word function. We then put a (possibly empty) list
of arguments, then we give the function a body that is enclosed in braces {...}. Function
bodies are (possibly empty) lists of JavaScript statements separated by semicolons.

Something like: { statement1; statement2; statement3; … ; statementn }

We haven’t discussed these statements. What’s a statement?

There are many kinds of JavaScript statements, but the first kind is one we’ve already
met. An expression is a JavaScript statement. Although they aren’t very practical, the
following are all valid JavaScript functions, and they all evaluate to undefined when
applied:

1	(function	()	{	2	+	2	})

2	

3	(function	()	{	1	+	1;	2	+	2	})

You can also separate statements with line breaks.5 The convention is to use some form
of consistent indenting:

	1	(function	()	{

	2			1	+	1;	

	3			2	+	2	

	4	})

	5	

	6	(function	()	{	

	7			(function	()	{	

	8					(function	()	{	

	9							(function	()	{

10							})	

11					})	

12			});	

13			(function	()	{

14			})	

15	})

That last one’s a doozy, but since a function body can contain a statement, and a
statement can be an expression, and a function is an expression…. You get the idea.

So how do we get a function to return a value when applied? With the return keyword and
any expression:

1	(function	()	{	return	0	})()

2			//=>	0

3			

4	(function	()	{	return	1	})()

5			//=>	1

6			

7	(function	()	{	return	'Hello	'	+	'World'	})()

8			//	'Hello	World'

The return keyword creates a return statement that immediately terminates the function
application and returns the result of evaluating its expression.

functions	that	evaluate	to	functions
If an expression that evaluates to a function is, well, an expression, and if a return
statement can have any expression on its right side… Can we put an expression that
evaluates to a function on the right side of a function expression?

Yes:

1	function	()	{

2			return	(function	()	{})	

3	}

That’s a function! It’s a function that when applied, evaluates to a function that when
applied, evaluates to undefined.6 Let’s use a simpler terminology. Instead of saying “that
when applied, evaluates to _____,” we will say “gives _____.” And instead of saying
“gives undefined,” we’ll say “doesn’t give anything.”

So we have a function, that gives a function, that doesn’t give anything. Likewise:

1	function	()	{	

2			return	(function	()	{	

3					return	true	

4			})	

5	}

That’s a function, that gives a function, that gives true:

1	(function	()	{	

2			return	(function	()	{	

3					return	true	

4			})	

5	})()()

6			//=>	true

Well. We’ve been very clever, but so far this all seems very abstract. Diffraction of a
crystal is beautiful and interesting in its own right, but you can’t blame us for wanting to be
shown a practical use for it, like being able to determine the composition of a star millions
of light years away. So… In the next chapter, “I’d Like to Have an Argument, Please,”
we’ll see how to make functions practical.

Ah.	I’d	Like	to	Have	an	Argument,	Please.
Up to now, we’ve looked at functions without arguments. We haven’t even said what an
argument is, only that our functions don’t have any.

Most programmers are perfectly familiar with arguments (often called
“parameters”). Secondary school mathematics discusses this. So you know
what they are, and I know that you know what they are, but please be patient
with the explanation!

Let’s make a function with an argument:

1	function	(room)	{}

This function has one argument, room, and no body. Here’s a function with two arguments
and no body:

1	function	(room,	board)	{}

I’m sure you are perfectly comfortable with the idea that this function has two arguments,
room, and board. What does one do with the arguments? Use them in the body, of course.
What do you think this is?

1	function	(diameter)	{	return	diameter	*	3.14159265	}

It’s a function for calculating the circumference of a circle given the diameter. I read that
aloud as “When applied to a value representing the diameter, this function returns the
diameter times 3.14159265.”

Remember that to apply a function with no arguments, we wrote (function () {})(). To apply a
function with an argument (or arguments), we put the argument (or arguments) within the

parentheses, like this:

1	(function	(diameter)	{	return	diameter	*	3.14159265	})(2)

2			//=>	6.2831853

You won’t be surprised to see how to write and apply a function to two arguments:

1	(function	(room,	board)	{	return	room	+	board	})(800,	150)

2			//=>	950

a	quick	summary	of	functions	and	bodies
How arguments are used in a body’s expression is probably perfectly
obvious to you from the examples, especially if you’ve used any
programming language (except for the dialect of BASIC–which I recall from
my secondary school–that didn’t allow parameters when you called a
procedure).

Expressions consist either of representations of values (like 3.14159265, true,
and undefined), operators that combine expressions (like 3 + 2), some special
forms like [1, 2, 3] for creating arrays out of expressions, or function (arguments)

{body-statements} for creating functions.

One of the important possible statements is a return statement. A return
statement accepts any valid JavaScript expression.

This loose definition is recursive, so we can intuit (or use our experience
with other languages) that since a function can contain a return statement
with an expression, we can write a function that returns a function, or an
array that contains another array expression. Or a function that returns an
array, an array of functions, a function that returns an array of functions, and
so forth:

	1	function	()	{

	2			return	function	()	{}

	3	}

	4	

	5	function	()	{

	6			return	[1,	2,	3]

	7	}

	8	

	9	[1,	[2,	3],	4]

10	

11	function	()	{

12			return	[

13					(function	()	{	return	1}),

14					(function	()	{	return	2}),

15					(function	()	{	return	3})

16]

17	}

call	by	value
Like most contemporary programming languages, JavaScript uses the “call by value”
evaluation strategy. That means that when you write some code that appears to apply a
function to an expression or expressions, JavaScript evaluates all of those expressions
and applies the functions to the resulting value(s).

So when you write:

1	(function	(diameter)	{	return	diameter	*	3.14159265	})(1	+	1)

2			//=>	6.2831853

What happened internally is that the expression 1 + 1 was evaluated first, resulting in 2.
Then our circumference function was applied to 2.8

variables	and	bindings
Right now everything looks simple and straightforward, and we can move on to talk about
arguments in more detail. And we’re going to work our way up from function (diameter) { return

diameter * 3.14159265 } to functions like:

1	function	(x)	{	return	(function	(y)	{	return	x	})	}

function (x) { return (function (y) { return x }) } just looks crazy, as if we are learning
English as a second language and the teacher promises us that soon we will
be using words like antidisestablishmentarianism. Besides a desire to use
long words to sound impressive, this is not going to seem attractive until we
find ourselves wanting to discuss the role of the Church of England in 19th
century British politics.

But there’s another reason for learning the word antidisestablishmentarianism:
We might learn how prefixes and postfixes work in English grammar. It’s the

http://en.wikipedia.org/wiki/Evaluation_strategy

same thing with function (x) { return (function (y) { return x }) }. It has a certain important
meaning in its own right, and it’s also an excellent excuse to learn about
functions that make functions, environments, variables, and more.

In order to talk about how this works, we should agree on a few terms (you may already
know them, but let’s check-in together and “synchronize our dictionaries”). The first x, the
one in function (x) ..., is an argument. The y in function (y) ... is another argument. The second x,
the one in { return x }, is not an argument, it’s an expression referring to a variable.
Arguments and variables work the same way whether we’re talking about function (x) { return

(function (y) { return x }) } or just plain function (x) { return x }.

Every time a function is invoked (“invoked” means “applied to zero or more arguments”), a
new environment is created. An environment is a (possibly empty) dictionary that maps
variables to values by name. The x in the expression that we call a “variable” is itself an
expression that is evaluated by looking up the value in the environment.

How does the value get put in the environment? Well for arguments, that is very simple.
When you apply the function to the arguments, an entry is placed in the dictionary for
each argument. So when we write:

1	(function	(x)	{	return	x	})(2)

2			//=>	2

What happens is this:

1.	 JavaScript	parses	this	whole	thing	as	an	expression	made	up	of	several	sub-expressions.

2.	 It	then	starts	evaluating	the	expression,	including	evaluating	sub-expressions

3.	 One	sub-expression,	function	(x)	{	return	x	}	evaluates	to	a	function.

4.	 Another,	2,	evaluates	to	the	number	2.

5.	 JavaScript	now	evaluates	applying	the	function	to	the	argument	2.	Here’s	where	it	gets
interesting…

6.	 An	environment	is	created.

7.	 The	value	‘2’	is	bound	to	the	name	‘x’	in	the	environment.

8.	 The	expression	‘x’	(the	right	side	of	the	function)	is	evaluated	within	the	environment	we	just
created.

9.	 The	value	of	a	variable	when	evaluated	in	an	environment	is	the	value	bound	to	the	variable’s
name	in	that	environment,	which	is	‘2’

10.	 And	that’s	our	result.

When we talk about environments, we’ll use an unsurprising syntax for showing their
bindings: {x: 2, ...}. meaning, that the environment is a dictionary, and that the value 2 is
bound to the name x, and that there might be other stuff in that dictionary we aren’t
discussing right now.

call	by	sharing
Earlier, we distinguished JavaScript’s value types from its reference types. At that time,
we looked at how JavaScript distinguishes objects that are identical from objects that are
not. Now it is time to take another look at the distinction between value and reference
types.

There is a property that JavaScript strictly maintains: When a value–any value–is passed
as an argument to a function, the value bound in the function’s environment must be
identical to the original.

We said that JavaScript binds names to values, but we didn’t say what it means to bind a
name to a value. Now we can elaborate: When JavaScript binds a value-type to a name,
it makes a copy of the value and places the copy in the environment. As you recall, value
types like strings and numbers are identical to each other if they have the same content.
So JavaScript can make as many copies of strings, numbers, or booleans as it wishes.

What about reference types? JavaScript does not place copies of reference values in any
environment. JavaScript places references to reference types in environments, and when
the value needs to be used, JavaScript uses the reference to obtain the original.

Because many references can share the same value, and because JavaScript passes
references as arguments, JavaScript can be said to implement “call by sharing”
semantics. Call by sharing is generally understood to be a specialization of call by value,
and it explains why some values are known as value types and other values are known as
reference types.

And with that, we’re ready to look at closures. When we combine our knowledge of value
types, reference types, arguments, and closures, we’ll understand why this function
always evaluates to true no matter what argument9 you apply it to:

1	function	(value)	{

2			return	(function	(copy)	{

3					return	copy	===	value

4			})(value)

5	}

Closures	and	Scope

http://json.org/

It’s time to see how a function within a function works:

1	(function	(x)	{

2			return	function	(y)	{

3					return	x

4			}

5	})(1)(2)

6			//=>	1

First off, let’s use what we learned above. Given (some function)(some argument), we
know that we apply the function to the argument, create an environment, bind the value of
the argument to the name, and evaluate the function’s expression. So we do that first with
this code:

1	(function	(x)	{

2			return	function	(y)	{

3					return	x

4			}

5	})(1)

6			//=>	[Function]

The environment belonging to the function with signature function (x) ... becomes {x: 1, ...}, and
the result of applying the function is another function value. It makes sense that the result
value is a function, because the expression for function (x) ...’s body is:

1			function	(y)	{

2					return	x

3			}

So now we have a value representing that function. Then we’re going to take the value of
that function and apply it to the argument 2, something like this:

1			(function	(y)	{

2					return	x

3			})(2)

So we seem to get a new environment {y: 2, ...}. How is the expression x going to be
evaluated in that function’s environment? There is no x in its environment, it must come
from somewhere else.

This, by the way, is one of the great defining characteristics of JavaScript and

languages in the same family: Whether they allow things like functions to nest
inside each other, and if so, how they handle variables from “outside” of a
function that are referenced inside a function. For example, here’s the
equivalent code in Ruby:

1	lambda	{	|x|

2			lambda	{	|y|	x	}

3	}[1][2]

4			#=>	1

Now let’s enjoy a relaxed Allongé before we continue!

If	functions	without	free	variables	are	pure,	are	closures	impure?
The function function (y) { return x } is interesting. It contains a free variable, x.10 A free variable
is one that is not bound within the function. Up to now, we’ve only seen one way to “bind”
a variable, namely by passing in an argument with the same name. Since the function
function (y) { return x } doesn’t have an argument named x, the variable x isn’t bound in this
function, which makes it “free.”

Now that we know that variables used in a function are either bound or free, we can
bifurcate functions into those with free variables and those without:

Functions	containing	no	free	variables	are	called	pure	functions.

Functions	containing	one	or	more	free	variables	are	called	closures.

Pure functions are easiest to understand. They always mean the same thing wherever
you use them. Here are some pure functions we’ve already seen:

	1	function	()	{}

	2	

	3	function	(x)	{

	4			return	x

	5	}

	6			

	7	function	(x)	{

	8			return	function	(y)	{

	9					return	x

10			}

11	}

The first function doesn’t have any variables, therefore doesn’t have any free variables.

The second doesn’t have any free variables, because its only variable is bound. The third
one is actually two functions, one inside the other. function (y) ... has a free variable, but the
entire expression refers to function (x) ..., and it doesn’t have a free variable: The only
variable anywhere in its body is x, which is certainly bound within function (x)

From this, we learn something: A pure function can contain a closure.

If pure functions can contain closures, can a closure contain a pure
function? Using only what we’ve learned so far, attempt to compose a
closure that contains a pure function. If you can’t, give your reasoning for
why it’s impossible.

Pure functions always mean the same thing because all of their “inputs” are fully defined
by their arguments. Not so with a closure. If I present to you this pure function function (x, y) {

return x + y }, we know exactly what it does with (2, 2). But what about this closure: function (y) {

return x + y }? We can’t say what it will do with argument (2) without understanding the magic
for evaluating the free variable x.

it’s	always	the	environment
To understand how closures are evaluated, we need to revisit environments. As we’ve
said before, all functions are associated with an environment. We also hand-waved
something when describing our environment. Remember that we said the environment for
(function (x) { return (function (y) { return x }) })(1) is {x: 1, ...} and that the environment for (function (y) {

return x })(2) is {y: 2, ...}? Let’s fill in the blanks!

The environment for (function (y) { return x })(2) is actually {y: 2, '..': {x: 1, ...}}. '..' means something
like “parent” or “enclosure” or “super-environment.” It’s function (x) ...’s environment, because
the function function (y) { return x } is within function (x) ...’s body. So whenever a function is
applied to arguments, its environment always has a reference to its parent environment.

And now you can guess how we evaluate (function (y) { return x })(2) in the environment {y: 2, '..':

{x: 1, ...}}. The variable x isn’t in function (y) ...’s immediate environment, but it is in its parent’s
environment, so it evaluates to 1 and that’s what (function (y) { return x })(2) returns even though
it ended up ignoring its own argument.

function (x) { return x } is called the I Combinator or Identity Function. function (x) { return

(function (y) { return x }) } is called the K Combinator or Kestrel. Some people get so
excited by this that they write entire books about them, some are great,
some–how shall I put this–are interesting if you use Ruby.

http://www.amzn.com/0192801422?tag=raganwald001-20
https://leanpub.com/combinators

Functions can have grandparents too:

1	function	(x)	{

2			return	function	(y)	{

3					return	function	(z)	{

4							return	x	+	y	+	z

5					}

6			}

7	}

This function does much the same thing as:

1	function	(x,	y,	z)	{

2			return	x	+	y	+	z

3	}

Only you call it with (1)(2)(3) instead of (1, 2, 3). The other big difference is that you can call it
with (1) and get a function back that you can later call with (2)(3).

The first function is the result of currying the second function. Calling a curried
function with only some of its arguments is sometimes called partial
application. Some programming languages automatically curry and partially
evaluate functions without the need to manually nest them.

shadowy	variables	from	a	shadowy	planet
An interesting thing happens when a variable has the same name as an ancestor
environment’s variable. Consider:

1	function	(x)	{

2			return	function	(x,	y)	{

3					return	x	+	y

4			}

5	}

The function function (x, y) { return x + y } is a pure function, because its x is defined within its
own environment. Although its parent also defines an x, it is ignored when evaluating x + y.
JavaScript always searches for a binding starting with the functions own environment and
then each parent in turn until it finds one. The same is true of:

https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application

1	function	(x)	{

2			return	function	(x,	y)	{

3					return	function	(w,	z)	{

4							return	function	(w)	{

5									return	x	+	y	+	z

6							}

7					}

8			}

9	}

When evaluating x + y + z, JavaScript will find x and y in the great-grandparent scope and z
in the parent scope. The x in the great-great-grandparent scope is ignored, as are both ws.
When a variable has the same name as an ancestor environment’s binding, it is said to
shadow the ancestor.

This is often a good thing.

which	came	first,	the	chicken	or	the	egg?
This behaviour of pure functions and closures has many, many consequences that can be
exploited to write software. We are going to explore them in some detail as well as look at
some of the other mechanisms JavaScript provides for working with variables and
mutable state.

But before we do so, there’s one final question: Where does the ancestry start? If there’s
no other code in a file, what is function (x) { return x }’s parent environment?

JavaScript always has the notion of at least one environment we do not control: A global
environment in which many useful things are bound such as libraries full of standard
functions. So when you invoke (function (x) { return x })(1) in the REPL, its full environment is
going to look like this: {x: 1, '..': global environment}.

Sometimes, programmers wish to avoid this. If you don’t want your code to operate
directly within the global environment, what can you do? Create an environment for them,
of course. Many programmers choose to write every JavaScript file like this:

1	//	top	of	the	file

2	(function	()	{

3			

4			//	...	lots	of	JavaScript	...

5			

6	})();

7	//	bottom	of	the	file

The effect is to insert a new, empty environment in between the global environment and
your own functions: {x: 1, '..': {'..': global environment}}. As we’ll see when we discuss mutable
state, this helps to prevent programmers from accidentally changing the global state that
is shared by code in every file when they use the var keyword properly.

Let’s	Talk	Var
Up to now, all we’ve really seen are anonymous functions, functions that don’t have a
name. This feels very different from programming in most other languages, where the
focus is on naming functions, methods, and procedures. Naming things is a critical part of
programming, but all we’ve seen so far is how to name arguments.

There are other ways to name things in JavaScript, but before we learn some of those,
let’s see how to use what we already have to name things. Let’s revisit a very simple
example:

1	function	(diameter)	{

2			return	diameter	*	3.14159265

3	}

What is this “3.14159265” number? Pi, obviously. We’d like to name it so that we can
write something like:

1	function	(diameter)	{

2			return	diameter	*	Pi

3	}

In order to bind 3.14159265 to the name Pi, we’ll need a function with a parameter of Pi

applied to an argument of 3.14159265. If we put our function expression in parentheses, we
can apply it to the argument of 3.14159265:

1	(function	(Pi)	{

2			return	????

3	})(3.14159265)

What do we put inside our new function that binds 3.14159265 to the name Pi when
evaluated? Our circumference function, of course:

1	(function	(Pi)	{

2			return	function	(diameter)	{

3					return	diameter	*	Pi

4			}

https://en.wikipedia.org/wiki/Pi

5	})(3.14159265)

This expression, when evaluated, returns a function that calculates circumferences. It
differs from our original in that it names the constant Pi. Let’s test it:

1	(function	(Pi)	{

2			return	function	(diameter)	{

3					return	diameter	*	Pi

4			}

5	})(3.14159265)(2)

6			//=>	6.2831853

That works! We can bind anything we want in an expression by wrapping it in a function
that is immediately invoked with the value we want to bind.

immediately	invoked	function	expressions
JavaScript programmers regularly use the idea of writing an expression that denotes a
function and then immediately applying it to arguments. Explaining the pattern, Ben
Alman coined the term Immediately Invoked Function Expression for it, often abbreviated
“IIFE.” As we’ll see in a moment, an IIFE need not have parameters:

1	(function	()	{

2			//	...	do	something	here...

3	})();

When an IIFE binds values to names (as we did above with Pi), retro-grouch programmers
often call it “let.”11 And confusing the issue, upcoming versions of JavaScript have
support for a let keyword that has a similar binding behaviour.

var
Using an IIFE to bind names works very well, but only a masochist would write programs
this way in JavaScript. Besides all the extra characters, it suffers from a fundamental
semantic problem: there is a big visual distance between the name Pi and the value
3.14159265 we bind to it. They should be closer. Is there another way?

Yes.

Another way to write our “circumference” function would be to pass Pi along with the
diameter argument, something like this:

1	function	(diameter,	Pi)	{

http://www.benalman.com/news/2010/11/immediately-invoked-function-expression/

2			return	diameter	*	Pi

3	}

And you could use it like this:

1	(function	(diameter,	Pi)	{

2			return	diameter	*	Pi

3	})(2,	3.14159265)

4			//=>	6.2831853

This differs from our example above in that there is only one environment, rather than
two. We have one binding in the environment representing our regular argument, and
another our “constant.” That’s more efficient, and it’s almost what we wanted all along: A
way to bind 3.14159265 to a readable name.

JavaScript gives us a way to do that, the var keyword. We’ll learn a lot more about var in
future chapters, but here’s the most important thing you can do with var:

1	function	(diameter)	{

2			var	Pi	=	3.14159265;

3	

4			return	diameter	*	Pi

5	}

The var keyword introduces one or more bindings in the current function’s environment. It
works just as we want:

1	(function	(diameter)	{

2			var	Pi	=	3.14159265;

3	

4			return	diameter	*	Pi

5	})(2)

6			//=>	6.2831853

You can bind any expression. Functions are expressions, so you can bind helper
functions:

1	function	(d)	{

2			var	calc	=	function	(diameter)	{

3					var	Pi	=	3.14159265;

4	

5					return	diameter	*	Pi

6			};

7	

8			return	"The	circumference	is	"	+	calc(d)

9	}

Notice calc(d)? This underscores what we’ve said: if you have an expression that evaluates
to a function, you apply it with (). A name that’s bound to a function is a valid expression
evaluating to a function.12

Amazing how such an important idea–naming functions–can be explained en
passant in just a few words. That emphasizes one of the things JavaScript
gets really, really right: Functions as “first class entities.” Functions are values
that can be bound to names like any other value, passed as arguments,
returned from other functions, and so forth.

You can bind more than one name-value pair by separating them with commas. For
readability, most people put one binding per line:

1	function	(d)	{

2			var	Pi			=	3.14159265,

3							calc	=	function	(diameter)	{

4									return	diameter	*	Pi

5							};

6	

7			return	"The	circumference	is	"	+	calc(d)

8	}

These examples use the var keyword to bind names in the same environment as our
function. We can also create a new scope using an IIFE if we wish to bind some names in
part of a function:

	1	function	foobar	()	{

	2	

	3			//	do	something	without	foo	or	bar

	4	

	5			(function	()	{

	6					var	foo	=	'foo',

	7									bar	=	'bar';

	8	

	9					//	...	do	something	with	foo	and	bar	...

10	

11			})();

12	

13			//	do	something	else	without	foo	or	bar

14	

15	}

Naming	Functions
Let’s get right to it. This code does not name a function:

1	var	repeat	=	function	(str)	{

2			return	str	+	str

3	};

It doesn’t name the function “repeat” for the same reason that var answer = 42 doesn’t name
the number 42. That snippet of code binds an anonymous function to a name in an
environment, but the function itself remains anonymous.

JavaScript does have a syntax for naming a function, it looks like this:

1	var	bindingName	=	function	actualName	()	{

2			//...

3	};

In this expression, bindingName is the name in the environment, but actualName is the
function’s actual name. This is a named function expression. That may seem confusing,
but think of the binding names as properties of the environment, not the function itself.
And indeed the name is a property:

1	bindingName.name

2			//=>	'actualName'

In this book we are not examining JavaScript’s tooling such as debuggers baked into
browsers, but we will note that when you are navigating call stacks in all modern tools, the
function’s binding name is ignored but its actual name is displayed, so naming functions is
very useful even if they don’t get a formal binding, e.g.

1	someBackboneView.on('click',	function	clickHandler	()	{

2			//...

3	});

Now, the function’s actual name has no effect on the environment in which it is used. To
whit:

1	var	bindingName	=	function	actualName	()	{

2			//...

3	};

4	

5	bindingName

6			//=>	[Function:	actualName]

7	

8	actualName

9			//=>	ReferenceError:	actualName	is	not	defined

So “actualName” isn’t bound in the environment where we use the named function
expression. Is it bound anywhere else? Yes it is:

	1	var	fn	=	function	even	(n)	{

	2			if	(n	===	0)	{

	3					return	true

	4			}

	5			else	return	!even(n	-	1)

	6	}

	7	

	8	fn(5)

	9			//=>	false

10	

11	fn(2)

12			//=>	true

even is bound within the function itself, but not outside it. This is useful for making
recursive functions.

function	declarations
We’ve actually buried the lede.13 Naming functions for the purpose of debugging is not as
important as what we’re about to discuss. There is another syntax for naming and/or
defining a function. It’s called a function declaration, and it looks like this:

1	function	someName	()	{

2			//	...

3	}

This behaves a little like:

1	var	someName	=	function	someName	()	{

2			//	...

3	}

In that it binds a name in the environment to a named function. However, consider this
piece of code:

1	(function	()	{

2			return	someName;

3			

4			var	someName	=	function	someName	()	{

5					//	...

6			}

7	})()

8			//=>	undefined		

This is what we expect given what we learned about var: Although someName is declared
later in the function, JavaScript behaves as if you’d written:

1	(function	()	{

2			var	someName;

3			

4			return	someName;

5			

6			someName	=	function	someName	()	{

7					//	...

8			}

9	})()

What about a function declaration without var?

1	(function	()	{

2			return	someName;

3			

4			function	someName	()	{

5					//	...

6			}

7	})()

8			//=>	[Function:	someName]

Aha! It works differently, as if you’d written:

1	(function	()	{

2			var	someName	=	function	someName	()	{

3					//	...

4			}

5			return	someName;

6	})()

That difference is intentional on the part of JavaScript’s design to facilitate a certain style
of programming where you put the main logic up front, and the “helper functions” at the
bottom. It is not necessary to declare functions in this way in JavaScript, but
understanding the syntax and its behaviour (especially the way it differs from var) is
essential for working with production code.

function	declaration	caveats14
Function declarations are formally only supposed to be made at what we might call the
“top level” of a function. Although some JavaScript environments may permit it, this
example is technically illegal and definitely a bad idea:

1	//	function	declarations	should	not	happen	inside	of	

2	//	a	block	and/or	be	conditionally	executed

3	if	(frobbishes.arePizzled())	{

4			function	complainToFactory	()	{

5					//	...

6			}

7	}

The big trouble with expressions like this is that they may work just fine in your test
environment but work a different way in production. Or it may work one way today and a
different way when the JavaScript engine is updated, say with a new optimization.

Another caveat is that a function declaration cannot exist inside of any expression,
otherwise it’s a function expression. So this is a function declaration:

1	function	trueDat	()	{	return	true	}

But this is not:

1	(function	trueDat	()	{	return	true	})

The parentheses make this an expression.

Combinators	and	Function	Decorators

higher-order	functions
As we’ve seen, JavaScript functions take values as arguments and return values.
JavaScript functions are values, so JavaScript functions can take functions as arguments,
return functions, or both. Generally speaking, a function that either takes functions as

arguments or returns a function (or both) is referred to as a “higher-order” function.

Here’s a very simple higher-order function that takes a function as an argument:

	1	function	repeat	(num,	fn)	{

	2			var	i,	value;

	3			

	4			for	(i	=	1;	i	<=	num;	++i)

	5					value	=	fn(i);

	6			

	7			return	value;

	8	}

	9	

10	repeat(3,	function	()	{	

11			console.log('Hello')	

12	})

13			//=>

14					'Hello'

15					'Hello'

16					'Hello'

17					undefined

Higher-order functions dominate JavaScript Allongé. But before we go on, we’ll talk about
some specific types of higher-order functions.

combinators
The word “combinator” has a precise technical meaning in mathematics:

“A combinator is a higher-order function that uses only function application and
earlier defined combinators to define a result from its arguments.”–Wikipedia

If we were learning Combinatorial Logic, we’d start with the most basic combinators like S,
K, and I, and work up from there to practical combinators. We’d learn that the fundamental
combinators are named after birds following the example of Raymond Smullyan’s famous
book To Mock a Mockingbird.

In this book, we will be using a looser definition of “combinator:” Higher-order pure
functions that take only functions as arguments and return a function. We won’t be strict
about using only previously defined combinators in their construction.

Let’s start with a useful combinator: Most programmers call it Compose, although the
logicians call it the B combinator or “Bluebird.” Here is the typical15 programming
implementation:

https://en.wikipedia.org/wiki/Combinatory_logic
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20

1	function	compose	(a,	b)	{

2			return	function	(c)	{

3					return	a(b(c))

4			}

5	}

Let’s say we have:

1	function	addOne	(number)	{

2			return	number	+	1

3	}

4	

5	function	doubleOf	(number)	{

6			return	number	*	2

7	}

With compose, anywhere you would write

1	function	doubleOfAddOne	(number)	{

2			return	doubleOf(addOne(number))

3	}

You could also write:

1	var	doubleOfAddOne	=	compose(doubleOf,	addOne);

This is, of course, just one example of many. You’ll find lots more perusing the recipes in
this book. While some programmers believe “There Should Only Be One Way To Do It,”
having combinators available as well as explicitly writing things out with lots of symbols
and keywords has some advantages when used judiciously.

a	balanced	statement	about	combinators
Code that uses a lot of combinators tends to name the verbs and adverbs (like doubleOf,
addOne, and compose) while avoiding language keywords and the names of nouns (like
number). So one perspective is that combinators are useful when you want to emphasize
what you’re doing and how it fits together, and more explicit code is useful when you want
to emphasize what you’re working with.

function	decorators
A function decorator is a higher-order function that takes one function as an argument,
returns another function, and the returned function is a variation of the argument function.

Here’s a ridiculous example of a decorator:

1	function	not	(fn)	{

2			return	function	(argument)	{

3					return	!fn(argument)

4			}

5	}

So instead of writing !someFunction(42), you can write not(someFunction)(42). Hardly progress. But
like for compose, if you have:

1	function	something	(x)	{

2			return	x	!=	null

3	}

Then you could write either:

1	function	nothing	(x)	{

2			return	!something(x)

3	}

Or:

1	var	nothing	=	not(something);

not is a function decorator because it modifies a function while remaining strongly related
to the original function’s semantics. You’ll see other function decorators in the recipes, like
once, mapWith, and maybe. Function decorators aren’t strict about being pure functions,
so there’s more latitude for making decorators than combinators.

Building	Blocks
When you look at functions within functions in JavaScript, there’s a bit of a “spaghetti
code” look to it. The strength of JavaScript is that you can do anything. The weakness is
that you will. There are ifs, fors, returns, everything thrown higgledy piggledy together.
Although you needn’t restrict yourself to a small number of simple patterns, it can be
helpful to understand the patterns so that you can structure your code around some basic
building blocks.

composition
One of the most basic of these building blocks is composition:

1	function	cookAndEat	(food)	{

2			return	eat(cook(food))

3	}

It’s really that simple: Whenever you are chaining two or more functions together, you’re
composing them. You can compose them with explicit JavaScript code as we’ve just
done. You can also generalize composition with the B Combinator or “compose” that we
saw in Combinators and Decorators:

1	function	compose	(a,	b)	{

2			return	function	(c)	{

3					return	a(b(c))

4			}

5	}

6	

7	var	cookAndEat	=	compose(eat,	cook);

If that was all there was to it, composition wouldn’t matter much. But like many patterns,
using it when it applies is only 20% of the benefit. The other 80% comes from organizing
your code such that you can use it: Writing functions that can be composed in various
ways.

In the recipes, we’ll look at a decorator called once: It ensures that a function can only be
executed once. Thereafter, it does nothing. Once is useful for ensuring that certain side
effects are not repeated. We’ll also look at maybe: It ensures that a function does nothing
if it is given nothing (like null or undefined) as an argument.

Of course, you needn’t use combinators to implement either of these ideas, you can use if
statements. But once and maybe compose, so you can chain them together as you see fit:

1	function	actuallyTransfer(from,	to,	amount)	{

2			//	do	something

3	}

4	

5	var	invokeTransfer	=	once(maybe(actuallyTransfer(...)));

partial	application
Another basic building block is partial application. When a function takes multiple
arguments, we “apply” the function to the arguments by evaluating it with all of the
arguments, producing a value. But what if we only supply some of the arguments? In that
case, we can’t get the final value, but we can get a function that represents part of our
application.

Code is easier than words for this. The Underscore library provides a higher-order
function called map.16 It applies another function to each element of an array, like this:

1	_.map([1,	2,	3],	function	(n)	{	return	n	*	n	})

2			//=>	[1,	4,	9]

This code implements a partial application of the map function by applying the function
function (n) { return n * n } as its second argument:

1	function	squareAll	(array)	{

2			return	_.map(array,	function	(n)	{	return	n	*	n	})

3	}

The resulting function–squareAll–is still the map function, it’s just that we’ve applied one of
its two arguments already. squareAll is nice, but why write one function every time we want
to partially apply a function to a map? We can abstract this one level higher. mapWith takes
any function as an argument and returns a partially applied map function.

	1	function	mapWith	(fn)	{

	2			return	function	(array)	{

	3					return	_.map(array,	fn)

	4			}

	5	}

	6	

	7	var	squareAll	=	mapWith(function	(n)	{	return	n	*	n	});

	8	

	9	squareAll([1,	2,	3])

10			//=>	[1,	4,	9]

We’ll discuss mapWith again in the recipes. The important thing to see is that partial
application is orthogonal to composition, and that they both work together nicely:

1	var	safeSquareAll	=	mapWith(maybe(function	(n)	{	return	n	*	n	}));

2	

3	safeSquareAll([1,	null,	2,	3])

4			//=>	[1,	null,	4,	9]

We generalized composition with the compose combinator. Partial application also has a
combinator, which we’ll see in the partial recipe.

I’d	Like	to	Have	Some	Arguments.	Again.

http://underscorejs.org/

As we’ve discussed, when a function is applied to arguments (or “called”), JavaScript
binds the values of the arguments to the function’s argument names in an environment
created for the function’s execution. What we didn’t discuss is that JavaScript also binds
some “magic” names in addition to any you put in the argument list.

You should never attempt to define your own bindings against these names. Consider
them read-only at all times. The first is called this and it is bound to something called the
function’s context. We will explore that when we start discussing objects and classes. The
second is very interesting, it’s called arguments, and the most interesting thing about it is
that it contains a list of arguments passed to the function:

1	function	plus	(a,	b)	{

2			return	arguments[0]	+	arguments[1]

3	}

4	

5	plus(2,3)

6			//=>	5

Although arguments looks like an array, it isn’t an array:17 It’s more like an object18 that
happens to bind some values to properties with names that look like integers starting with
zero:

1	function	args	(a,	b)	{

2			return	arguments

3	}

4	

5	args(2,3)

6			//=>	{	'0':	2,	'1':	3	}

arguments always contains all of the arguments passed to a function, regardless of how
many are declared. Therefore, we can write plus like this:

1	function	plus	()	{

2			return	arguments[0]	+	arguments[1]

3	}

4	

5	plus(2,3)

6			//=>	5

When discussing objects, we’ll discuss properties in more depth. Here’s something
interesting about arguments:

	1	function	howMany	()	{

	2			return	arguments['length']

	3	}

	4	

	5	howMany()

	6			//=>	0

	7	

	8	howMany('hello')

	9			//=>	1

10	

11	howMany('sharks',	'are',	'apex',	'predators')

12			//=>	4

The most common use of the arguments binding is to build functions that can take a variable
number of arguments. We’ll see it used in many of the recipes, starting off with partial
application and ellipses.

Summary

Functions
Functions	are	values	that	can	be	part	of	expressions,	returned	from	other
functions,	and	so	forth.
Functions	are	reference	values.
Functions	are	applied	to	arguments.
The	arguments	are	passed	by	sharing,	which	is	also	called	“pass	by	value.”
Function	bodies	have	zero	or	more	expressions.
Function	application	evaluates	whatever	is	returned	with	the	return	keyword,	or
to	undefined.
Function	application	creates	a	scope.	Scopes	are	nested	and	free	variable
references	closed	over.
Variables	can	shadow	variables	in	an	enclosing	scope.
let	is	an	idiom	where	we	create	a	function	and	call	it	immediately	in	order	to
bind	values	to	names.
JavaScript	uses	var	to	bind	variables	within	a	function’s	scope.

If	you’re	used	to	other	programming	languages,	you’ve	probably	internalized	the	idea	that
sometimes	parentheses	are	used	to	group	operations	in	an	expression	like	math,	and	sometimes	to
apply	a	function	to	arguments.	If	not…	Welcome	to	the	ALGOL	family	of	programming
languages!↩

Experienced	JavaScript	programmers	are	aware	that	there’s	a	fourth	way,	using	a	function
argument.	This	was	actually	the	preferred	mechanism	until	void	became	commonplace.↩

https://en.wikipedia.org/wiki/ALGOL

As	an	exercise	for	the	reader,	we	suggest	you	ask	your	friendly	neighbourhood	programming
language	designer	or	human	factors	subject-matter	expert	to	explain	why	a	keyword	called	void	is
used	to	generate	an	undefined	value,	instead	of	calling	them	both	void	or	both	undefined.	We	have	no
idea.↩

TODO:	Named	functions,	probably	discussed	in	a	whole	new	section	when	we	discuss	var
hoisting.↩

Readers	who	follow	internet	flame-fests	may	be	aware	of	something	called	automatic	semi-colon
insertion.	Basically,	there’s	a	step	where	JavaScript	looks	at	your	code	and	follows	some	rules	to
guess	where	you	meant	to	put	semicolons	in	should	you	leave	them	out.	This	feature	was	originally
created	as	a	kind	of	helpful	error-correction.	Some	programmers	argue	that	since	it’s	part	of	the
language’s	definition,	it’s	fair	game	to	write	code	that	exploits	it,	so	they	deliberately	omit	any
semicolon	that	JavaScript	will	insert	for	them.↩

What	a	mouthful!	This	is	why	other	languages	with	a	strong	emphasis	on	functions	come	up	with
syntaxes	like	`	->	->	undefined`↩

The	Argument	Sketch	from	“Monty	Python’s	Previous	Record”	and	“Monty	Python’s	Instant
Record	Collection”

We	said	that	you	can’t	apply	a	function	to	an	expression.	You	can	apply	a	function	to	one	or	more
functions.	Functions	are	values!	This	has	interesting	applications,	and	they	will	be	explored	much
more	thoroughly	in	Functions	That	Are	Applied	to	Functions.↩

Unless	the	argument	is	NaN,	which	isn’t	equal	to	anything,	including	itself↩

You	may	also	hear	the	term	“non-local	variable.”	Both	are	correct.	↩

To	be	pedantic,	both	main	branches	of	Lisp	today	define	a	special	construct	called	“let.”	One,
Scheme,	uses	define-syntax	to	rewrite	let	into	an	immediately	invoked	function	expression	that	binds
arguments	to	values	as	shown	above.	The	other,	Common	Lisp,	leaves	it	up	to	implementations	to
decide	how	to	implement	let.↩

We’re	into	the	second	chapter	and	we’ve	finally	named	a	function.	Sheesh.↩

A	lead	(or	lede)	paragraph	in	literature	refers	to	the	opening	paragraph	of	an	article,	essay,	news
story	or	book	chapter.	In	journalism,	the	failure	to	mention	the	most	important,	interesting	or
attention-grabbing	elements	of	a	story	in	the	first	paragraph	is	sometimes	called	“burying	the
lede.”↩

A	number	of	the	caveats	discussed	here	were	described	in	Jyrly	Zaytsev’s	excellent	article	Named
function	expressions	demystified.↩

As	we’ll	discuss	later,	this	implementation	of	the	B	Combinator	is	correct	in	languages	like
Scheme,	but	for	truly	general-purpose	use	in	JavaScript	it	needs	to	correctly	manage	the	function
context.↩

Modern	JavaScript	implementations	provide	a	map	method	for	arrays,	but	Underscore’s
implementation	also	works	with	older	browsers	if	you	are	working	with	that	headache.↩

Tradition	would	have	us	call	objects	that	don’t	contain	any	functions	“POJOs,”	meaning	Plain	Old
JavaScript	Objects.

http://lucumr.pocoo.org/2011/2/6/automatic-semicolon-insertion/
http://www.mindspring.com/~mfpatton/sketch.htm
https://en.wikipedia.org/wiki/Free_variables_and_bound_variables
https://en.wikipedia.org/wiki/Scheme_(programming_language)#Minimalism
http://kangax.github.com/nfe/

↩

Tradition	would	have	us	call	objects	that	don’t	contain	any	functions	“POJOs,”	meaning	Plain	Old
JavaScript	Objects.
↩

2.	 The	Recipe	Cheat	Sheet

In the recipes, you may see one or more of the following JavaScript constructs being used
before being fully explained in the text. Here’re some brief explanations to tide you over:

apply	and	call
Functions are applied with (). But they also have methods for applying them to arguments.
.call and .apply are explained when we discuss function contexts, but here are some
examples:

	1	function	plus	(a,	b)	{

	2			return	a	+	b

	3	}

	4	

	5	plus(2,	3)	

	6			//=>	5

	7			

	8	plus.call(this,	2,	3)

	9			//=>	5

10			

11	plus.apply(this,	[2,	3])

12			//=>	5

slice
Arrays have a .slice method. The function can always be found at Array.prototype.slice. It works
like this:

1	[1,	2,	3,	4,	5].slice(0)

2			//=>	[1,	2,	3,	4,	5]

3			

4	[1,	2,	3,	4,	5].slice(1)

5			//=>	[2,	3,	4,	5]

6			

7	[1,	2,	3,	4,	5].slice(1,	4)

8			//=>	[2,	3,	4]

Note that slice always creates a new array, so .slice(0) makes a copy of an array. The
arguments pseudo-variable is not an array, but you can use .slice with it like this to get an
array of all or some of the arguments:

1	Array.prototype.slice.call(arguments,	0)

2			//=>	returns	the	arguments	in	an	array.

3			

4	function	butFirst	()	{

5			return	Array.prototype.slice.call(arguments,	1)

6	}

7	

8	butFirst('a',	'b',	'c',	'd')

9			//=>	['b',	'c',	'd']

For simplicity and as a small speed improvement, slice is usually bound to a local variable:

1	var	__slice	=	Array.prototype.slice;

2			

3	function	butFirst	()	{

4			return	__slice.call(arguments,	1)

5	}

Or even:

1	var	__slice	=	Array.prototype.slice;

2	

3	function	slice	(list,	from,	to)	{

4			return	__slice.call(list,	from,	to)

5	}

6			

7	function	butFirst	()	{

8			return	slice(arguments,	1)

9	}

concat
Arrays have another useful method, .concat. Concat returns an array created by
concatenating the receiver with its argument:

1	[1,	2,	3].concat([2,	1])

2			//=>	[1,	2,	3,	2,	1]

function	lengths
Functions have a .length property that counts the number of arguments declared:

1	function	(a,	b,	c)	{	return	a	+	b	+	c	}.length

2			//=>	3

3.	 Recipes	with	Basic	Functions

Before combining ingredients, begin with implements so clean, they gleam.

Having looked at basic pure functions and closures, we’re going to see some practical
recipes that focus on the premise of functions that return functions.

Disclaimer
The recipes are written for practicality, and their implementation may introduce JavaScript
features that haven’t been discussed in the text to this point, such as methods and/or
prototypes. The overall use of each recipe will fit within the spirit of the language
discussed so far, even if the implementations may not.

Partial	Application
In Building Blocks, we discussed partial application, but we didn’t write a generalized
recipe for it. This is such a common tool that many libraries provide some form of partial
application tool. You’ll find examples in Lemonad from Michael Fogus, Functional
JavaScript from Oliver Steele and the terse but handy node-ap from James Halliday.

These two recipes are for quickly and simply applying a single argument, either the
leftmost or rightmost.1 If you want to bind more than one argument, or you want to leave
a “hole” in the argument list, you will need to either use a generalized partial recipe, or

https://github.com/fogus/lemonad
http://osteele.com/sources/javascript/functional/
https://github.com/substack/node-ap

you will need to repeatedly apply arguments. It is context-agnostic.

	1	var	__slice	=	Array.prototype.slice;

	2	

	3	function	callFirst	(fn,	larg)	{

	4			return	function	()	{

	5					var	args	=	__slice.call(arguments,	0);

	6					

	7					return	fn.apply(this,	[larg].concat(args))

	8			}

	9	}

10	

11	function	callLast	(fn,	rarg)	{

12			return	function	()	{

13					var	args	=	__slice.call(arguments,	0);

14					

15					return	fn.apply(this,	args.concat([rarg]))

16			}

17	}

18	

19	function	greet	(me,	you)	{

20			return	"Hello,	"	+	you	+	",	my	name	is	"	+	me

21	}

22	

23	var	heliosSaysHello	=	callFirst(greet,	'Helios');

24	

25	heliosSaysHello('Eartha')

26			//=>	'Hello,	Eartha,	my	name	is	Helios'

27			

28	var	sayHelloToCeline	=	callLast(greet,	'Celine');

29	

30	sayHelloToCeline('Eartha')

31			//=>	'Hello,	Celine,	my	name	is	Eartha'

As noted above, our partial recipe allows us to create functions that are partial
applications of functions that are context aware. We’d need a different recipe if we wish to
create partial applications of object methods.

Ellipses	and	improved	Partial	Application
The CoffeeScript programming language has a useful feature: If a parameter of a method
is written with trailing ellipses, it collects a list of parameters into an array. It can be used
in various ways, and the CoffeeScript transpiler does some pattern matching to sort things
out, but 80% of the use is to collect a variable number of arguments without using the
arguments pseudo-variable, and 19% of the uses are to collect a trailing list of arguments.

Here’s what it looks like collecting a variable number of arguments and trailing arguments:

1	callLeft	=	(fn,	args...)	->

2			(remainingArgs...)	->

3					fn.apply(this,	args.concat(remainingArgs))

These are very handy features. Here’s our bogus, made-up attempt to write our own
mapper function:

	1	mapper	=	(fn,	elements...)	->

	2			elements.map(fn)

	3	

	4	mapper	((x)	->	x*x),	1,	2,	3

	5			#=>	[1,	4,	9]

	6	

	7	squarer	=	callLeft	mapper,	(x)	->	x*x

	8	

	9	squarer	1,	2,	3

10			#=>	[1,	4,	9]

JavaScript doesn’t support ellipses, those trailing periods CoffeeScript uses to collect
arguments into an array. JavaScript is a functional language, so here is the recipe for a
function that collects trailing arguments into an array for us:

	1	var	__slice	=	Array.prototype.slice;

	2	

	3	function	variadic	(fn)	{

	4			var	fnLength	=	fn.length;

	5	

	6			if	(fnLength	<	1)	{

	7					return	fn;

	8			}

	9			else	if	(fnLength	===	1)		{

10					return	function	()	{

11							return	fn.call(

12									this,	__slice.call(arguments,	0))

13					}

14			}

15			else	{

16					return	function	()	{

17							var	numberOfArgs	=	arguments.length,

18											namedArgs	=	__slice.call(

19													arguments,	0,	fnLength	-	1),

20											numberOfMissingNamedArgs	=	Math.max(

21													fnLength	-	numberOfArgs	-	1,	0),

http://en.wikipedia.org/wiki/Ellipsis

22											argPadding	=	new	Array(numberOfMissingNamedArgs),

23											variadicArgs	=	__slice.call(

24													arguments,	fn.length	-	1);

25	

26							return	fn.apply(

27									this,	namedArgs

28															.concat(argPadding)

29															.concat([variadicArgs]));

30					}

31			}

32	};

33	

34	function	unary	(first)	{

35			return	first

36	}

37	

38	unary('why',	'hello',	'there')

39			//=>	'why'

40			

41	variadic(unary)('why',	'hello',	'there')

42			//=>	['why',	'hello',	'there']

43			

44	function	binary	(first,	rest)	{

45			return	[first,	rest]

46	}

47	

48	binary('why',	'hello',	'there')

49			//=>	['why',	'hello']

50	

51	variadic(binary)('why',	'hello',	'there')

52			//=>	['why',	['hello',	'there']]

Here’s what we write to create our partial application functions gently:

	1	var	callLeft	=	variadic(function	(fn,	args)	{

	2			return	variadic(function	(remainingArgs)	{

	3					return	fn.apply(this,	args.concat(remainingArgs))

	4			})

	5	})

	6	

	7	//	Let's	try	it!

	8	

	9	var	mapper	=	variadic(function	(fn,	elements)	{

10			return	elements.map(fn)

11	});

12	

13	mapper(function	(x)	{	return	x	*	x	},	1,	2,	3)

14			//=>	[1,	4,	9]

15	

16	var	squarer	=	callLeft(mapper,	function	(x)	{	return	x	*	x	});

17	

18	squarer(1,	2,	3)

19			//=>	[1,	4,	9]

While we’re at it, here’s our implementation of callRight using the same technique:

1	var	callRight	=	variadic(function	(fn,	args)	{

2			return	variadic(function	(precedingArgs)	{

3					return	fn.apply(this,	precedingArgs.concat(args))

4			})

5	})

Fine print: Of course, variadic introduces an extra function call and may not be the best
choice in a highly performance-critical piece of code. Then again, using arguments is
considerably slower than directly accessing argument bindings, so if the performance is
that critical, maybe you shouldn’t be using a variable number of arguments in that section.

Unary
In Ellipses, we saw a function decorator that takes a function with a fixed number of
arguments and turns it into a variadic function, a function taking any number of
arguments. “Unary” is another function decorator, and it also modifies the number of
arguments a function takes: Unary takes any function and turns it into a function taking
exactly one argument.

The most common use case is to fix a common problem. JavaScript has a .map method for
arrays, and many libraries offer a map function with the same semantics. Here it is in
action:

1	['1',	'2',	'3'].map(parseFloat)

2			//=>	[1,	2,	3]

In that example, it looks exactly like the mapping function you’ll find in most languages:
You pass it a function, and it calls the function with one argument, the element of the
array. However, that’s not the whole story. JavaScript’s map actually calls each function
with three arguments: The element, the index of the element in the array, and the array
itself.

Let’s try it:

1	[1,	2,	3].map(function	(element,	index,	arr)	{

2			console.log({element:	element,	index:	index,	arr:	arr})

3	})

4			//=>	{	element:	1,	index:	0,	arr:	[1,	2,	3]	}

5			//			{	element:	2,	index:	1,	arr:	[1,	2,	3]	}

6			//			{	element:	3,	index:	2,	arr:	[1,	2,	3]	}

If you pass in a function taking only one argument, it simply ignores the additional
arguments. But some functions have optional second or even third arguments. For
example:

1	['1',	'2',	'3'].map(parseInt)

2			//=>	[1,	NaN,	NaN]

This doesn’t work because parseInt is defined as parseInt(string[, radix]). It takes an optional
radix argument. And when you call parseInt with map, the index is interpreted as a radix. Not
good! What we want is to convert parseInt into a function taking only one argument.

We could write ['1', '2', '3'].map(function (s) { return parseInt(s); }), or we could come up with a
decorator to do the job for us:

1	function	unary	(fn)	{

2			if	(fn.length	==	1)	{

3					return	fn

4			}

5			else	return	function	(something)	{

6					return	fn.call(this,	something)

7			}

8	}

And now we can write:

1	['1',	'2',	'3'].map(unary(parseInt))

2			//=>	[1,	2,	3]

Presto!

Tap
One of the most basic combinators is the “K Combinator,” nicknamed the “kestrel:”

1	function	K	(x)	{

2			return	function	(y)	{

3					return	x

4			}

5	};

It has some surprising applications. One is when you want to do something with a value
for side-effects, but keep the value around. Behold:

1	function	tap	(value)	{

2			return	function	(fn)	{

3					if	(typeof(fn)	===	'function')	{

4							fn(value)

5					}

6					return	value

7			}

8	}

tap is a traditional name borrowed from various Unix shell commands. It takes a value and
returns a function that always returns the value, but if you pass it a function, it executes
the function for side-effects. Let’s see it in action as a poor-man’s debugger:

1	var	drink	=	tap('espresso')(function	(it)	{

2			console.log("Our	drink	is",	it)	

3	});

4	

5	//	outputs	"Our	drink	is	'espresso'"	to	the	console

It’s easy to turn off:

1	var	drink	=	tap('espresso')();

2	

3	//	doesn't	output	anything	to	the	console

Libraries like Underscore use a version of tap that is “uncurried:”

1	var	drink	=	_.tap('espresso',	function	()	{	

2			console.log("Our	drink	is",	this)	

3	});

Let’s enhance our recipe so it works both ways:

	1	function	tap	(value,	fn)	{

	2			if	(fn	===	void	0)	{

http://underscorejs.org/

	3					return	curried

	4			}

	5			else	return	curried(fn);

	6			

	7			function	curried	(fn)	{

	8					if	(typeof(fn)	===	'function')	{

	9							fn(value)

10					}

11					return	value

12			}

13	}

Now you can write:

1	var	drink	=	tap('espresso')(function	(it)	{	

2			console.log("Our	drink	is",	it)	

3	});

Or:

1	var	drink	=	tap('espresso',	function	(it)	{	

2			console.log("Our	drink	is",	it)	

3	});

And if you wish it to do nothing at all, You can write either:

1	var	drink	=	tap('espresso')();

Or:

1	var	drink	=	tap('espresso',	null);

tap can do more than just act as a debugging aid. It’s also useful for working with object
and instance methods.

Maybe
A common problem in programming is checking for null or undefined (hereafter called
“nothing,” while all other values including 0, [] and false will be called “something”).
Languages like JavaScript do not strongly enforce the notion that a particular variable or
particular property be something, so programs are often written to account for values that
may be nothing.

This recipe concerns a pattern that is very common: A function fn takes a value as a
parameter, and its behaviour by design is to do nothing if the parameter is nothing:

1	function	isSomething	(value)	{

2			return	value	!==	null	&&	value	!==	void	0;

3	}

4	

5	function	checksForSomething	(value)	{

6			if	(isSomething(value))	{

7					//	function's	true	logic

8			}

9	}

Alternately, the function may be intended to work with any value, but the code calling the
function wishes to emulate the behaviour of doing nothing by design when given nothing:

1	var	something	=	isSomething(value)	?	

2			doesntCheckForSomething(value)	:	value;

Naturally, there’s a recipe for that, borrowed from Haskell’s maybe monad, Ruby’s
andand, and CoffeeScript’s existential method invocation:

	1	function	maybe	(fn)	{

	2			return	function	()	{

	3					var	i;

	4					

	5					if	(arguments.length	===	0)	{

	6							return

	7					}

	8					else	{

	9							for	(i	=	0;	i	<	arguments.length;	++i)	{

10									if	(arguments[i]	==	null)	return

11							}

12							return	fn.apply(this,	arguments)

13					}

14			}

15	}

maybe reduces the logic of checking for nothing to a function call, either:

1	var	checksForSomething	=	maybe(function	(value)	{

2			//	function's	true	logic

3	});

https://en.wikipedia.org/wiki/Monad_(functional_programming)#The_Maybe_monad
https://github.com/raganwald/andand

Or:

1	var	something	=	maybe(doesntCheckForSomething)(value);

As a bonus, maybe plays very nicely with instance methods, we’ll discuss those later:

1	function	Model	()	{};

2	

3	Model.prototype.setSomething	=	maybe(function	(value)	{

4			this.something	=	value;

5	});

If some code ever tries to call model.setSomething with nothing, the operation will be skipped.

callFirst	and	callLast	were	inspired	by	Michael	Fogus’	Lemonad.	Thanks!↩

https://github.com/fogus/lemonad

4.	 The	Pause	That	Refreshes:	Rebinding	and	References

It is not enough that coffee taste beautiful. Everything about its creation and consumption
should reflect coffee’s beauty.

a	simple	question
Consider this code:

1	var	x	=	'June	14,	1962',

2					y	=	x;

3					

4	x	===	y

5			//=>	true

This makes obvious sense, because we know that strings are a value type, so no matter
what expression you use to derive the value ‘June 14, 1962’, you are going to get a string
with the exact same identity.

But what about this code?

1	var	x	=	[2012,	6,	14],

2					y	=	x;

3					

4	x	===	y

5			//=>	true

Also true, even though we know that every time we evaluate an expression such as [2012,

6, 14], we get a new array with a new identity. So what is happening in our environments?

arguments	and	references
In our discussion of closures, we said that environments bind values (like [2012, 6, 14]) to
names (like x and y), and that when we use these names as expressions, the name
evaluates as the value.

What this means is that when we write something like y = x, the name x is looked up in the
current environment, and its value is a specific array that was created when the
expression [2012, 6, 14] was first evaluated. We then bind that exact same value to the
name y in a new environment, and thus x and y are both bound to the exact same value,
which is identical to itself.

The same thing happens with binding a variable through a more conventional means of
applying a function to arguments:

1	var	x	=	[2012,	6,	14];

2	

3	(function	(y)	{

4			return	x	===	y

5	})(x)

6			//=>	true

x and y both end up bound to the exact same array, not two different arrays that look the
same to our eyes.

Arguments	and	Arrays
JavaScript provides two different kinds of containers for values. We’ve met one already,
the array. Let’s see how it treats values and identities. For starters, we’ll learn how to
extract a value from an array. We’ll start with a function that makes a new value with a
unique identity every time we call it. We already know that every function we create is
unique, so that’s what we’ll use:

1	var	unique	=	function	()	{

2																	return	function	()	{}

3															};

4	

5			unique()

6					//=>	[Function]

7					

8			unique()	===	unique()

9					//=>	false

Let’s verify that what we said about references applies to functions as well as arrays:

1			var	x	=	unique(),

2							y	=	x;

3							

4			x	===	y

5					//=>	true

Ok. So what about things inside arrays? We know how to create an array with something
inside it:

1			[unique()]

2					//=>	[[Function]]

That’s an array with one of our unique functions in it. How do we get something out of it?

1			var	a	=	['hello'];

2			

3			a[0]

4					//=>	'hello'

Cool, arrays work a lot like arrays in other languages and are zero-based. The trouble

with this example is that strings are value types in JavaScript, so we have no idea
whether a[0] always gives us the same value back like looking up a name in an
environment, or whether it does some magic that tries to give us a new value.

We need to put a reference type into an array. If we get the same thing back, we know
that the array stores a reference to whatever you put into it. If you get something different
back, you know that arrays store copies of things.1

Let’s test it:

1	var	unique	=	function	()	{

2																	return	function	()	{}

3															},

4					x	=	unique(),

5					a	=	[x];

6					

7	a[0]	===	x

8			//=>	true

If we get a value out of an array using the [] suffix, it’s the exact same value with the same
identity. Question: Does that apply to other locations in the array? Yes:

	1	var	unique	=	function	()	{

	2																return	function	()	{}

	3														},

	4					x	=	unique(),

	5					y	=	unique(),

	6					z	=	unique(),

	7					a	=	[x,	y,	z];

	8					

	9	a[0]	===	x	&&	a[1]	===	y	&&	a[2]	===	z

10			//=>	true

References	and	Objects
JavaScript also provides objects. The word “object” is loaded in programming circles, due
to the widespread use of the term “object-oriented programming” that was coined by Alan
Kay but has since come to mean many, many things to many different people.

In JavaScript, an object2 is a map from names to values, a lot like an environment. The
most common syntax for creating an object is simple:

Two objects created this way have differing identities, just like arrays:

1	{	year:	2012,	month:	6,	day:	14	}	===	{	year:	2012,	month:	6,	day:	14	}

2			//=>	false

Objects use [] to access the values by name, using a string:

1	{	year:	2012,	month:	6,	day:	14	}['day']

2			//=>	14

Values contained within an object work just like values contained within an array:

	1	var	unique	=	function	()	{

	2																	return	function	()	{}

	3															},

	4					x	=	unique(),

	5					y	=	unique(),

	6					z	=	unique(),

	7					o	=	{	a:	x,	b:	y,	c:	z	};

	8	

	9	o['a']	===	x	&&	o['b']	===	y	&&	o['c']	===	z

10			//=>	true

Names needn’t be alphanumeric strings. For anything else, enclose the label in quotes:

1	{	'first	name':	'reginald',	'last	name':	'lewis'	}['first	name']

2			//=>	'reginald'

If the name is an alphanumeric string conforming to the same rules as names of
variables, there’s a simplified syntax for accessing the values:

1	{	year:	2012,	month:	6,	day:	14	}['day']	===

2					{	year:	2012,	month:	6,	day:	14	}.day

3			//=>	true

All containers can contain any value, including functions or other containers:

1	var	Mathematics	=	{

2			abs:	function	(a)	{

3										return	a	<	0	?	-a	:	a

4								}

5	};

6	

7	Mathematics.abs(-5)

8			//=>	5

Funny we should mention Mathematics. If you recall, JavaScript provides a global
environment that contains some existing objects that have handy functions you can use.
One of them is called Math, and it contains functions for abs, max, min, and many others.
Since it is always available, you can use it in any environment provided you don’t shadow
Math.

1	Math.abs(-5)

2			//=>	5

Reassignment	and	Mutation
Like most imperative programming languages, JavaScript allows you to re-assign the
value of variables. The syntax is familiar to users of most popular languages:

1	var	age	=	49;

2	age	=	50;

3	age

4			//=>	50

We took the time to carefully examine what happens with bindings in environments. Let’s
take the time to explore what happens with reassigning values to variables. The key is to
understand that we are rebinding a different value to the same name in the same
environment.

So let’s consider what happens with a shadowed variable:

1	(function	()	{

2			var	age	=	49;

3			(function	()	{

4					var	age	=	50;

5			})();

6			return	age;

7	})()

8			//=>	49

Binding 50 to age in the inner environment does not change age in the outer environment
because the binding of age in the inner environment shadows the binding of age in the
outer environment. We go from:

1	{age:	49,	'..':	global-environment}

To:

1	{age:	50,	'..':	{age:	49,	'..':	global-environment}}

Then back to:

1	{age:	49,	'..':	global-environment}

However, if we don’t shadow age by explicitly using var, reassigning it in a nested
environment changes the original:

1	(function	()	{

2			var	age	=	49;

3			(function	()	{

4					age	=	50;

5			})();

6			return	age;

7	})()

8			//=>	50

Like evaluating variable labels, when a binding is rebound, JavaScript searches for the
binding in the current environment and then each ancestor in turn until it finds one. It then
rebinds the name in that environment.

Cupping Grinds

mutation	and	aliases
Now that we can reassign things, there’s another important factor to consider: Some
values can mutate. Their identities stay the same, but not their structure. Specifically,
arrays and objects can mutate. Recall that you can access a value from within an array or
an object using []. You can reassign a value using [] as well:

1	var	oneTwoThree	=	[1,	2,	3];

2	oneTwoThree[0]	=	'one';

3	oneTwoThree

4			//=>	['one',	2,	3]

You can even add a value:

1	var	oneTwoThree	=	[1,	2,	3];

2	oneTwoThree[3]	=	'four';

3	oneTwoThree

4			//=>	[1,	2,	3,	'four']

You can do the same thing with both syntaxes for accessing objects:

1	var	name	=	{firstName:	'Leonard',	lastName:	'Braithwaite'};

2	name.middleName	=	'Austin'

3	name

4			//=>	{	firstName:	'Leonard',

5			#					lastName:	'Braithwaite',

6			#					middleName:	'Austin'	}

We have established that JavaScript’s semantics allow for two different bindings to refer
to the same value. For example:

1	var	allHallowsEve	=	[2012,	10,	31]

2	var	halloween	=	allHallowsEve;		

Both halloween and allHallowsEve are bound to the same array value within the local
environment. And also:

1	var	allHallowsEve	=	[2012,	10,	31];

2	(function	(halloween)	{

3			//	...

4	})(allHallowsEve);

There are two nested environments, and each one binds a name to the exact same array
value. In each of these examples, we have created two aliases for the same value. Before
we could reassign things, the most important point about this is that the identities were the
same, because they were the same value.

This is vital. Consider what we already know about shadowing:

1	var	allHallowsEve	=	[2012,	10,	31];

2	(function	(halloween)	{

3			halloween	=	[2013,	10,	31];

4	})(allHallowsEve);

5	allHallowsEve

6			//=>	[2012,	10,	31]

The outer value of allHallowsEve was not changed because all we did was rebind the name
halloween within the inner environment. However, what happens if we mutate the value in
the inner environment?

1	var	allHallowsEve	=	[2012,	10,	31];

2	(function	(halloween)	{

3			halloween[0]	=	2013;

4	})(allHallowsEve);

5	allHallowsEve

6			//=>	[2013,	10,	31]

This is different. We haven’t rebound the inner name to a different variable, we’ve
mutated the value that both bindings share. Now that we’ve finished with mutation and
aliases, let’s have a look at it.

JavaScript permits the reassignment of new values to existing bindings, as
well as the reassignment and assignment of new values to elements of
containers such as arrays and objects. Mutating existing objects has special
implications when two bindings are aliases of the same value.

How	to	Shoot	Yourself	in	the	Foot	With	Var
As we’ve seen, JavaScript’s environments and bindings are quite powerful: You can bind
and rebind names using function arguments or using variables declared with var. The
takeaway is that when used properly, Javascript’s var keyword is a great tool.

When used properly.

Let’s look at a few ways to use it improperly.

loose	use
JavaScript’s var keyword is scoped to the function enclosing it. This makes sense,
because bindings are made in environments, and the environments are associated with
function calls. So if you write:

1	function	foo	(bar)	{

2			var	baz	=	bar	*	2;

3			

4			if	(bar	>	1)	{

5					var	blitz	=	baz	-	100;

6					

7					//	...

8			}

9	}

The name blitz is actually scoped to the function foo, not to the block of code in the
consequent of an if statement. There are roughly two schools of thought. One line of
reasoning goes like this: Since blitz is scoped to the function foo, you should write the code
like this:

	1	function	foo	(bar)	{

	2			var	baz	=	bar	*	2,

	3							blitz;

	4			

	5			if	(bar	>	1)	{

	6					blitz	=	baz	-	100;

	7					

	8					//	...

	9			}

10	}

We’ve separated the “declaration” from the “assignment,” and we’ve made it clear that blitz

is scoped to the entire function. The other school of thought is that programmers are
responsible for understanding how the tools work, and even if you write it the first way,
other programmers reading the code ought to know how it works.

So here’s a question: Are both ways of writing the code equivalent? Let’s set up a test
case that would tell them apart. We’ll try some aliasing:

	1	var	questionable	=	'outer';

	2	

	3	(function	()	{

	4			alert(questionable);

	5			

	6			if	(true)	{

	7					var	questionable	=	'inner';

	8					alert(questionable)

	9			}

10	})()

What will this code do if we type it into a browser console? One theory is that it will alert
outer and then inner, because when it evaluates the first alert, questionable hasn’t been bound
in the function’s environment yet, so it will be looked up in the enclosing environment.
Then an alias is bound, shadowing the outer binding, and it will alert inner.

This theory is wrong! It actually alerts undefined and then inner. Even though we wrote the var

statement later in the code, JavaScript acts as if we’d declared it at the top of the function.
This is true even if we never execute the var statement:

1	var	questionable	=	'outer';

2	

3	(function	()	{

4			return	questionable;

5			

6			var	questionable	=	'inner'

7	})()

8	

9			//=>	undefined

So yes, both ways of writing the code work the same way, but only one represents the
way it works directly and obviously. For this reason, we put the var declarations at the top
of every function, always.

for	pete’s	sake
JavaScript provides a for loop for your iterating pleasure and convenience. It looks a lot
like the for loop in C:

1	var	sum	=	0;

2	for	(var	i	=	1;	i	<=	100;	i++)	{

3			sum	=	sum	+	i

4	}

5	sum

6			#=>	5050

Hopefully, you can think of a faster way to calculate this sum.3 And perhaps you have
noticed that var i = 1 is tucked away instead of being at the top as we prefer. But is this ever
a problem?

Yes. Consider this variation:

	1	var	introductions	=	[],

	2					names	=	['Karl',	'Friedrich',	'Gauss'];

	3			

	4	for	(var	i	=	0;	i	<	3;	i++)	{

	5			introductions[i]	=	"Hello,	my	name	is	"	+	names[i]

	6	}

	7	introductions

	8			//=>	['Hello,	my	name	is	Karl',

	9			//					'Hello,	my	name	is	Friedrich',

10			//					'Hello,	my	name	is	Gauss']

So far, so good. Hey, remember that functions in JavaScript are values? Let’s get fancy!

	1	var	introductions	=	[],

	2					names	=	['Karl',	'Friedrich',	'Gauss'];

	3			

	4	for	(var	i	=	0;	i	<	3;	i++)	{

	5			introductions[i]	=	function	(soAndSo)	{

	6					return	"Hello,	"	+	soAndSo	+	",	my	name	is	"	+	names[i]

	7			}

	8	}

	9	introductions

10			//=>	[[Function],

11			//					[Function],

12			//					[Function]]

So far, so good. Let’s try one of our functions:

1	introductions[1]('Raganwald')

2			//=>	'Hello,	Raganwald,	my	name	is	undefined'

What went wrong? Why didn’t it give us ‘Hello, Raganwald, my name is Friedrich’? The
answer is that pesky var i. Remember that i is bound in the surrounding environment, so
it’s as if we wrote:

	1	var	introductions	=	[],

	2					names	=	['Karl',	'Friedrich',	'Gauss'],

	3					i;

	4			

	5	for	(i	=	0;	i	<	3;	i++)	{

	6			introductions[i]	=	function	(soAndSo)	{

	7					return	"Hello,	"	+	soAndSo	+	",	my	name	is	"	+	names[i]

	8			}

	9	}

10	introductions

Now, at the time we created each function, i had a sensible value, like 0, 1, or 2. But at the
time we call one of the functions, i has the value 3, which is why the loop terminated. So
when the function is called, JavaScript looks i up in its enclosing environment (its closure,
obviously), and gets the value 3. That’s not what we want at all.

Here’s how to fix it, once again with let as our guide:

	1	var	introductions	=	[],

	2					names	=	['Karl',	'Friedrich',	'Gauss'];

	3			

	4	for	(var	i	=	0;	i	<	3;	i++)	{

	5			(function	(i)	{

	6					introductions[i]	=	function	(soAndSo)	{

	7							return	"Hello,	"	+	soAndSo	+	",	my	name	is	"	+	names[i]

	8					}

	9			})(i)

10	}

11	introductions[1]('Raganwald')

12			//=>	'Hello,	Raganwald,	my	name	is	Friedrich'

That works. What did we do? Well, we created a new function and called it immediately,
and we deliberately shadowed i by passing it as an argument to our function, which had
an argument of exactly the same name. If you dislike shadowing, this alternative also
works:

	1	var	introductions	=	[],

	2					names	=	['Karl',	'Friedrich',	'Gauss'];

	3			

	4	for	(var	i	=	0;	i	<	3;	i++)	{

	5			(function	()	{

	6					var	ii	=	i;

	7					introductions[ii]	=	function	(soAndSo)	{

	8							return	"Hello,	"	+	soAndSo	+	",	my	name	is	"	+	names[ii]

	9					}

10			})()

11	}

12	introductions[1]('Raganwald')

13			//=>	'Hello,	Raganwald,	my	name	is	Friedrich'

Now we’re creating a new inner variable, ii and binding it to the value of i. The shadowing
code seems simpler and less error-prone to us, but both work.

nope,	nope,	nope,	nope,	nope
The final caution about var concerns what happens if you omit to declare a variable with

var, boldly writing something like:

1	fizzBuzz	=	function	()	{

2			//	lots	of	interesting	code	elided

3			//	for	the	sake	of	hiring	managers

4	}

So where is the name fizzBuzz bound? The answer is that if there is no enclosing var

declaration for fizzBuzz, the name is bound in the global environment. And by global, we
mean global. It is visible to every separate compilation unit. All of your npm modules.
Every JavaScript snippet in a web page. Every included file.

This is almost never what you want. And when you do want it, JavaScript provides
alternatives such as binding to window.fizzBuzz in a browser, or this.fizzBuzz in node. In short,
eschew undeclared variables. Force yourself to make a habit of using var all of the time,
and explicitly binding variables to the window or this objects when you truly want global
visibility.

When	Rebinding	Meets	Recursion
We’ve talked about binding values in environments, and now we’re talking about
rebinding values and mutating values. Let’s take a small digression. As we’ve seen, in
JavaScript functions are values. So you can bind a function just like binding a string,
number or array. Here’s a function that tells us whether a (small and positive) number is
even:

	1	var	even	=	function	(num)	{

	2			return	(num	===	0)	||	!(even(num	-	1))

	3	}

	4	

	5	even(0)

	6			//=>	true

	7	

	8	even(1)

	9			//=>	false

10	

11	even(42)

12			//=>	true

You can alias a function value:

	1	var	divisibleByTwo	=	even;

	2	

	3	divisibleByTwo(0)

	4			//=>	true

	5	

	6	divisibleByTwo(1)

	7			//=>	false

	8	

	9	divisibleByTwo(42)

10			//=>	true

What happens when we redefine a recursive function like even? Does divisibleByTwo still
work? Let’s try aliasing it and reassigning it:

1	even	=	void	0;

2	

3	divisibleByTwo(0)

4			//=>	true

5	

6	divisibleByTwo(1)

7			//=>	TypeError

What happened? Well, our new divisibleByTwo function wasn’t really a self-contained value.
When we looked at functions, we talked about “pure” functions that only access their
arguments and we looked at “closures” that have free variables. Recursive functions
defined like this are closures, not pure functions, because when they “call themselves,”
what they actually do is look themselves up by name in their enclosing environment.
Thus, they depend upon a specific value (themselves) being bound in their enclosing
environment. Reassign to that variable (or rebind the name, same thing), and you break
their functionality.

named	function	expressions
You recall that in Naming Functions, we saw that when you create a named function
expression, you bind the name of the function within its body but not the environment of
the function expression, meaning you can write:

	1	var	even	=	function	myself	(num)	{

	2			return	(num	===	0)	||	!(myself(num	-	1))

	3	}

	4	

	5	var	divisibleByTwo	=	even;

	6	even	=	void	0;

	7	

	8	divisibleByTwo(0)

	9			//=>	true

10	

11	divisibleByTwo(1)

12			//=>	false

13	

14	divisibleByTwo(42)

15			//=>	true

This is different, because the function doesn’t refer to a name bound in its enclosing
environment, it refers to a name bound in its own body. It is now a pure function. In fact,
you can even bind it to the exact same name in its enclosing environment and it will still
work:

	1	var	even	=	function	even	(num)	{

	2			return	(num	===	0)	||	!(even(num	-	1))

	3	}

	4	

	5	var	divisibleByTwo	=	even;

	6	even	=	void	0;

	7	

	8	divisibleByTwo(0)

	9			//=>	true

10	

11	divisibleByTwo(1)

12			//=>	false

13	

14	divisibleByTwo(42)

15			//=>	true

The even inside the function refers to the name bound within the function by the named
function expression. It may have the same name as the even bound in the enclosing
environment, but they are two different bindings in two different environments. Thus,
rebinding the name in the enclosing environment does not break the function.

You may ask, what if we rebind even inside of itself. Now will it break?

	1	var	even	=	function	even	(num)	{

	2			even	=	void	0;

	3			return	(num	===	0)	||	!(even(num	-	1))

	4	}

	5	

	6	var	divisibleByTwo	=	even;

	7	even	=	void	0;

	8	

	9	divisibleByTwo(0)

10			//=>	true

11	

12	divisibleByTwo(1)

13			//=>	false

14	

15	divisibleByTwo(42)

16			//=>	true

Strangely, no it doesn’t. The name bound by a named function expression is read-only.
Why do we say strangely? Because other quasi-declarations like function declarations do
not behave like this.

So, when we want to make a recursive function, the safest practice is to use a named
function expression.

limits
Named function expressions have limits. Here’s one such limit: You can do simple
recursion, but not mutual recursion. For example:

	1	var	even	=	function	even	(num)	{	return	(num	===	0)	||	odd(num	-	1)	};

	2	var	odd		=	function	odd		(num)	{	return	(num		>		0)	&&	even(num	-	1)	};

	3	

	4	odd	=	'unusual';

	5	

	6	even(0)

	7			//=>	true

	8	

	9	even(1)

10			//=>	TypeError

Using named function expressions doesn’t help us, because even and odd need to be
bound in an environment accessible to each other, not just to themselves. You either
have to avoid rebinding the names of these functions, or use a closure to build a module:

	1	var	operations	=	(function	()	{

	2							var	even	=	function	(num)	{	return	(num	===	0)	||	odd(num	-	1)	};

	3							var	odd		=	function	(num)	{	return	(num		>		0)	&&	even(num	-	1)	};

	4							return	{

	5									even:	even,

	6									odd:		odd

	7							}

	8					})(),

	9					even	=	operations.even,

10					odd	=	operations.odd;

Now you can rebind one without breaking the other, because the names outside of the

closure have no effect on the bindings inside the closure:

	1	odd	=	'unusual;

	2	

	3	even(0)

	4			//=>	true

	5	

	6	even(1)

	7			//=>	false

	8	

	9	even(42)

10			//=>	true

As has often been noted, refactoring to a pattern is more important than
designing with a pattern. So don’t rush off to write all your recursive
functions this way, but familiarize yourself with the technique so that if and
when you run into a subtle bug, you can recognize the problem and know
how to fix it.

From	Let	to	Modules

transient	let
In the section on let and Var, we learned that we can create a new environment any time
we want by combining a function definition with a function invocation, to whit:

1	(function	()	{

2			//

3	})();

Because this function is invoked, if it contains a return statement, it evaluates to a value of
some kind. So you can, for example, write something like:

1	var	factorialOfTwentyFive	=	(function	()	{

2			var	factorial	=	function	(num)	{

3					if	(num		<		2)	{

4							return	1

5					}

6					else	return	num	*	factorial	(num	-	1)

7			}

8			return	factorial(25)

9	})();

This could have been written using a named function to avoid the need for a let, but as
we’ll see in the memoize later, sometimes there’s good reason to write it like this. In any
event, our let serves to create a scope for the factorial function. Presumably we write it this
way to signal that we do not want to use it elsewhere, so putting it inside of a let keeps it
invisible from the rest of the code.

You’ll note that once we’ve calculated the factorial of 25, we have no further need for the
environment of the function, so it will be thrown away. This is what we might call a
transient let: Nothing we bind in the let is returned from the let or otherwise passed out
through assignment, so the environment of the let is discarded when the let finishes being
evaluated.

private	closure
The transient let only uses its environment to generate the result, then it can be
discarded. Another type of let is the private closure. This let returns a closure that
references one or more bindings in the let’s environment. For example:

	1	var	counter	=	(function	()	{

	2			var	value	=	0;

	3			

	4			return	function	()	{

	5					return	value++

	6			}

	7	})();

	8	

	9	counter()

10			//=>	0

11			

12	counter()

13			//=>	1

14			

15	counter()

16			//=>	2

counter is bound to a function closure that references the binding value in the let’s
environment. So the environment isn’t transient, it remains active until the function bound
to the name counter is discarded. Private closures are often used to manage state as we
see in the counter example, but they can also be used for helper functions.

For example, this date format function cribbed from somewhere or other has a helper
function that isn’t used anywhere else:

	1	function	formatDate	(time)	{

	2			var	date;

	3	

	4			if	(time)	{

	5					date	=	unformattedDate(time);

	6					//	Have	to	massage	the	date	because

	7					//	we	can't	create	a	date	

	8					//	based	on	GMT	which	the	server	gives	us

	9	

10					if	(!(/-\d\d:\d\d/.test(time)))	{

11							date.setHours(

12									date.getHours()	-	date.getTimezoneOffset()/60);

13					}

14	

15					var	diff	=	(

16									(new	Date()).getTime()	-	date.getTime()

17)	/	1000;

18					day_diff	=	Math.floor(diff	/	86400);

19	

20					if	(isNaN(day_diff)	||	day_diff	<	0)

21							return;

22	

23					return	''	+	(day_diff	==	0	&&	(

24									diff	<	60	&&	"just	now"	||

25									diff	<	120	&&	"1	minute	ago"	||

26									diff	<	3600	&&	Math.floor(diff	/	60)	+	"	minutes	ago"	||

27									diff	<	7200	&&	"1	hour	ago"	||

28									diff	<	86400	&&	Math.floor(diff	/	3600)	+	"	hours	ago")	||

29							day_diff	==	1	&&	"Yesterday"	||

30							day_diff	<	7	&&	day_diff	+	"	days	ago"	||

31							day_diff	<	31	&&	Math.ceil(day_diff	/	7)	+	"	weeks	ago"	||

32							(day_diff	<	360	&&	day_diff	>=	31)	&&	Math.ceil(day_diff	/	31)	+	

33									'	month'	+	(day_diff	==	31	?	''	:	's')	+	'	ago'	||

34									day_diff	>	360	&&	Math.floor(day_diff	/	360)	+	"	years	"	+	

35									Math.floor(day_diff%360/32)	+	"	months	ago")	+	'';

36			}

37			else	return	'-'

38			

39			function	unformattedDate	(time)	{

40					return	new	Date((time	||	"").replace(/[-+]/g,"/").

41							replace(/[TZ]/g,"	").replace(/\/\d\d:\d\d/,	''));

42			}

43	}

Every time we call formatDate, JavaScript will create an entirely new unformattedDate function.
That is not necessary, since it’s a pure function. In theory, a sufficiently smart interpreter
would notice this and only create one function. In practice, we can rewrite it to use a
private closure and only create one helper function:

	1	var	formatDate	=	(function	()	{

	2			return	function	(time)	{

	3					var	date;

	4	

	5					if	(time)	{

	6							date	=	unformattedDate(time);

	7							//	Have	to	massage	the	date	because	we	can't	create	a	date	

	8							//	based	on	GMT	which	the	server	gives	us

	9	

10							if	(!(/-\d\d:\d\d/.test(time)))	{

11									date.setHours(date.getHours()	-	date.getTimezoneOffset()/60);

12							}

13	

14							var	diff	=	((new	Date()).getTime()	-	date.getTime())	/	1000;

15							day_diff	=	Math.floor(diff	/	86400);

16	

17							if	(isNaN(day_diff)	||	day_diff	<	0)

18									return;

19	

20							return	''	+	(day_diff	==	0	&&	(

21											diff	<	60	&&	"just	now"	||

22											diff	<	120	&&	"1	minute	ago"	||

23											diff	<	3600	&&	Math.floor(diff	/	60)	+	"	minutes	ago"	||

24											diff	<	7200	&&	"1	hour	ago"	||

25											diff	<	86400	&&	Math.floor(diff	/	3600)	+	"	hours	ago")	||

26									day_diff	==	1	&&	"Yesterday"	||

27									day_diff	<	7	&&	day_diff	+	"	days	ago"	||

28									day_diff	<	31	&&	Math.ceil(day_diff	/	7)	+	"	weeks	ago"	||

29									(day_diff	<	360	&&	day_diff	>=	31)	&&	Math.ceil(day_diff	/	31)	+

30											'	month'	+	(day_diff	==	31	?	''	:	's')	+	'	ago'	||

31											day_diff	>	360	&&	Math.floor(day_diff	/	360)	+	

32											"	years	"	+	Math.floor(day_diff%360/32)	+	"	months	ago")	+	'';

33					}

34					else	return	'-'

35			}

36			

37			function	unformattedDate	(time)	{

38					return	new	Date((time	||	"").replace(/[-+]/g,"/").replace(/[TZ]/g,"	").repla\

39	ce(/\/\d\d:\d\d/,	''));

40			}

41	})();

The function unformattedDate is still private to formatDate, but now we no longer need to
construct an entirely new function every time formatDate is called.

modules

Once the power of creating a new environment with a let (or “immediately invoked
function expression”) is tasted, it won’t be long before you find yourself building modules
with lets. Modules are any collection of functions that have some private and some public-
facing elements.

Consider a module designed to draw some bits on a virtual screen. The public API
consists of a series of draw functions. The private API includes a series of helper
functions. This is exactly like the private closure, the only difference being that we want
to return multiple public functions instead of just one.

It looks like this:

	1	var	DrawModule	=	(function	()	{

	2			

	3			return	{

	4					drawLine:	drawLine,

	5					drawRect:	drawRect,

	6					drawCircle:	drawCircle

	7			}

	8			

	9			//	public	methods

10			function	drawLine(screen,	leftPoint,	rightPoint)	{	...	}

11			function	drawRect(screen,	topLeft,	bottomRight)	{	...	}

12			function	drawCircle(screen,	center,	radius)	{	...	}

13			

14			//	private	helpers

15			function	bitBlt	(screen,	...)	{	...	}

16			function	resize	(screen,	...)	{	...	}

17			

18	})();

You can then call the public functions using DrawModule.drawCircle(...). The concept scales up
to include the concept of state (such as setting default line styles), but when you look at it,
it’s really just the private closure let with a little more complexity in the form of returning an
object with more than one function.

Summary

Rebinding
JavaScript	permits	reassignment/rebinding	of	variables.
Arrays	and	Objects	are	mutable.
References	permit	aliasing	of	reference	types.
We	may	need	to	take	special	care	to	prevent	ourselves	from	accidentally

breaking	recursive	functions.
For	loops	are	convenient,	but	require	care	to	avoid	scoping	bugs.

Arrays	in	all	contemporary	languages	store	references	and	not	copies,	so	we	can	be	forgiven	for
expecting	them	to	work	the	same	way	in	JavaScript.	Nevertheless,	it’s	a	useful	exercise	to	test
things	for	ourself.↩

Tradition	would	have	us	call	objects	that	don’t	contain	any	functions	“POJOs,”	meaning	Plain	Old
JavaScript	Objects.
↩

There	is	a	well	known	story	about	Karl	Friedrich	Gauss	when	he	was	in	elementary	school.	His
teacher	got	mad	at	the	class	and	told	them	to	add	the	numbers	1	to	100	and	give	him	the	answer	by
the	end	of	the	class.	About	30	seconds	later	Gauss	gave	him	the	answer.	The	other	kids	were
adding	the	numbers	like	this:	1	+	2	+	3	+	+	99	+	100	=	?	But	Gauss	rearranged	the	numbers	to	add
them	like	this:	(1	+	100)	+	(2	+	99)	+	(3	+	98)	+	+	(50	+	51)	=	?	If	you	notice	every	pair	of	numbers	adds	up
to	101.	There	are	50	pairs	of	numbers,	so	the	answer	is	50*101	=	5050.	Of	course	Gauss	came	up
with	the	answer	about	20	times	faster	than	the	other	kids.↩

5.	 Recipes	with	Rebinding	and	References

Café Diplomatico in Toronto’s Little Italy

Disclaimer
The recipes are written for practicality, and their implementation may introduce JavaScript
features that haven’t been discussed in the text to this point, such as methods and/or
prototypes. The overall use of each recipe will fit within the spirit of the language
discussed so far, even if the implementations may not.

Once
once is an extremely helpful combinator. It ensures that a function can only be called, well,
once. Here’s the recipe:

1	function	once	(fn)	{

2			var	done	=	false;

3			

4			return	function	()	{

5					return	done	?	void	0	:	((done	=	true),	fn.apply(this,	arguments))

6			}

7	}

Very simple! You pass it a function, and you get a function back. That function will call
your function once, and thereafter will return undefined whenever it is called. Let’s try it:

	1	var	askedOnBlindDate	=	once(function	()	{

	2			return	'sure,	why	not?'

	3	});

	4	

	5	askedOnBlindDate()

	6			//=>	'sure,	why	not?'

	7			

	8	askedOnBlindDate()

	9			//=>	undefined

10			

11	askedOnBlindDate()

12			//=>	undefined

It seems some people will only try blind dating once. But you do have to be careful that
you are calling the function once returns multiple times. If you keep calling once, you’ll get a
new function that executes once, so you’ll keep calling your function:

1	once(function	()	{

2			return	'sure,	why	not?'

3	})()

4			//=>	'sure,	why	not?'

5	

6	once(function	()	{

7			return	'sure,	why	not?'

8	})()

9			//=>	'sure,	why	not?'

This is expected, but sometimes not what we want. So we must either be careful with our
code, or use a variation, the named once recipe.

mapWith
In recent versions of JavaScript, arrays have a .map method. Map takes a function as an

argument, and applies it to each of the elements of the array, then returns the results in
another array. For example:

1	[1,	2,	3,	4,	5].map(function	(n)	{	

2			return	n*n	

3	})

4			//=>	[1,	4,	9,	16,	25]

We say that .map maps its arguments over the receiver array’s elements. Or if you prefer,
that it defines a mapping between its receiver and its result. Libraries like Underscore
provide a map function.1 It usually works like this:

1	_.map([1,	2,	3,	4,	5],	function	(n)	{	

2			return	n*n	

3	})

4			//=>	[1,	4,	9,	16,	25]

This recipe isn’t for map: It’s for mapWith, a function that wraps around map and turns any
other function into a mapping. In concept, mapWith is very simple:2

1	function	mapWith	(fn)	{

2			return	function	(list)	{

3					return	Array.prototype.map.call(list,	function	(something)	{

4							return	fn.call(this,	something);

5					});

6			};

7	};

Here’s the above code written using mapWith:

1	var	squareMap	=	mapWith(function	(n)	{	

2			return	n*n;

3	});

4	

5	squareMap([1,	2,	3,	4,	5])

6			//=>	[1,	4,	9,	16,	25]

If we didn’t use mapWith, we’d have written something like this:

1	var	squareMap	=	function	(array)	{

2			return	Array.prototype.map.call(array,	function	(n)	{	

3					return	n*n;

http://underscorejs.org/

4			});

5	};

And we’d do that every time we wanted to construct a method that maps an array to some
result. mapWith is a very convenient abstraction for a very common pattern.

mapWith was suggested by ludicast

Flip
When we wrote mapWith, we wrote it like this:

1	function	mapWith	(fn)	{

2			return	function	(list)	{

3					return	Array.prototype.map.call(list,	function	(something)	{

4							return	fn.call(this,	something);

5					});

6			};

7	};

Let’s consider the case whether we have a map function of our own, perhaps from the
allong.es library, perhaps from Underscore. We could write our function something like
this:

1	function	mapWith	(fn)	{

2			return	function	(list)	{

3					return	map.call(list,	fn);

4			};

5	};

Looking at this, we see we’re conflating two separate transformations. First, we’re
reversing the order of arguments. You can see that if we simplify it:

1	function	mapWith	(fn,	list)	{

2			return	map.call(list,	fn);

3	};

Second, we’re “currying” the function so that instead of defining a function that takes two
arguments, it returns a function that takes the first argument and returns a function that
takes the second argument and applies them both, like this:

1	function	mapCurried	(list)	{

2			return	function	(fn)	{

http://github.com/ludicast
http://allong.es/
http://underscorejs.org/

3					return	map(list,	fn);

4			};

5	};

Let’s return to the implementation that does both:

1	function	mapWith	(fn)	{

2			return	function	(list)	{

3					return	map.call(list,	fn);

4			};

5	};

Now let’s put a wrapper around it:

1	function	wrapper	()	{

2			return	function	(fn)	{

3					return	function	(list)	{

4							return	map.call(list,	fn);

5					};

6			};

7	};

Abstract the parameter names:

1	function	wrapper	()	{

2			return	function	(first)	{

3					return	function	(second)	{

4							return	map.call(second,	first);

5					};

6			};

7	};

And finally, extract the function as a parameter:

1	function	wrapper	(fn)	{

2			return	function	(first)	{

3					return	function	(second)	{

4							return	fn.call(second,	first);

5					};

6			};

7	};

What we have now is a function that takes a function and “flips” the order of arguments

around, then curries it:

1	function	flip	(fn)	{

2			return	function	(first)	{

3					return	function	(second)	{

4							return	fn.call(this,	second,	first);

5					};

6			};

7	};

This is gold. Consider how we define mapWith now:

1	var	mapWith	=	flip(map);

Much nicer!

There’s one final decoration. Sometimes we’ll want to flip a function but retain the
flexibility to call it with both parameters at once. No problem:

	1	function	flip	(fn)	{

	2			return	function	(first,	second)	{

	3					if	(arguments.length	===	2)	{

	4							return	fn.call(this,	second,	first);

	5					}

	6					else	{

	7							return	function	(second)	{

	8									return	fn.call(this,	second,	first);

	9							};

10					};

11			};

12	};

Now you can call mapWith(fn, list) or mapWith(fn)(list), your choice.

Extend
It’s very common to want to “extend” an object by adding properties to it:

1	var	inventory	=	{

2			apples:	12,

3			oranges:	12

4	};

5	

6	inventory.bananas	=	54;

7	inventory.pears	=	24;

It’s also common to want to add a shallow copy of the properties of one object to another:

1			for	(var	fruit	in	shipment)	{

2					inventory[fruit]	=	shipment[fruit]

3			}

Both needs can be met with this recipe for extend:

	1	var	extend	=	variadic(function	(consumer,	providers)	{

	2			var	key,

	3							i,

	4							provider;

	5			

	6			for	(i	=	0;	i	<	providers.length;	++i)	{

	7					provider	=	providers[i];

	8					for	(key	in	provider)	{

	9							if	(provider.hasOwnProperty(key))	{

10									consumer[key]	=	provider[key]

11							}

12					}

13			}

14			return	consumer

15	});

You can copy an object by extending an empty object:

1	extend({},	{

2			apples:	12,

3			oranges:	12

4	})

5			//=>	{	apples:	12,	oranges:	12	}

You can extend one object with another:

	1	var	inventory	=	{

	2			apples:	12,

	3			oranges:	12

	4	};

	5	

	6	var	shipment	=	{

	7			bananas:	54,

	8			pears:	24

https://en.wikipedia.org/wiki/Object_copy#Shallow_copy

	9	}

10	

11	extend(inventory,	shipment)

12			//=>	{	apples:	12,

13			//					oranges:	12,

14			//					bananas:	54,

15			//					pears:	24	}

And when we discuss prototypes, we will use extend to turn this:

	1	var	Queue	=	function	()	{

	2			this.array	=	[];

	3			this.head	=	0;

	4			this.tail	=	-1

	5	};

	6			

	7	Queue.prototype.pushTail	=	function	(value)	{

	8			//	...

	9	};

10	Queue.prototype.pullHead	=	function	()	{

11			//	...

12	};

13	Queue.prototype.isEmpty	=	function	()	{

14			//	...

15	}

Into this:

	1	var	Queue	=	function	()	{

	2			extend(this,	{

	3					array:	[],

	4					head:	0,

	5					tail:	-1

	6			})

	7	};

	8			

	9	extend(Queue.prototype,	{

10			pushTail:	function	(value)	{

11					//	...

12			},

13			pullHead:	function	()	{

14					//	...

15			},

16			isEmpty:	function	()	{

17					//	...

18			}						

19	});

Why?
This is the canonical Y Combinator:

	1	function	Y	(f)	{

	2			return	((function	(x)	{

	3					return	f(function	(v)	{

	4							return	x(x)(v);

	5					});

	6			})(function	(x)	{

	7					return	f(function	(v)	{

	8							return	x(x)(v);

	9					});

10			}));

11	}

You use it like this:

1	var	factorial	=	Y(function	(fac)	{

2			return	function	(n)	{

3					return	(n	==	0	?	1	:	n	*	fac(n	-	1));

4			}

5	});

6		

7	factorial(5)

8			//=>	120

Why? It enables you to make recursive functions without needing to bind a function to a
name in an environment. This has little practical utility in JavaScript, but in combinatory
logic it’s essential: With fixed-point combinators it’s possible to compute everything
computable without binding names.

So again, why include the recipe? Well, besides all of the practical applications that
combinators provide, there is this little thing called The joy of working things out.

There are many explanations of the Y Combinator’s mechanism on the internet, but resist
the temptation to read any of them: Work it out for yourself. Use it as an excuse to get
familiar with your environment’s debugging facility. A friendly tip: Name some of the
anonymous functions inside it to help you decipher stack traces.

Work things out for yourself. And once you’ve grokked that recipe, this recipe is for a Y
Combinator that is a little more idiomatic. Work it out too:

https://en.wikipedia.org/wiki/Fixed-point_combinator#Example_in_JavaScript

	1	function	Y	(fn)	{

	2			var	f	=	function	(f)	{

	3					return	function	()	{

	4							return	fn.apply(f,	arguments)

	5					}

	6			};

	7			

	8			return	((function	(x)	{

	9					return	f(function	(v)	{

10							return	x(x)(v);

11					});

12			})(function	(x)	{

13					return	f(function	(v)	{

14							return	x(x)(v);

15					});

16			}));

17	}

You use this version like this:

1	var	factorial	=	Y(function	(n)	{

2			return	(n	==	0	?	1	:	n	*	this(n	-	1));

3	});

4		

5	factorial(5)

There are certain cases involving nested recursive functions it cannot handle due to the
ambiguity of this, and obviously it is useless as a method combination, but it is an
interesting alternative to the let pattern.

Why	provide	a	map	function?	well,	JavaScript	is	an	evolving	language,	and	when	you’re	writing
code	that	runs	in	a	web	browser,	you	may	want	to	support	browsers	using	older	versions	of
JavaScript	that	didn’t	provide	the	.map	function.	One	way	to	do	that	is	to	“shim”	the	map	method
into	the	Array	class,	the	other	way	is	to	use	a	map	function.	Most	library	implementations	of	map
will	default	to	the	.map	method	if	its	available.↩

If	we	were	always	mapWithting	arrays,	we	could	write	list.map(fn).	However,	there	are	some	objects
that	have	a	.length	property	and	[]	accessors	that	can	be	mapWithted	but	do	not	have	a	.map	method.
mapWith	works	with	those	objects.	This	points	to	a	larger	issue	around	the	question	of	whether
containers	really	ought	to	implement	methods	like	.map.	In	a	language	like	JavaScript,	we	are	free
to	define	objects	that	know	about	their	own	implementations,	such	as	exactly	how	[]	and	.length
works	and	then	to	define	standalone	functions	that	do	the	rest.↩

6.	 Stir	the	Allongé:	Objects,	Mutation,	and	State

Life measured out by coffee spoons

So far, we have discussed what many call “pure functional” programming, where every
expression is necessarily idempotent, because we have no way of changing state within a
program using the tools we have examined.

It’s time to change everything.

Encapsulating	State	with	Closures

OOP to me means only messaging, local retention and protection and hiding of
state-process, and extreme late-binding of all things.–Alan Kay

We’re going to look at encapsulation using JavaScript’s functions and objects. We’re not
going to call it object-oriented programming, mind you, because that would start a long
debate. This is just plain encapsulation,1 with a dash of information-hiding.

what	is	hiding	of	state-process,	and	why	does	it	matter?

https://en.wikipedia.org/wiki/Idempotence
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

In computer science, information hiding is the principle of segregation of the design
decisions in a computer program that are most likely to change, thus protecting
other parts of the program from extensive modification if the design decision is
changed. The protection involves providing a stable interface which protects the
remainder of the program from the implementation (the details that are most likely
to change).

Written another way, information hiding is the ability to prevent certain aspects of a
class or software component from being accessible to its clients, using either
programming language features (like private variables) or an explicit exporting
policy.

–Wikipedia

Consider a stack data structure. There are three basic operations: Pushing a value onto
the top (push), popping a value off the top (pop), and testing to see whether the stack is
empty or not (isEmpty). These three operations are the stable interface.

Many stacks have an array for holding the contents of the stack. This is relatively stable.
You could substitute a linked list, but in JavaScript, the array is highly efficient. You might
need an index, you might not. You could grow and shrink the array, or you could allocate
a fixed size and use an index to keep track of how much of the array is in use. The design
choices for keeping track of the head of the list are often driven by performance
considerations.

If you expose the implementation detail such as whether there is an index, sooner or later
some programmer is going to find an advantage in using the index directly. For example,
she may need to know the size of a stack. The ideal choice would be to add a size function
that continues to hide the implementation. But she’s in a hurry, so she reads the index

directly. Now her code is coupled to the existence of an index, so if we wish to change the
implementation to grow and shrink the array, we will break her code.

The way to avoid this is to hide the array and index from other code and only expose the
operations we have deemed stable. If and when someone needs to know the size of the
stack, we’ll add a size function and expose it as well.

Hiding information (or “state”) is the design principle that allows us to limit the coupling
between components of software.

how	do	we	hide	state	using	javascript?
We’ve been introduced to JavaScript’s objects, and it’s fairly easy to see that objects can
be used to model what other programming languages call (variously) records, structs,

https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Stack_

frames, or what-have-you. And given that their elements are mutable, they can clearly
model state.

Given an object that holds our state (an array and an index2), we can easily implement
our three operations as functions. Bundling the functions with the state does not require
any special “magic” features. JavaScript objects can have elements of any type, including
functions:

	1	var	stack	=	(function	()	{

	2			var	obj	=	{

	3					array:	[],

	4					index:	-1,

	5					push:	function	(value)	{

	6							return	obj.array[obj.index	+=	1]	=	value

	7					},

	8					pop:	function	()	{

	9							var	value	=	obj.array[obj.index];

10							obj.array[obj.index]	=	void	0;

11							if	(obj.index	>=	0)	{	

12									obj.index	-=	1	

13							}

14							return	value

15					},

16					isEmpty:	function	()	{

17							return	obj.index	<	0

18					}

19			};

20			

21			return	obj;

22	})();

23	

24	stack.isEmpty()

25			//=>	true

26	stack.push('hello')

27			//=>	'hello'

28	stack.push('JavaScript')

29		//=>	'JavaScript'

30	stack.isEmpty()

31			//=>	false

32	stack.pop()

33		//=>	'JavaScript'

34	stack.pop()

35		//=>	'hello'

36	stack.isEmpty()

37			//=>	true

method-ology
In this text, we lurch from talking about “functions that belong to an object” to “methods.”
Other languages may separate methods from functions very strictly, but in JavaScript
every method is a function but not all functions are methods.

The view taken in this book is that a function is a method of an object if it belongs to that
object and interacts with that object in some way. So the functions implementing the
operations on the stack are all absolutely methods of the stack.

But these two wouldn’t be methods. Although they “belong” to an object, they don’t
interact with it:

	1	{

	2			min:	function	(x,	y)	{

	3					if	(x	<	y)	{

	4							return	x

	5					}

	6					else	{

	7							return	y

	8					}

	9			}	

10			max:	function	(x,	y)	{

11					if	(x	>	y)	{

12							return	x

13					}

14					else	{

15							return	y

16					}

17			}	

18	}

hiding	state
Our stack does bundle functions with data, but it doesn’t hide its state. “Foreign” code
could interfere with its array or index. So how do we hide these? We already have a
closure, let’s use it:

	1	var	stack	=	(function	()	{

	2			var	array	=	[],

	3							index	=	-1;

	4							

	5			return	{

	6					push:	function	(value)	{

	7							array[index	+=	1]	=	value

	8					},

	9					pop:	function	()	{

10							var	value	=	array[index];

11							if	(index	>=	0)	{

12									index	-=	1

13							}

14							return	value

15					},

16					isEmpty:	function	()	{

17							return	index	<	0

18					}

19			}

20	})();

21	

22	stack.isEmpty()

23			//=>	true

24	stack.push('hello')

25			//=>	'hello'

26	stack.push('JavaScript')

27		//=>	'JavaScript'

28	stack.isEmpty()

29			//=>	false

30	stack.pop()

31		//=>	'JavaScript'

32	stack.pop()

33		//=>	'hello'

34	stack.isEmpty()

35			//=>	true

Coffee DOES grow on trees

We don’t want to repeat this code every time we want a stack, so let’s make ourselves a
“stack maker.” The temptation is to wrap what we have above in a function:

	1	var	StackMaker	=	function	()	{

	2			return	(function	()	{

	3					var	array	=	[],

	4									index	=	-1;

	5							

	6					return	{

	7							push:	function	(value)	{

	8									array[index	+=	1]	=	value

	9							},

10							pop:	function	()	{

11									var	value	=	array[index];

12									if	(index	>=	0)	{

13											index	-=	1

14									}

15									return	value

16							},

17							isEmpty:	function	()	{

18									return	index	<	0

19							}

20					}

21			})()	

22	}

But there’s an easier way :-)

	1	var	StackMaker	=	function	()	{

	2			var	array	=	[],

	3							index	=	-1;

	4							

	5			return	{

	6					push:	function	(value)	{

	7							array[index	+=	1]	=	value

	8					},

	9					pop:	function	()	{

10							var	value	=	array[index];

11							if	(index	>=	0)	{

12									index	-=	1

13							}

14							return	value

15					},

16					isEmpty:	function	()	{

17							return	index	<	0

18					}

19			}

20	};

21	

22	stack	=	StackMaker()

Now we can make stacks freely, and we’ve hidden their internal data elements. We have
methods and encapsulation, and we’ve built them out of JavaScript’s fundamental
functions and objects. In Instances and Classes, we’ll look at JavaScript’s support for
class-oriented programming and some of the idioms that functions bring to the party.

is	encapsulation	“object-oriented?”
We’ve built something with hidden internal state and “methods,” all without
needing special def or private keywords. Mind you, we haven’t included all sorts
of complicated mechanisms to support inheritance, mixins, and other
opportunities for debating the nature of the One True Object-Oriented Style on
the Internet.

Then again, the key lesson experienced programmers repeat–although it
often falls on deaf ears–is Composition instead of Inheritance. So maybe we
aren’t missing much.

Composition	and	Extension

composition
A deeply fundamental practice is to build components out of smaller components. The
choice of how to divide a component into smaller components is called factoring, after the
operation in number theory 3.

The simplest and easiest way to build components out of smaller components in
JavaScript is also the most obvious: Each component is a value, and the components can
be put together into a single object or encapsulated with a closure.

Here’s an abstract “model” that supports undo and redo composed from a pair of stacks
(see Encapsulating State) and a Plain Old JavaScript Object:

	1	//	helper	function

	2	//

	3	//	For	production	use,	consider	what	to	do	about

http://www.c2.com/cgi/wiki?CompositionInsteadOfInheritance

	4	//	deep	copies	and	own	keys

	5	var	shallowCopy	=	function	(source)	{

	6			var	dest	=	{},

	7							key;

	8							

	9			for	(key	in	source)	{

10					dest[key]	=	source[key]

11			}

12			return	dest

13	};

14	

15	//	our	model	maker

16	var	ModelMaker	=	function	(initialAttributes)	{

17			var	attributes	=	shallowCopy(initialAttributes	||	{}),	

18							undoStack	=	StackMaker(),	

19							redoStack	=	StackMaker(),

20							obj	=	{

21									set:	function	(attrsToSet)	{

22											var	key;

23											

24											undoStack.push(shallowCopy(attributes));

25											if	(!redoStack.isEmpty())	{

26													redoStack	=	StackMaker()

27											}

28											for	(key	in	(attrsToSet	||	{}))	{

29													attributes[key]	=	attrsToSet[key]

30											}

31											return	obj

32									},

33									undo:	function	()	{

34											if	(!undoStack.isEmpty())	{

35													redoStack.push(shallowCopy(attributes));

36													attributes	=	undoStack.pop()

37											}

38											return	obj

39									},

40									redo:	function	()	{

41											if	(!redoStack.isEmpty())	{

42													undoStack.push(shallowCopy(attributes));

43													attributes	=	redoStack.pop()

44											}

45											return	obj

46									},

47									get:	function	(key)	{

48											return	attributes(key)

49									},

50									has:	function	(key)	{

51											return	attributes.hasOwnProperty(key)

52									},

53									attributes:	function	{

54											shallowCopy(attributes)

55									}

56							};

57					return	obj

58			};

The techniques used for encapsulation work well with composition. In this case, we have
a “model” that hides its attribute store as well as its implementation that is composed of
an undo stack and redo stack.

extension
Another practice that many people consider fundamental is to extend an implementation.
Meaning, they wish to define a new data structure in terms of adding new operations and
semantics to an existing data structure.

Consider a queue:

	1	var	QueueMaker	=	function	()	{

	2			var	array	=	[],	

	3							head	=	0,	

	4							tail	=	-1;

	5			return	{

	6					pushTail:	function	(value)	{

	7							return	array[tail	+=	1]	=	value

	8					},

	9					pullHead:	function	()	{

10							var	value;

11							

12							if	(tail	>=	head)	{

13									value	=	array[head];

14									array[head]	=	void	0;

15									head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	()	{

20							return	tail	<	head

21					}

22			}

23	};

Now we wish to create a deque by adding pullTail and pushHead operations to our queue.4

Unfortunately, encapsulation prevents us from adding operations that interact with the

http://duckduckgo.com/Queue_
https://en.wikipedia.org/wiki/Double-ended_queue

hidden data structures.

This isn’t really surprising: The entire point of encapsulation is to create an opaque data
structure that can only be manipulated through its public interface. The design goals of
encapsulation and extension are always going to exist in tension.

Let’s “de-encapsulate” our queue:

	1	var	QueueMaker	=	function	()	{

	2			var	queue	=	{

	3					array:	[],	

	4					head:	0,	

	5					tail:	-1,

	6					pushTail:	function	(value)	{

	7							return	queue.array[queue.tail	+=	1]	=	value

	8					},

	9					pullHead:	function	()	{

10							var	value;

11							

12							if	(queue.tail	>=	queue.head)	{

13									value	=	queue.array[queue.head];

14									queue.array[queue.head]	=	void	0;

15									queue.head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	()	{

20							return	queue.tail	<	queue.head

21					}

22			};

23			return	queue

24	};

Now we can extend a queue into a deque:

	1	var	DequeMaker	=	function	()	{

	2			var	deque	=	QueueMaker(),

	3							INCREMENT	=	4;

	4			

	5			return	extend(deque,	{

	6					size:	function	()	{

	7							return	deque.tail	-	deque.head	+	1

	8					},

	9					pullTail:	function	()	{

10							var	value;

11							

12							if	(!deque.isEmpty())	{

13									value	=	deque.array[deque.tail];

14									deque.array[deque.tail]	=	void	0;

15									deque.tail	-=	1;

16									return	value

17							}

18					},

19					pushHead:	function	(value)	{

20							var	i;

21							

22							if	(deque.head	===	0)	{

23									for	(i	=	deque.tail;	i	<=	deque.head;	i++)	{

24											deque.array[i	+	INCREMENT]	=	deque.array[i]

25									}

26									deque.tail	+=	INCREMENT

27									deque.head	+=	INCREMENT

28							}

29							return	deque.array[deque.head	-=	1]	=	value

30					}

31			})

32	};

Presto, we have reuse through extension, at the cost of encapsulation.

Encapsulation and Extension exist in a natural state of tension. A program
with elaborate encapsulation resists breakage but can also be difficult to
refactor in other ways. Be mindful of when it’s best to Compose and when
it’s best to Extend.

This	and	That
Let’s take another look at extensible objects. Here’s a Queue:

	1	var	QueueMaker	=	function	()	{

	2			var	queue	=	{

	3					array:	[],	

	4					head:	0,	

	5					tail:	-1,

	6					pushTail:	function	(value)	{

	7							return	queue.array[queue.tail	+=	1]	=	value

	8					},

	9					pullHead:	function	()	{

10							var	value;

11							

12							if	(queue.tail	>=	queue.head)	{

13									value	=	queue.array[queue.head];

14									queue.array[queue.head]	=	void	0;

15									queue.head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	()	{

20							return	queue.tail	<	queue.head

21					}

22			};

23			return	queue

24	};

25	

26	queue	=	QueueMaker()

27	queue.pushTail('Hello')

28	queue.pushTail('JavaScript')

Let’s make a copy of our queue using the extend recipe:

1	copyOfQueue	=	extend({},	queue);

2	

3	queue	!==	copyOfQueue

4			//=>	true

Wait a second. We know that array values are references. So it probably copied a
reference to the original array. Let’s make a copy of the array as well:

1	copyOfQueue.array	=	[];

2	for	(var	i	=	0;	i	<	2;	++i)	{

3			copyOfQueue.array[i]	=	queue.array[i]

4	}

Now let’s pull the head off the original:

1	queue.pullHead()

2			//=>	'Hello'

If we’ve copied everything properly, we should get the exact same result when we pull the
head off the copy:

1	copyOfQueue.pullHead()

2			//=>	'JavaScript'

What!? Even though we carefully made a copy of the array to prevent aliasing, it seems
that our two queues behave like aliases of each other. The problem is that while we’ve
carefully copied our array and other elements over, the closures all share the same
environment, and therefore the functions in copyOfQueue all operate on the first queue’s
private data, not on the copies.

This is a general issue with closures. Closures couple functions to
environments, and that makes them very elegant in the small, and very handy
for making opaque data structures. Alas, their strength in the small is their
weakness in the large. When you’re trying to make reusable components, this
coupling is sometimes a hindrance.

Let’s take an impossibly optimistic flight of fancy:

	1	var	AmnesiacQueueMaker	=	function	()	{

	2			return	{

	3					array:	[],	

	4					head:	0,	

	5					tail:	-1,

	6					pushTail:	function	(myself,	value)	{

	7							return	myself.array[myself.tail	+=	1]	=	value

	8					},

	9					pullHead:	function	(myself)	{

10							var	value;

11							

12							if	(myself.tail	>=	myself.head)	{

13									value	=	myself.array[myself.head];

14									myself.array[myself.head]	=	void	0;

15									myself.head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	(myself)	{

20							return	myself.tail	<	myself.head

21					}

22			}

23	};

24	

25	queueWithAmnesia	=	AmnesiacQueueMaker();

26	queueWithAmnesia.pushTail(queueWithAmnesia,	'Hello');

27	queueWithAmnesia.pushTail(queueWithAmnesia,	'JavaScript')

The AmnesiacQueueMaker makes queues with amnesia: They don’t know who they are, so

every time we invoke one of their functions, we have to tell them who they are. You can
work out the implications for copying queues as a thought experiment: We don’t have to
worry about environments, because every function operates on the queue you pass in.

The killer drawback, of course, is making sure we are always passing the correct queue in
every time we invoke a function. What to do?

what’s	all	this?
Any time we must do the same repetitive thing over and over and over again, we
industrial humans try to build a machine to do it for us. JavaScript is one such machine:

	1	BanksQueueMaker	=	function	()	{

	2			return	{

	3					array:	[],	

	4					head:	0,	

	5					tail:	-1,

	6					pushTail:	function	(value)	{

	7							return	this.array[this.tail	+=	1]	=	value

	8					},

	9					pullHead:	function	()	{

10							var	value;

11							

12							if	(this.tail	>=	this.head)	{

13									value	=	this.array[this.head];

14									this.array[this.head]	=	void	0;

15									this.head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	()	{

20							return	this.tail	<	this.head

21					}

22			}

23	};

24	

25	banksQueue	=	BanksQueueMaker();

26	banksQueue.pushTail('Hello');

27	banksQueue.pushTail('JavaScript')	

Every time you invoke a function that is a member of an object, JavaScript binds that
object to the name this in the environment of the function just as if it was an argument.5

Now we can easily make copies:

	1	copyOfQueue	=	extend({},	banksQueue)

	2	copyOfQueue.array	=	[]

	3	for	(var	i	=	0;	i	<	2;	++i)	{

	4			copyOfQueue.array[i]	=	banksQueue.array[i]

	5	}

	6			

	7	banksQueue.pullHead()

	8			//=>	'Hello'

	9	

10	copyOfQueue.pullHead()

11			//=>	'Hello'

Presto, we now have a way to copy arrays. By getting rid of the closure and taking
advantage of this, we have functions that are more easily portable between objects, and
the code is simpler as well.

There is more to this than we’ve discussed here. We’ll explore things in more detail later,
in What Context Applies When We Call a Function?.

Closures tightly couple functions to the environments where they are
created limiting their flexibility. Using this alleviates the coupling. Copying
objects is but one example of where that flexibility is needed.

What	Context	Applies	When	We	Call	a	Function?
In This and That, we learned that when a function is called as an object method, the name
this is bound in its environment to the object acting as a “receiver.” For example:

1	var	someObject	=	{

2			returnMyThis:	function	()	{

3					return	this;

4			}

5	};

6	

7	someObject.returnMyThis()	===	someObject

8			//=>	true

We’ve constructed a method that returns whatever value is bound to this when it is called.
It returns the object when called, just as described.

it’s	all	about	the	way	the	function	is	called
JavaScript programmers talk about functions having a “context” when being called. this is
bound to the context.6 The important thing to understand is that the context for a function

being called is set by the way the function is called, not the function itself.

This is an important distinction. Consider closures: As we discussed in Closures and
Scope, a function’s free variables are resolved by looking them up in their enclosing
functions’ environments. You can always determine the functions that define free
variables by examining the source code of a JavaScript program, which is why this
scheme is known as Lexical Scope.

A function’s context cannot be determined by examining the source code of a JavaScript
program. Let’s look at our example again:

1	var	someObject	=	{

2			someFunction:	function	()	{

3					return	this;

4			}

5	};

6	

7	someObject.someFunction()	===	someObject

8			//=>	true

What is the context of the function someObject.someFunction? Don’t say someObject! Watch this:

1	var	someFunction	=	someObject.someFunction;

2	

3	someFunction	===	someObject.someFunction

4			//=>	true

5	

6	someFunction()	===	someObject

7			//=>	false

It gets weirder:

	1	var	anotherObject	=	{

	2			someFunction:	someObject.someFunction

	3	}

	4	

	5	anotherObject.someFunction	===	someObject.someFunction

	6			//=>	true

	7			

	8	anotherObject.someFunction()	===	anotherObject

	9			//=>	true

10			

11	anotherObject.someFunction()	===	someObject

12			//=>	false

https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scoping

So it amounts to this: The exact same function can be called in two different ways, and
you end up with two different contexts. If you call it using someObject.someFunction() syntax, the
context is set to the receiver. If you call it using any other expression for resolving the
function’s value (such as someFunction()), you get something else. Let’s investigate:

	1	(someObject.someFunction)()	==	someObject

	2			//=>	true

	3			

	4	someObject['someFunction']()	===	someObject

	5			//=>	true

	6			

	7	var	name	=	'someFunction';

	8	

	9	someObject[name]()	===	someObject

10			//=>	true

Interesting!

1	var	baz;

2	

3	(baz	=	someObject.someFunction)()	===	this

4			//=>	true

How about:

1	var	arr	=	[someObject.someFunction];

2	

3	arr[0]()	==	arr

4			//=>	true

It seems that whether you use a.b() or a['b']() or a[n]() or (a.b)(), you get context a.

	1	var	returnThis	=	function	()	{	return	this	};

	2	

	3	var	aThirdObject	=	{

	4			someFunction:	function	()	{

	5					return	returnThis()

	6			}

	7	}

	8	

	9	returnThis()	===	this

10			//=>	true

11	

12	aThirdObject.someFunction()	===	this

13			//=>	true

And if you don’t use a.b() or a['b']() or a[n]() or (a.b)(), you get the global environment for a
context, not the context of whatever function is doing the calling. To simplify things, when
you call a function with . or [] access, you get an object as context, otherwise you get the
global environment.

setting	your	own	context
There are actually two other ways to set the context of a function. And once again, both
are determined by the caller. At the very end of objects everywhere?, we’ll see that
everything in JavaScript behaves like an object, including functions. We’ll learn that
functions have methods themselves, and one of them is call.

Here’s call in action:

1	returnThis()	===	aThirdObject

2			//=>	false

3	

4	returnThis.call(aThirdObject)	===	aThirdObject

5			//=>	true

6			

7	anotherObject.someFunction.call(someObject)	===	someObject

8			//=>	true

When You call a function with call, you set the context by passing it in as the first
parameter. Other arguments are passed to the function in the normal manner. Much
hilarity can result from call shenanigans like this:

1	var	a	=	[1,2,3],

2					b	=	[4,5,6];

3					

4	a.concat([2,1])

5			//=>	[1,2,3,2,1]

6			

7	a.concat.call(b,[2,1])

8			//=>	[4,5,6,2,1]

But now we thoroughly understand what a.b() really means: It’s synonymous with a.b.call(a).
Whereas in a browser, c() is synonymous with c.call(window).

apply,	arguments,	and	contextualization

JavaScript has another automagic binding in every function’s environment. arguments is a
special object that behaves a little like an array.7

For example:

1	var	third	=	function	()	{

2			return	arguments[2]

3	}

4	

5	third(77,	76,	75,	74,	73)

6			//=>	75

Hold that thought for a moment. JavaScript also provides a fourth way to set the context
for a function. apply is a method implemented by every function that takes a context as its
first argument, and it takes an array or array-like thing of arguments as its second
argument. That’s a mouthful, let’s look at an example:

1	third.call(this,	1,2,3,4,5)

2			//=>	3

3	

4	third.apply(this,	[1,2,3,4,5])

5			//=>	3

Now let’s put the two together. Here’s another travesty:

1	var	a	=	[1,2,3],

2					accrete	=	a.concat;

3					

4	accrete([4,5])

5			//=>	Gobbledygook!

We get the result of concatenating [4,5] onto an array containing the global environment.
Not what we want! Behold:

1	var	contextualize	=	function	(fn,	context)	{

2			return	function	()	{

3					return	fn.apply(context,	arguments);

4			}

5	}

6	

7	accrete	=	contextualize(a.concat,	a);

8	accrete([4,5]);

9			//=>	[1,	2,	3,	4,	5]

Our contextualize function returns a new function that calls a function with a fixed context. It
can be used to fix some of the unexpected results we had above. Consider:

	1	var	aFourthObject	=	{},

	2					returnThis	=	function	()	{	return	this;	};

	3					

	4	aFourthObject.uncontextualized	=	returnThis;

	5	aFourthObject.contextualized	=	contextualize(returnThis,	aFourthObject);

	6	

	7	aFourthObject.uncontextualized()	===	aFourthObject

	8			//=>	true

	9	aFourthObject.contextualized()	===	aFourthObject

10			//=>	true

Both are true because we are accessing them with aFourthObject. Now we write:

1	var	uncontextualized	=	aFourthObject.uncontextualized,

2					contextualized	=	aFourthObject.contextualized;

3					

4	uncontextualized()	===	aFourthObject;

5			//=>	false

6	contextualized()	===	aFourthObject

7			//=>	true

When we call these functions without using aFourthObject., only the contextualized version
maintains the context of aFourthObject.

We’ll return to contextualizing methods later, in Binding. But before we dive too deeply
into special handling for methods, we need to spend a little more time looking at how
functions and methods work.

Method	Decorators
In function decorators, we learned that a decorator takes a function as an argument,
returns a function, and there’s a semantic relationship between the two. If a function is a
verb, a decorator is an adverb.

Decorators can be used to decorate methods provided that they carefully preserve the
function’s context. For example, here is a naïve version of maybe for one argument:

1	function	maybe	(fn)	{

2			return	function	(argument)	{

3					if	(argument	!=	null)	{

4							return	fn(argument)

5					}

6			}

7	}

This version doesn’t preserve the context, so it can’t be used as a method decorator.
Instead, we have to write:

1	function	maybe	(fn)	{

2			return	function	(argument)	{

3					if	(argument	!=	null)	{

4							return	fn.call(this,	argument)

5					}

6			}

7	}

Now we can write things like:

1	someObject	=	{

2			setSize:	maybe(function	(size)	{

3					this.size	=	size;

4					return	this

5			})

6	}

And this is correctly set:

1	someObject.setSize(5)

2			//=>	{	setSize:	[Function],	size:	5	}

Using .call or .apply and arguments is substantially slower than writing function decorators that
don’t set the context, so it might be right to sometimes write function decorators that aren’t
usable as method decorators. However, in practice you’re far more likely to introduce a
defect by failing to pass the context through a decorator than by introducing a
performance pessimization, so the default choice should be to write all function
decorators in such a way that they are “context agnostic.”

In some cases, there are other considerations to writing a method decorator. If the
decorator introduces state of any kind (such as once and memoize do), this must be carefully
managed for the case when several objects share the same method through the
mechanism of the prototype or through sharing references to the same function.

Summary

Objects,	Mutation,	and	State
State	can	be	encapsulated/hidden	with	closures.
Encapsulations	can	be	aggregated	with	composition.
Encapsulation	resists	extension.
The	automagic	binding	this	facilitates	sharing	of	functions.
Functions	can	be	named	and	declared	with	a	name.

“A	language	construct	that	facilitates	the	bundling	of	data	with	the	methods	(or	other	functions)
operating	on	that	data.”–Wikipedia↩

Yes,	there’s	another	way	to	track	the	size	of	the	array,	but	we	don’t	need	it	to	demonstrate
encapsulation	and	hiding	of	state.↩

And	when	you	take	an	already	factored	component	and	rearrange	things	so	that	it	is	factored	into	a
different	set	of	subcomponents	without	altering	its	behaviour,	you	are	refactoring.↩

Before	you	start	wondering	whether	a	deque	is-a	queue,	we	said	nothing	about	types	and	classes.
This	relationship	is	called	was-a,	or	“implemented	in	terms	of	a.”↩

JavaScript	also	does	other	things	with	this	as	well,	but	this	is	all	we	care	about	right	now.↩

Too	bad	the	language	binds	the	context	to	the	name	this	instead	of	the	name	context!↩

Just	enough	to	be	frustrating,	to	be	perfectly	candid!↩

https://en.wikipedia.org/wiki/Encapsulation_

7.	 Recipes	with	Objects,	Mutations,	and	State

The Intestines of an Espresso Machine

Disclaimer
The recipes are written for practicality, and their implementation may introduce JavaScript
features that haven’t been discussed in the text to this point, such as methods and/or
prototypes. The overall use of each recipe will fit within the spirit of the language
discussed so far, even if the implementations may not.

Memoize
Consider that age-old interview quiz, writing a recursive fibonacci function (there are other
ways to derive a fibonacci number, of course). Here’s an implementation that doesn’t use
a named function expression. The reason for that omission will be explained later:

1			var	fibonacci	=	function	(n)	{

2					if	(n	<	2)	{

3							return	n

4					}

5					else	{

6							return	fibonacci(n-2)	+	fibonacci(n-1)

7					}

8			}

We’ll time it:

1	s	=	(new	Date()).getTime()

2	fibonacci(45)

3	((new	Date()).getTime()	-	s)	/	1000

4			//=>	28.565

Why is it so slow? Well, it has a nasty habit of recalculating the same results over and
over and over again. We could rearrange the computation to avoid this, but let’s be lazy
and trade space for time. What we want to do is use a lookup table. Whenever we want a
result, we look it up. If we don’t have it, we calculate it and write the result in the table to
use in the future. If we do have it, we return the result without recalculating it.

Here’s our recipe:

	1	function	memoized	(fn,	keymaker)	{

	2			var	lookupTable	=	{},	

	3							key;

	4					

	5			keymaker	||	(keymaker	=	function	(args)	{

	6					return	JSON.stringify(args)	

	7			});

	8					

	9			return	function	()	{

10					var	key	=	keymaker.call(this,	arguments);

11			

12					return	lookupTable[key]	||	(

13							lookupTable[key]	=	fn.apply(this,	arguments)

14)

15			}

16	}

We can apply memoized to a function and we will get back a new function that “memoizes”
its results so that it never has to recalculate the same value twice. It only works for
functions that are “idempotent,” meaning functions that always return the same result
given the same argument(s). Like fibonacci:

Let’s try it:

	1	var	fastFibonacci	=	memoized(function	(n)	{

	2			if	(n	<	2)	{

	3					return	n

	4			}

	5			else	{

	6					return	fastFibonacci(n-2)	+	fastFibonacci(n-1)

	7			}

	8	});

	9	

10	fastFibonacci(45)

11			//=>	1134903170

We get the result back instantly. It works! You can use memoize with all sorts of
“idempotent” pure functions. by default, it works with any function that takes arguments
which can be transformed into JSON using JavaScript’s standard library function for this
purpose. If you have another strategy for turning the arguments into a string key, you can
supply it as a second parameter.

memoizing	recursive	functions
We deliberately picked a recursive function to memoize, because it demonstrates a pitfall
when combining decorators with named functional expressions. Consider this
implementation that uses a named functional expression:

1	var	fibonacci	=	function	fibonacci	(n)	{

2			if	(n	<	2)	{

3					return	n

4			}

5			else	{

6					return	fibonacci(n-2)	+	fibonacci(n-1)

7			}

8	}

If we try to memoize it, we don’t get the expected speedup:

1	var	fibonacci	=	memoized(function	fibonacci	(n)	{

2			if	(n	<	2)	{

3					return	n

4			}

5			else	{

6					return	fibonacci(n-2)	+	fibonacci(n-1)

7			}

8	});

That’s because the function bound to the name fibonacci in the outer environment has been
memoized, but the named functional expression binds the name fibonacci inside the
unmemoized function, so none of the recursive calls to fibonacci are ever memoized.
Therefore we must write:

1	var	fibonacci	=	memoized(function	(n)	{

2			if	(n	<	2)	{

3					return	n

4			}

5			else	{

6					return	fibonacci(n-2)	+	fibonacci(n-1)

7			}

8	});

If we need to prevent a rebinding from breaking the function, we’ll need to use the module
pattern.

getWith
getWith is a very simple function. It takes the name of an attribute and returns a function
that extracts the value of that attribute from an object:

1	function	getWith	(attr)	{

2			return	function	(object)	{	return	object[attr];	}

3	}

You can use it like this:

1	var	inventory	=	{

2			apples:	0,

3			oranges:	144,

4			eggs:	36

5	};

6	

7	getWith('oranges')(inventory)

8			//=>	144

This isn’t much of a recipe yet. But let’s combine it with mapWith:

1	var	inventories	=	[

2			{	apples:	0,	oranges:	144,	eggs:	36	},

3			{	apples:	240,	oranges:	54,	eggs:	12	},

4			{	apples:	24,	oranges:	12,	eggs:	42	}

5];

6	

7	mapWith(getWith('oranges'))(inventories)

8			//=>	[144,	54,	12]

That’s nicer than writing things out “longhand:”

1	mapWith(function	(inventory)	{	return	inventory.oranges	})(inventories)

2			//=>	[144,	54,	12]

getWith plays nicely with maybe as well. Consider a sparse array. You can use:

1	mapWith(maybe(getWith('oranges')))

To get the orange count from all the non-null inventories in a list.

what’s	in	a	name?
Why is this called getWith? Consider this function that is common in languages that have
functions and dictionaries but not methods:

1	function	get	(object,	attr)	{

2			return	object[attr];

3	};

You might ask, “Why use a function instead of just using []?” The answer is, we can
manipulate functions in ways that we can’t manipulate syntax. For example, do you
remember from flip that we can define mapWith from map?

1	var	mapWith	=	flip(map);

We can do the same thing with getWith, and that’s why it’s named in this fashion:

1	var	getWith	=	flip(get)

pluckWith
This pattern of combining mapWith and getWith is very frequent in JavaScript code. So
much so, that we can take it up another level:

1	function	pluckWith	(attr)	{

2			return	mapWith(getWith(attr))

3	}

Or even better:

1	var	pluckWith	=	compose(mapWith,	getWith);

And now we can write:

1	pluckWith('eggs')(inventories)

2			//=>	[36,	12,	42]

Libraries like Underscore provide pluck, the flipped version of pluckWith:

1	_.pluck(inventories,	'eggs')

2			//=>	[36,	12,	42]

Our recipe is terser when you want to name a function:

1	var	eggsByStore	=	pluckWith('eggs');

vs.

1	function	eggsByStore	(inventories)	{

2			return	_.pluck(inventories,	'eggs')

3	}

And of course, if we have pluck we can use flip to derive pluckWith:

1	var	pluckWith	=	flip(_.pluck);

Deep	Mapping
mapWith is an excellent tool, but from time to time you will find yourself working with
arrays that represent trees rather than lists. For example, here is a partial list of sales
extracted from a report of some kind. It’s grouped in some mysterious way, and we need
to operate on each item in the report.

	1	var	report	=	

	2			[[{	price:	1.99,	id:	1	},

	3					{	price:	4.99,	id:	2	},

	4					{	price:	7.99,	id:	3	},

	5					{	price:	1.99,	id:	4	},

	6					{	price:	2.99,	id:	5	},

	7					{	price:	6.99,	id:	6	}],

	8			[{	price:	5.99,	id:	21	},

	9					{	price:	1.99,	id:	22	},

10					{	price:	1.99,	id:	23	},

11					{	price:	1.99,	id:	24	},

http://underscorejs.org/

12					{	price:	5.99,	id:	25	}],

13	

14			//	...

15	

16			[{	price:	7.99,	id:	221	},

17					{	price:	4.99,	id:	222	},

18					{	price:	7.99,	id:	223	},

19					{	price:	10.99,	id:	224	},

20					{	price:	9.99,	id:	225	},

21					{	price:	9.99,	id:	226	}]];

We could nest some mapWiths, but we humans are tool users. If we can use a stick to
extract tasty ants from a hole to eat, we can automate working with arrays:

	1	function	deepMapWith	(fn)	{

	2			return	function	innerdeepMapWith	(tree)	{

	3					return	Array.prototype.map.call(tree,	function	(element)	{

	4							if	(Array.isArray(element))	{

	5									return	innerdeepMapWith(element);

	6							}

	7							else	return	fn(element);

	8					});

	9			};

10	};

And now we can use deepMapWith on a tree the way we use mapWith on a flat array:

	1	deepMapWith(getWith('price'))(report)

	2			//=>		[[1.99,

	3													4.99,

	4													7.99,

	5													1.99,

	6													2.99,

	7													6.99],

	8											[5.99,

	9													1.99,

10													1.99,

11													1.99,

12													5.99],

13													

14											//	...

15											

16											[7.99,

17													4.99,

18													7.99,

19													10.99,

20													9.99,

21													9.99]]

8.	 Finish	the	Cup:	Instances	and	Classes

Other languages call their objects “beans,” but serve extra-weak coffee in an attempt to
be all things to all people

As discussed in Rebinding and References and again in Encapsulating State, JavaScript
objects are very simple, yet the combination of objects, functions, and closures can create
powerful data structures. That being said, there are language features that cannot be
implemented with Plain Old JavaScript Objects, functions, and closures1.

One of them is inheritance. In JavaScript, inheritance provides a cleaner, simpler
mechanism for extending data structures, domain models, and anything else you
represent as a bundle of state and operations.

Prototypes	are	Simple,	it’s	the	Explanations	that	are	Hard	To
Understand
As you recall from our code for making objects extensible, we wrote a function that
returned a Plain Old JavaScript Object. The colloquial term for this kind of function is a
“Factory Function.”

Let’s strip a function down to the very bare essentials:

1	var	Ur	=	function	()	{};

This doesn’t look like a factory function: It doesn’t have an expression that yields a Plain
Old JavaScript Object when the function is applied. Yet, there is a way to make an object
out of it. Behold the power of the new keyword:

1	new	Ur()

2			//=>	{}

We got an object back! What can we find out about this object?

1	new	Ur()	===	new	Ur()

2			//=>	false

Every time we call new with a function and get an object back, we get a unique object. We
could call these “Objects created with the new keyword,” but this would be cumbersome.
So we’re going to call them instances. Instances of what? Instances of the function that
creates them. So given var i = new Ur(), we say that i is an instance of Ur.

For reasons that will be explained after we’ve discussed prototypes, we also say that Ur is
the constructor of i, and that Ur is a constructor function. Therefore, an instance is an
object created by using the new keyword on a constructor function, and that function is the
instance’s constructor.

prototypes
There’s more. Here’s something you may not know about functions:

1	Ur.prototype

2			//=>	{}

What’s this prototype? Let’s run our standard test:

1	(function	()	{}).prototype	===	(function	()	{}).prototype

2			//=>	false

Every function is initialized with its own unique prototype. What does it do? Let’s try
something:

1	Ur.prototype.language	=	'JavaScript';

2	

3	var	continent	=	new	Ur();

4			//=>	{}

5	continent.language

6			//=>	'JavaScript'

That’s very interesting! Instances seem to behave as if they had the same elements as
their constructor’s prototype. Let’s try a few things:

1	continent.language	=	'CoffeeScript';

2	continent

3			//=>	{language:	'CoffeeScript'}

4	continent.language

5			//=>	'CoffeeScript'

6	Ur.prototype.language

7			'JavaScript'

You can set elements of an instance, and they “override” the constructor’s prototype, but
they don’t actually change the constructor’s prototype. Let’s make another instance and
try something else.

1	var	another	=	new	Ur();

2			//=>	{}

3	another.language

4			//=>	'JavaScript'

New instances don’t acquire any changes made to other instances. Makes sense. And:

1	Ur.prototype.language	=	'Sumerian'

2	another.language

3			//=>	'Sumerian'

Even more interesting: Changing the constructor’s prototype changes the behaviour of all
of its instances. This strongly implies that there is a dynamic relationship between
instances and their constructors, rather than some kind of mechanism that makes objects
by copying.2

Speaking of prototypes, here’s something else that’s very interesting:

1	continent.constructor

2			//=>	[Function]

3			

4	continent.constructor	===	Ur

5			//=>	true

Every instance acquires a constructor element that is initialized to their constructor. This is
true even for objects we don’t create with new in our own code:

1	{}.constructor

2			//=>	[Function:	Object]

If that’s true, what about prototypes? Do they have constructors?

1	Ur.prototype.constructor

2			//=>	[Function]

3	Ur.prototype.constructor	===	Ur

4			//=>	true

Very interesting! We will take another look at the constructor element when we discuss class
extension.

revisiting	this	idea	of	queues
Let’s rewrite our Queue to use new and .prototype, using this and our extend helper from
Composition and Extension:

	1	var	Queue	=	function	()	{

	2			extend(this,	{

	3					array:	[],

	4					head:	0,

	5					tail:	-1

	6			})

	7	};

	8			

	9	extend(Queue.prototype,	{

10			pushTail:	function	(value)	{

11					return	this.array[this.tail	+=	1]	=	value

12			},

13			pullHead:	function	()	{

14					var	value;

15					

16					if	(!this.isEmpty())	{

17							value	=	this.array[this.head]

18							this.array[this.head]	=	void	0;

19							this.head	+=	1;

20							return	value

21					}

22			},

23			isEmpty:	function	()	{

24					return	this.tail	<	this.head

25			}						

26	})

You recall that when we first looked at this, we only covered the case where a function that
belongs to an object is invoked. Now we see another case: When a function is invoked by
the new operator, this is set to the new object being created. Thus, our code for Queue

initializes the queue.

You can see why this is so handy in JavaScript: We wouldn’t be able to define functions in
the prototype that worked on the instance if JavaScript didn’t give us an easy way to refer
to the instance itself.

objects	everywhere?
Now that you know about prototypes, it’s time to acknowledge something that even small
children know: Everything in JavaScript behaves like an object, everything in JavaScript
behaves like an instance of a function, and therefore everything in JavaScript behaves as
if it inherits some methods from its constructor’s prototype and/or has some elements of
its own.

For example:

	1	3.14159265.toPrecision(5)

	2			//=>	'3.1415'

	3			

	4	'FORTRAN,	SNOBOL,	LISP,	BASIC'.split(',	')

	5			//=>	['FORTRAN',

	6			#					'SNOBOL',

	7			#					'LISP',

	8			#					'BASIC']

	9			

10	['FORTRAN',

11			'SNOBOL',

12			'LISP',

13			'BASIC'].length

14	//=>	4

Functions themselves are instances, and they have methods. For example, every function
has a method call. call’s first argument is a context: When you invoke .call on a function, it
invoked the function, setting this to the context. It passes the remainder of the arguments
to the function. It seems like objects are everywhere in JavaScript!

impostors
You may have noticed that we use “weasel words” to describe how everything in
JavaScript behaves like an instance. Everything behaves as if it was created by a function
with a prototype.

The full explanation is this: As you know, JavaScript has “value types” like String, Number,
and Boolean. As noted in the first chapter, value types are also called primitives, and one
consequence of the way JavaScript implements primitives is that they aren’t objects.
Which means they can be identical to other values of the same type with the same
contents, but the consequence of certain design decisions is that value types don’t
actually have methods or constructors. They aren’t instances of some constructor.

So. Value types don’t have methods or constructors. And yet:

1	"Spence	Olham".split('	')

2			//=>	["Spence",	"Olham"]

Somehow, when we write "Spence Olham".split(' '), the string "Spence Olham" isn’t an instance, it
doesn’t have methods, but it does a damn fine job of impersonating an instance of a String

constructor. How does "Spence Olham" impersonate an instance?

JavaScript pulls some legerdemain. When you do something that treats a value like an
object, JavaScript checks to see whether the value actually is an object. If the value is
actually a primitive,3 JavaScript temporarily makes an object that is a kinda-sorta copy of
the primitive and that kinda-sorta copy has methods and you are temporarily fooled into
thinking that "Spence Olham" has a .split method.

These kinda-sorta copies are called String instances as opposed to String primitives. And
the instances have methods, while the primitives do not. How does JavaScript make an
instance out of a primitive? With new, of course. Let’s try it:

1	new	String("Spence	Olham")

2			//=>	"Spence	Olham"

The string instance looks just like our string primitive. But does it behave like a string
primitive? Not entirely:

1	new	String("Spence	Olham")	===	"Spence	Olham"

2			//=>	false

Aha! It’s an object with its own identity, unlike string primitives that behave as if they have

a canonical representation. If we didn’t care about their identity, that wouldn’t be a
problem. But if we carelessly used a string instance where we thought we had a string
primitive, we could run into a subtle bug:

1	if	(userName	===	"Spence	Olham")	{

2			getMarried();

3			goCamping()

4	}

That code is not going to work as we expect should we accidentally bind new String("Spence

Olham") to userName instead of the primitive "Spence Olham".

This basic issue that instances have unique identities but primitives with the same
contents have the same identities–is true of all primitive types, including numbers and
booleans: If you create an instance of anything with new, it gets its own identity.

There are more pitfalls to beware. Consider the truthiness of string, number and boolean
primitives:

1	''	?	'truthy'	:	'falsy'

2			//=>	'falsy'

3	0	?	'truthy'	:	'falsy'

4			//=>	'falsy'

5	false	?	'truthy'	:	'falsy'

6			//=>	'falsy'

Compare this to their corresponding instances:

1	new	String('')	?	'truthy'	:	'falsy'

2			//=>	'truthy'

3	new	Number(0)	?	'truthy'	:	'falsy'

4			//=>	'truthy'

5	new	Boolean(false)	?	'truthy'	:	'falsy'

6			//=>	'truthy'

Our notion of “truthiness” and “falsiness” is that all instances are truthy, even string,
number, and boolean instances corresponding to primitives that are falsy.

There is one sure cure for “JavaScript Impostor Syndrome.” Just as new PrimitiveType(...)

creates an instance that is an impostor of a primitive, PrimitiveType(...) creates an original,
canonicalized primitive from a primitive or an instance of a primitive object.

For example:

1	String(new	String("Spence	Olham"))	===	"Spence	Olham"

2			//=>	true

Getting clever, we can write this:

1	var	original	=	function	(unknown)	{

2			return	unknown.constructor(unknown)

3	}

4					

5	original(true)	===	true

6			//=>	true

7	original(new	Boolean(true))	===	true

8			//=>	true

Of course, original will not work for your own creations unless you take great care to
emulate the same behaviour. But it does work for strings, numbers, and booleans.

Binding	Functions	to	Contexts
Recall that in What Context Applies When We Call a Function?, we adjourned our look at
setting the context of a function with a look at a contextualize helper function:

	1	var	contextualize	=	function	(fn,	context)	{

	2			return	function	()	{

	3					return	fn.apply(context,	arguments)

	4			}

	5	},

	6	a	=	[1,2,3],

	7	accrete	=	contextualize(a.concat,	a);

	8					

	9	accrete([4,5])

10			//=>	[1,	2,	3,	4,	5]

How would this help us in a practical way? Consider building an event-driven application.
For example, an MVC application would bind certain views to update events when their
models change. The Backbone framework uses events just like this:

1	var	someView	=	...,

2					someModel	=	...;

3	

4	someModel.on('change',	function	()	{

http://backbonejs.org/

5			someView.render()

6	});

This tells someModel that when it invoked a change event, it should call the anonymous
function that in turn invoked someView’s .render method. Wouldn’t it be simpler to simply
write:

1	someModel.on('change',	someView.render);

It would, except that the implementation for .on and similar framework methods looks
something like this:

1	Model.prototype.on	=	function	(eventName,	callback)	{	...	callback()	...	}

Although someView.render() correctly sets the method’s context as someView, callback() will not.
What can we do without wrapping someView.render() in a function call as we did above?

binding	methods
Before enumerating approaches, let’s describe what we’re trying to do. We want to take a
method call and treat it as a function. Now, methods are functions in JavaScript, but as
we’ve learned from looking at contexts, method calls involve both invoking a function and
setting the context of the function call to be the receiver of the method call.

When we write something like:

1	var	unbound	=	someObject.someMethod;

We’re binding the name unbound to the method’s function, but we aren’t doing anything with
the identity of the receiver. In most programming languages, such methods are called
“unbound” methods because they aren’t associated with, or “bound” to the intended
receiver.

So what we’re really trying to do is get ahold of a bound method, a method that is
associated with a specific receiver. We saw an obvious way to do that above, to wrap the
method call in another function. Of course, we’re responsible for replicating the arity of the
method being bound. For example:

1	var	boundSetter	=	function	(value)	{

2			return	someObject.setSomeValue(value);

3	};

Now our bound method takes one argument, just like the function it calls. We can use a
bound method anywhere:

1	someDomField.on('update',	boundSetter);

This pattern is very handy, but it requires keeping track of these bound methods. One
thing we can do is bind the method “in place,” using the let pattern like this:

1	someObject.setSomeValue	=	(function	()	{

2			var	unboundMethod	=	someObject.setSomeValue;

3			

4			return	function	(value)	{

5					return	unboundMethod.call(someObject,	value);

6			}

7	})();

Now we know where to find it:

1	someDomField.on('update',	someObject.setSomeValue);

This is a very popular pattern, so much so that many frameworks provide helper functions
to make this easy. Underscore, for example, provides _.bind to return a bound copy of a
function and _.bindAll to bind methods in place:

1	//	bind	*all*	of	someObject's	methods	in	place

2	_.bindAll(someObject);	

3	

4	//	bind	setSomeValue	and	someMethod	in	place

5	_.bindAll(someObject,	'setSomeValue',	'someMethod');

There are two considerations to ponder. First, we may be converting an instance method
into an object method. Specifically, we’re creating an object method that is bound to the
object.

Most of the time, the only change this makes is that it uses slightly more memory (we’re
creating an extra function for each bound method in each object). But if you are a little
more dynamic and actually change methods in the prototype, your changes won’t
“override” the object methods that you created. You’d have to roll your own binding
method that refers to the prototype’s method dynamically or reorganize your code.

This is one of the realities of “meta-programming.” Each technique looks useful and
interesting in isolation, but when multiple techniques are used together, they can have

http://underscorejs.org/

unpredictable results. It’s not surprising, because most popular languages consider
classes and methods to be fairly global, and they handle dynamic changes through side-
effects. This is roughly equivalent to programming in 1970s-era BASIC by imperatively
changing global variables.

If you aren’t working with old JavaScript environments in non-current browsers, you
needn’t use a framework or roll your own binding functions: JavaScript has a .bind method
defined for functions:

1	someObject.someMethod	=	someObject.someMethod.bind(someObject);

.bind also does some currying for you, you can bind one or more arguments in addition to
the context. For example:

	1	AccountModel.prototype.getBalancePromise(forceRemote)	=	{

	2			//	if	forceRemote	is	true,	always	goes	to	the	remote

	3			//	database	for	the	most	real-time	value,	returns

	4			//	a	promise.

	5	};

	6	

	7	var	account	=	new	AccountModel(...);

	8	

	9	var	boundGetRemoteBalancePromise	=	account.

10			getBalancePromise.

11			bind(account,	true);

Very handy, and not just for binding contexts!

Getting the context right for methods is essential. The commonplace
terminology is that we want bound methods rather than unbound methods.
Current flavours of JavaScript provide a .bind method to help, and
frameworks like Underscore also provide helpers to make binding methods
easy.

Partial	Application,	Binding,	and	Currying
Now that we’ve seen how function contexts work, we can revisit the subject of partial
application. Recall our recipe for a generalized left partial application:

1	var	callLeft	=	variadic(function	(fn,	args)	{

2			return	variadic(function	(remainingArgs)	{

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Function/bind

3					return	fn.apply(this,	args.concat(remainingArgs))

4			})

5	})

Function.prototype.bind can sometimes be used to accomplish the same thing, but will be much
faster. For example, instead of:

1	function	add	(verb,	a,	b)	{	

2			return	"The	"	+	verb	+	"	of	"	+	a	+	'	and	'	+	b	+	'	is	'	+	(a	+	b)	

3	}

4	

5	var	sumFive	=	callLeft(add,	'sum',	5);

6	

7	sumFive(6)

8			//=>	'The	sum	of	5	and	6	is	11'

You can write:

1	var	totalSix	=	add.bind(null,	'total',	6);

2	

3	totalSix(5)

4			//=>	'The	total	of	6	and	5	is	11'

The catch is the first parameter to .bind: It sets the context. If you write functions that don’t
use the context, like our .add, You can use .bind to do left partial application. But if you want
to partially apply a method or other function where the context must be preserved, you
can’t use .bind. You can use the recipes given in JavaScript Allongé because they
preserve the context properly.

Typically, context matters when you want to perform partial application on methods. So
for an extremely simple example, we often use Array.prototype.slice to convert arguments to an
array. So instead of:

1	var	__slice	=	Array.prototype.slice;

2	

3	var	array	=	__slice.call(arguments,	0);

We could write:

1	var	__copy	=	callFirst(Array.prototype.slice,	0);

2	

3	var	array	=	__copy.call(arguments)

The other catch is that .bind only does left partial evaluation. If you want to do right partial
application, you’ll need callLast or callRight.

currying
The terms “partial application” and “currying” are closely related but not synonymous.
Currying is the act of taking a function that takes more than one argument and converting
it to an equivalent function taking one argument. How can such a function be equivalent?
It works provided that it returns a partially applied function.

Code is, as usual, much clearer than words. Recall:

1	function	add	(verb,	a,	b)	{	

2			return	"The	"	+	verb	+	"	of	"	+	a	+	'	and	'	+	b	+	'	is	'	+	(a	+	b)	

3	}

4	

5	add('sum',	5,	'6')

6			//=>	'The	sum	of	5	and	6	is	11'

Here is the curried version:

	1	function	addCurried	(verb)	{

	2			return	function	(a)	{

	3					return	function	(b)	{

	4							return	"The	"	+	verb	+	"	of	"	+	a	+	'	and	'	+	b	+	'	is	'	+	(a	+	b)	

	5					}

	6			}

	7	}

	8	

	9	addCurried('total')(6)(5)

10			//=>	'The	total	of	6	and	5	is	11'

Currying by hand would be an incredible effort, but its close relationship with partial
application means that if you have left partial application, you can derive currying. Or if
you have currying, you can derive left partial application. Let’s derive currying from callFirst.
Recall:

1	var	__slice	=	Array.prototype.slice;

2	

3	function	callFirst	(fn,	larg)	{

4			return	function	()	{

5					var	args	=	__slice.call(arguments,	0);

6					

7					return	fn.apply(this,	[larg].concat(args))

8			}

9	}

Here’s a function that curries any function with two arguments:

	1	function	curryTwo	(fn)	{

	2			return	function	(x)	{

	3					return	callFirst(fn,	x)

	4			}

	5	}

	6	

	7	function	add2	(a,	b)	{	return	a	+	b	}

	8	

	9	curryTwo(add2)(5)(6)

10			//=>	11

And from there we can curry a function with three arguments:

	1	function	curryThree	(fn)	{

	2			return	function	(x)	{

	3					return	curryTwo(callFirst(fn,	x))

	4			}

	5	}

	6	

	7	function	add3	(verb,	a,	b)	{	

	8			return	"The	"	+	verb	+	"	of	"	+	a	+	'	and	'	+	b	+	'	is	'	+	(a	+	b)	

	9	}

10	

11	curryThree(add3)('sum')(5)(6)

12			//=>	'The	sum	of	5	and	6	is	11'

We’ll develop a generalized curry function in the recipes. But to summarize the difference
between currying and partial application, currying is an operation that transforms a
function taking two or more arguments into a function that takes a single argument and
partially applies it to the function and then curries the rest of the arguments.

A	Class	By	Any	Other	Name
JavaScript has “classes,” for some definition of “class.” You’ve met them already, they’re
constructors that are designed to work with the new keyword and have behaviour in their
.prototype element. You can create one any time you like by:

1.	 Writing	the	constructor	so	that	it	performs	any	initialization	on	this,	and:

2.	 Putting	all	of	the	method	definitions	in	its	prototype.

Let’s see it again: Here’s a class of todo items:

	1	function	Todo	(name)	{

	2			this.name	=	name	||	'Untitled';

	3			this.done	=	false;

	4	};

	5	

	6	Todo.prototype.do	=	function	()	{

	7			this.done	=	true;

	8	};

	9	

10	Todo.prototype.undo	=	function	()	{

11			this.done	=	false;

12	};

You can mix other functionality into this class by extending the prototype with an object:

1	extend(Todo.prototype,	{

2			prioritize:	function	(priority)	{

3					this.priority	=	priority;

4			};

5	});

Naturally, that allows us to define mixins for other classes:

	1	var	ColourCoded	=	{

	2			setColourRGB:	function	(r,	g,	b)	{

	3					//	...

	4			},

	5			getColourRGB:	function	()	{

	6					//	...

	7			},

	8			setColourCSS:	function	(css)	{

	9					//	...

10			},

11			getColourCSS:	function	()	{

12					//	...

13			}

14	};

15	

16	extend(Todo.prototype,	ColourCoded);

This does exactly the same thing as declaring a “class,” defining a “method,” and adding a
“mixin.” How does it differ? It doesn’t use the words class, method, def(ine) or mixin. And
it has this prototype property that most other popular languages eschew. It also doesn’t deal

with inheritance, a deal-breaker for programmers who are attached to taxonomies.

For these reasons, many programmers choose to write their own library of functions to
mimic the semantics of other programming languages. This has happened so often that
most of the popular utility-belt frameworks like Backbone have some form of support for
defining or extending classes baked in.

Nevertheless, JavaScript right out of the box has everything you need for defining
classes, methods, mixins, and even inheritance (as we’ll see in Extending Classes with
Inheritance). If we choose to adopt a library with more streamlined syntax, it’s vital to
understand JavaScript’s semantics well enough to know what is happening “under the
hood” so that we can work directly with objects, functions, methods, and prototypes when
needed.

One note of caution: A few libraries, such as the vile creation YouAreDaChef,
manipulate JavaScript such that ordinary programming such as extending a
prototype either don’t work at all or break the library’s abstraction. Think long
and carefully before adopting such a library. The best libraries “Cut with
JavaScript’s grain.”

Object	Methods
An instance method is a function defined in the constructor’s prototype. Every instance
acquires this behaviour unless otherwise “overridden.” Instance methods usually have
some interaction with the instance, such as references to this or to other methods that
interact with the instance. A constructor method is a function belonging to the constructor
itself.

There is a third kind of method, one that any object (obviously including all instances) can
have. An object method is a function defined in the object itself. Like instance methods,
object methods usually have some interaction with the object, such as references to this or
to other methods that interact with the object.

Object methods are really easy to create with Plain Old JavaScript Objects, because
they’re the only kind of method you can use. Recall from This and That:

	1	QueueMaker	=	function	()	{

	2			return	{

	3					array:	[],	

	4					head:	0,	

	5					tail:	-1,

http://backbonejs.org/
https://github.com/raganwald/YouAreDaChef#you-are-da-chef

	6					pushTail:	function	(value)	{

	7							return	this.array[this.tail	+=	1]	=	value

	8					},

	9					pullHead:	function	()	{

10							var	value;

11							

12							if	(this.tail	>=	this.head)	{

13									value	=	this.array[this.head];

14									this.array[this.head]	=	void	0;

15									this.head	+=	1;

16									return	value

17							}

18					},

19					isEmpty:	function	()	{

20							return	this.tail	<	this.head

21					}

22			}

23	};

pushTail, pullHead, and isEmpty are object methods. Also, from encapsulation:

	1	var	stack	=	(function	()	{

	2			var	obj	=	{

	3					array:	[],

	4					index:	-1,

	5					push:	function	(value)	{

	6							return	obj.array[obj.index	+=	1]	=	value

	7					},

	8					pop:	function	()	{

	9							var	value	=	obj.array[obj.index];

10							obj.array[obj.index]	=	void	0;

11							if	(obj.index	>=	0)	{	

12									obj.index	-=	1	

13							}

14							return	value

15					},

16					isEmpty:	function	()	{

17							return	obj.index	<	0

18					}

19			};

20			

21			return	obj;

22	})();

Although they don’t refer to the object, push, pop, and isEmpty semantically interact with the
opaque data structure represented by the object, so they are object methods too.

object	methods	within	instances
Instances of constructors can have object methods as well. Typically, object methods are
added in the constructor. Here’s a gratuitous example, a widget model that has a read-
only id:

	1	var	WidgetModel	=	function	(id,	attrs)	{

	2			extend(this,	attrs	||	{});

	3			this.id	=	function	()	{	return	id	}

	4	}

	5	

	6	extend(WidgetModel.prototype,	{

	7			set:	function	(attr,	value)	{

	8					this[attr]	=	value;

	9					return	this;

10			},

11			get:	function	(attr)	{

12					return	this[attr]

13			}

14	});

set and get are instance methods, but id is an object method: Each object has its own id
closure, where id is bound to the id of the widget by the argument id in the constructor. The
advantage of this approach is that instances can have different object methods, or object
methods with their own closures as in this case. The disadvantage is that every object
has its own methods, which uses up much more memory than instance methods, which
are shared amongst all instances.

Object methods are defined within the object. So if you have several
different “instances” of the same object, there will be an object method for
each object. Object methods can be associated with any object, not just
those created with the new keyword. Instance methods apply to instances,
objects created with the new keyword. Instance methods are defined in a
prototype and are shared by all instances.

Extending	Classes	with	Inheritance
You recall from Composition and Extension that we extended a Plain Old JavaScript
Queue to create a Plain Old JavaScript Deque. But what if we have decided to use
JavaScript’s prototypes and the new keyword instead of Plain Old JavaScript Objects?
How do we extend a queue into a deque?

Here’s our Queue:

	1	var	Queue	=	function	()	{

	2			extend(this,	{

	3					array:	[],

	4					head:	0,

	5					tail:	-1

	6			})

	7	};

	8	

	9	extend(Queue.prototype,	{

10			pushTail:	function	(value)	{

11					return	this.array[this.tail	+=	1]	=	value

12			},

13			pullHead:	function	()	{

14					var	value;

15	

16					if	(!this.isEmpty())	{

17							value	=	this.array[this.head]

18							this.array[this.head]	=	void	0;

19							this.head	+=	1;

20							return	value

21					}

22			},

23			isEmpty:	function	()	{

24					return	this.tail	<	this.head

25			}

26	});

And here’s what our Deque would look like before we wire things together:

	1	var	Dequeue	=	function	()	{

	2			Queue.prototype.constructor.call(this)

	3	};

	4	

	5	Dequeue.INCREMENT	=	4;

	6	

	7	extend(Dequeue.prototype,	{

	8			size:	function	()	{

	9					return	this.tail	-	this.head	+	1

10			},

11			pullTail:	function	()	{

12					var	value;

13	

14					if	(!this.isEmpty())	{

15							value	=	this.array[this.tail];

16							this.array[this.tail]	=	void	0;

17							this.tail	-=	1;

18							return	value

19					}

20			},

21			pushHead:	function	(value)	{

22					var	i;

23	

24					if	(this.head	===	0)	{

25							for	(i	=	this.tail;	i	>=	this.head;	--i)	{

26									this.array[i	+	this.constructor.INCREMENT]	=	this.array[i]

27							}

28							this.tail	+=	this.constructor.INCREMENT;

29							this.head	+=	this.constructor.INCREMENT

30					}

31					this.array[this.head	-=	1]	=	value

32			}

33	});

We obviously want to do all of a Queue’s initialization, thus we called
Queue.prototype.constructor.call(this). But why not just call Queue.call(this)? As we’ll see
when we wire everything together, this ensures that we’re calling the correct
constructor even when Queue itself is wired to inherit from another constructor
function.

So what do we want from dequeues such that we can call all of a Queue’s methods as well
as a Dequeue’s? Should we copy everything from Queue.prototype into Deque.prototype, like
extend(Deque.prototype, Queue.prototype)? That would work, except for one thing: If we later
modified Queue, say by mixing in some new methods into its prototype, those wouldn’t be
picked up by Dequeue.

No, there’s a better idea. Prototypes are objects, right? Why must they be Plain Old
JavaScript Objects? Can’t a prototype be an instance?

Yes they can. Imagine that Deque.prototype was a proxy for an instance of Queue. It would, of
course, have all of a queue’s behaviour through Queue.prototype. We don’t want it to be an
actual instance, mind you. It probably doesn’t matter with a queue, but some of the things
we might work with might make things awkward if we make random instances. A
database connection comes to mind, we may not want to create one just for the
convenience of having access to its behaviour.

Here’s such a proxy:

1	var	QueueProxy	=	function	()	{}

2	

3	QueueProxy.prototype	=	Queue.prototype

Our QueueProxy isn’t actually a Queue, but its prototype is an alias of Queue.prototype. Thus, it can
pick up Queue’s behaviour. We want to use it for our Deque’s prototype. Let’s insert that
code in our class definition:

	1	var	Dequeue	=	function	()	{

	2			Queue.prototype.constructor.call(this)

	3	};

	4	

	5	Dequeue.INCREMENT	=	4;

	6	

	7	Dequeue.prototype	=	new	QueueProxy();

	8	

	9	extend(Dequeue.prototype,	{

10			size:	function	()	{

11					return	this.tail	-	this.head	+	1

12			},

13			pullTail:	function	()	{

14					var	value;

15	

16					if	(!this.isEmpty())	{

17							value	=	this.array[this.tail];

18							this.array[this.tail]	=	void	0;

19							this.tail	-=	1;

20							return	value

21					}

22			},

23			pushHead:	function	(value)	{

24					var	i;

25	

26					if	(this.head	===	0)	{

27							for	(i	=	this.tail;	i	>=	this.head;	--i)	{

28									this.array[i	+	this.constructor.INCREMENT]	=	this.array[i]

29							}

30							this.tail	+=	this.constructor.INCREMENT;

31							this.head	+=	this.constructor.INCREMENT

32					}

33					this.array[this.head	-=	1]	=	value

34			}

35	});

And it seems to work:

	1	d	=	new	Dequeue()

	2	d.pushTail('Hello')

	3	d.pushTail('JavaScript')

	4	d.pushTail('!')

	5	d.pullHead()

	6			//=>	'Hello'

	7	d.pullTail()

	8			//=>	'!'

	9	d.pullHead()

10			//=>	'JavaScript'

Wonderful!

getting	the	constructor	element	right
How about some of the other things we’ve come to expect from instances?

1	d.constructor	==	Dequeue

2			//=>	false

Oops! Messing around with Dequeue’s prototype broke this important equivalence.
Luckily for us, the constructor property is mutable for objects we create. So, let’s make a
small change to QueueProxy:

1	var	QueueProxy	=	function	()	{

2			this.constructor	=	Dequeue;

3	}

4	QueueProxy.prototype	=	Queue.prototype

Repeat. Now it works:

1	d.constructor	===	Dequeue

2			//=>	true

The QueueProxy function now sets the constructor for every instance of a QueueProxy (hopefully
just the one we need for the Dequeue class). It returns the object being created (it could
also return undefined and work. But if it carelessly returned something else, that would be
assigned to Dequeue’s prototype, which would break our code).

extracting	the	boilerplate
Let’s turn our mechanism into a function:

1	var	child	=	function	(parent,	child)	{

2			var	proxy	=	function	()	{

3					this.constructor	=	child

4			}

5			proxy.prototype	=	parent.prototype;

6			child.prototype	=	new	proxy();

7			return	child;

8	}

And use it in Dequeue:

	1	var	Dequeue	=	child(Queue,	function	()	{

	2			Queue.prototype.constructor.call(this)

	3	});

	4	

	5	Dequeue.INCREMENT	=	4;

	6	

	7	extend(Dequeue.prototype,	{

	8			size:	function	()	{

	9					return	this.tail	-	this.head	+	1

10			},

11			pullTail:	function	()	{

12					var	value;

13	

14					if	(!this.isEmpty())	{

15							value	=	this.array[this.tail];

16							this.array[this.tail]	=	void	0;

17							this.tail	-=	1;

18							return	value

19					}

20			},

21			pushHead:	function	(value)	{

22					var	i;

23	

24					if	(this.head	===	0)	{

25							for	(i	=	this.tail;	i	>=	this.head;	--i)	{

26									this.array[i	+	this.constructor.INCREMENT]	=	this.array[i]

27							}

28							this.tail	+=	this.constructor.INCREMENT;

29							this.head	+=	this.constructor.INCREMENT

30					}

31					this.array[this.head	-=	1]	=	value

32			}

33	});

future	directions

Some folks just love to build their own mechanisms. When all goes well, they become
famous as framework creators and open source thought leaders. When all goes badly
they create in-house proprietary one-offs that blur the line between application and
framework with abstractions everywhere.

If you’re keen on learning, you can work on improving the above code to handle extending
constructor properties, automatically calling the parent constructor function, and so forth.
Or you can decide that doing it by hand isn’t that hard so why bother putting a thin
wrapper around it?

It’s up to you, while JavaScript isn’t the tersest language, it isn’t so baroque that building
inheritance ontologies requires hundreds of lines of inscrutable code.

Summary

Instances	and	Classes
The	new	keyword	turns	any	function	into	a	constructor	for	creating	instances.
All	functions	have	a	prototype	element.
Instances	behave	as	if	the	elements	of	their	constructor’s	prototype	are	their
elements.
Instances	can	override	their	constructor’s	prototype	without	altering	it.
The	relationship	between	instances	and	their	constructor’s	prototype	is
dynamic.
this	works	seamlessly	with	methods	defined	in	prototypes.
Everything	behaves	like	an	object.
JavaScript	can	convert	primitives	into	instances	and	back	into	primitives.
Object	methods	are	typically	created	in	the	constructor	and	are	private	to	each
object.
Prototypes	can	be	chained	to	allow	extension	of	instances.

And most importantly:

JavaScript	has	classes	and	methods,	they	just	aren’t	formally	called	classes	and
methods	in	the	language’s	syntax.

Since	the	JavaScript	that	we	have	presented	so	far	is	computationally	universal,	it	is	possible	to
perform	any	calculation	with	its	existing	feature	set,	including	emulating	any	other	programming
language.	Therefore,	it	is	not	theoretically	necessary	to	have	any	further	language	features;	If	we
need	macros,	continuations,	generic	functions,	static	typing,	or	anything	else,	we	can	greenspun
them	ourselves.	In	practice,	however,	this	is	buggy,	inefficient,	and	presents	our	fellow	developers
with	serious	challenges	understanding	our	code.↩

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Greenspun%27s_Tenth_Rule

For	many	programmers,	the	distinction	between	a	dynamic	relationship	and	a	copying	mechanism
is	too	fine	to	worry	about.	However,	it	makes	many	dynamic	program	modifications	possible.↩

Recall	that	Strings,	Numbers,	Booleans	and	so	forth	are	value	types	and	primitives.	We’re	calling
them	primitives	here.↩

9.	 Recipes	with	Instances	and	Classes

These recipes are being roasted to perfection.

Disclaimer
The recipes are written for practicality, and their implementation may introduce JavaScript
features that haven’t been discussed in the text to this point, such as methods and/or
prototypes. The overall use of each recipe will fit within the spirit of the language
discussed so far, even if the implementations may not.

Currying
We discussed currying in Closures and Partial Application, Binding, and Currying. Here is
the recipe for a higher-order function that curries its argument function. It works with any
function that has a fixed length, and it lets you provide as many arguments as you like.

	1	var	__slice	=	Array.prototype.slice;

	2	

	3	function	curry	(fn)	{

	4			var	arity	=	fn.length;

	5			

	6			return	given([]);

	7			

	8			function	given	(argsSoFar)	{

	9					return	function	helper	()	{

10							var	updatedArgsSoFar	=	argsSoFar.concat(__slice.call(arguments,	0));

11							

12							if	(updatedArgsSoFar.length	>=	arity)	{

13									return	fn.apply(this,	updatedArgsSoFar)

14							}

15							else	return	given(updatedArgsSoFar)

16					}

17			}

18			

19	}

20	

21	function	sumOfFour	(a,	b,	c,	d)	{	return	a	+	b	+	c	+	d	}

22	

23	var	curried	=	curry(sumOfFour);

24	

25	curried(1)(2)(3)(4)

26			//=>	10

27	

28	curried(1,2)(3,4)

29			//=>	10

30	

31	curried(1,2,3,4)

32			//=>	10

We saw earlier that you can derive a curry function from a partial application function. The
reverse is also true:

1	function	callLeft	(fn)	{

2			return	curry(fn).apply(null,	__slice.call(arguments,	1))

3	}

4	

5	callLeft(sumOfFour,	1)(2,	3,	4)

6			//=>	10

7	

8	callLeft(sumOfFour,	1,	2)(3,	4)

9			//=>	10

(This is a little different from the previous left partial functions in that it returns a curried
function).

Bound
Earlier, we saw a recipe for getWith that plays nicely with properties:

1	function	get	(attr)	{

2			return	function	(obj)	{

3					return	obj[attr]

4			}

5	}

Simple and useful. But now that we’ve spent some time looking at objects with methods
we can see that get (and pluck) has a failure mode. Specifically, it’s not very useful if we
ever want to get a method, since we’ll lose the context. Consider some hypothetical class:

	1	function	InventoryRecord	(apples,	oranges,	eggs)	{

	2			this.record	=	{

	3					apples:	apples,

	4					oranges:	oranges,

	5					eggs:	eggs

	6			}

	7	}

	8	

	9	InventoryRecord.prototype.apples	=	function	apples	()	{

10			return	this.record.apples

11	}

12	

13	InventoryRecord.prototype.oranges	=	function	oranges	()	{

14			return	this.record.oranges

15	}

16	

17	InventoryRecord.prototype.eggs	=	function	eggs	()	{

18			return	this.record.eggs

19	}

20	

21	var	inventories	=	[

22			new	InventoryRecord(0,	144,	36),

23			new	InventoryRecord(240,	54,	12),

24			new	InventoryRecord(24,	12,	42)

25];

Now how do we get all the egg counts?

1	mapWith(getWith('eggs'))(inventories)

2			//=>	[[Function:	eggs],

3			//					[Function:	eggs],

4			//					[Function:	eggs]]

And if we try applying those functions…

1	mapWith(getWith('eggs'))(inventories).map(

2			function	(unboundmethod)	{	

3					return	unboundmethod()	

4			}

5)

6			//=>	TypeError:	Cannot	read	property	'eggs'	of	undefined

Of course, these are unbound methods we’re “getting” from each object. Here’s a new
version of get that plays nicely with methods. It uses variadic:

	1	var	bound	=	variadic(function	(messageName,	args)	{

	2			

	3			if	(args.length	===	0)	{

	4					return	function	(instance)	{

	5							return	instance[messageName].bind(instance)

	6					}

	7			}

	8			else	{

	9					return	function	(instance)	{

10							return	Function.prototype.bind.apply(

11									instance[messageName],	[instance].concat(args)

12)

13					}

14			}

15	});

16	

17	mapWith(bound('eggs'))(inventories).map(

18			function	(boundmethod)	{	

19					return	boundmethod()	

20			}

21)

22			//=>	[36,	12,	42]

bound is the recipe for getting a bound method from an object by name. It has other uses,
such as callbacks. bound('render')(aView) is equivalent to aView.render.bind(aView). There’s an
option to add a variable number of additional arguments, handled by:

1	return	function	(instance)	{

2			return	Function.prototype.bind.apply(

3					instance[messageName],	[instance].concat(args)

4)

5	}

The exact behaviour will be covered in Binding Functions to Contexts. You can use it like
this to add arguments to the bound function to be evaluated:

	1	InventoryRecord.prototype.add	=	function	(item,	amount)	{

	2			this.record[item]	||	(this.record[item]	=	0);

	3			this.record[item]	+=	amount;

	4			return	this;

	5	}

	6	

	7	mapWith(bound('add',	'eggs',	12))(inventories).map(

	8			function	(boundmethod)	{	

	9					return	boundmethod()	

10			}

11)

12			//=>	[{	record:	

13			//							{	apples:	0,

14			//									oranges:	144,

15			//									eggs:	48	}	},

16			//					{	record:	

17			//							{	apples:	240,

18			//									oranges:	54,

19			//									eggs:	24	}	},

20			//					{	record:	

21			//							{	apples:	24,

22			//									oranges:	12,

23			//									eggs:	54	}	}]

Unbinding
One of the specifications for Function.prototype.bind is that it creates a binding that cannot be
overridden. In other words:

	1	function	myName	()	{	return	this.name	}

	2	

	3	var	harpo			=	{	name:	'Harpo'	},

	4					chico			=	{	name:	'Chico'	},

	5					groucho	=	{	name:	'Groucho'	};

	6					

	7	var	fh	=	myName.bind(harpo);

	8	fh()

	9			//=>	'Harpo'

10	

11	var	fc	=	myName.bind(chico);

12	fc()

13			//=>	'Chico'

This looks great. But what happens if we attempt to re-bind a bound function, either with
bind or .call?

1	var	fhg	=	fh.bind(groucho);

2	fhg()

3			//=>	'Harpo'

4			

5	fc.call(groucho)

6			//=>	'Chico'

7			

8	fh.apply(groucho,	[])

9			//=>	'Harpo'

Bzzt! You cannot override the context of a function that has already been bound, even if
you’re creating a new function with .bind. You also don’t want to roll your own bind function
that allows rebinding, lest you be bitten by someone else’s code that expects that a bound
function cannot be rebound. (One such case is where bound functions–such as
callbacks–are stored in an array. Evaluating callbacks[index]() will override the bound context
with the array unless the context cannot be overridden.)1

the	recipe
Our version of bind memoizes the original function so that you can later call unbind to
restore it for rebinding.

	1	var	unbind	=	function	unbind	(fn)	{

	2			return	fn.unbound	?	unbind(fn.unbound())	:	fn

	3	};

	4				

	5	function	bind	(fn,	context,	force)	{

	6			var	unbound,	bound;

	7			

	8			if	(force)	{

	9					fn	=	unbind(fn)

10			}

11			bound	=	function	()	{

12					return	fn.apply(context,	arguments)

13			};

14			bound.unbound	=	function	()	{

15					return	fn;

16			};

17			

18			return	bound;

19	}

20	

21	function	myName	()	{	return	this.name	}

22	

23	var	harpo			=	{	name:	'Harpo'	},

24					chico			=	{	name:	'Chico'	},

25					groucho	=	{	name:	'Groucho'	};

26					

27	var	fh	=	bind(myName,	harpo);

28	fh()

29			//=>	'Harpo'

30	

31	var	fc	=	bind(myName,	chico);

32	fc()

33			//=>	'Chico'

34	

35	var	fhg	=	bind(fh,	groucho);

36	fhg()

37			//=>	'Harpo'

38	

39	var	fhug	=	bind(fh,	groucho,	true);

40	fhug()

41			//=>	'Groucho'

42	

43	var	fhug2	=	bind(unbind(fh),	groucho);

44	fhug()

45			//=>	'Groucho'

46			

47	fc.unbound().call(groucho)

48			//=>	'Groucho'

49			

50	unbind(fh).apply(groucho,	[])

51			//=>	'Groucho'

Send
Previously, we saw that the recipe bound can be used to get a bound method from an
instance. Unfortunately, invoking such methods is a little messy:

1	mapWith(bound('eggs'))(inventories).map(

2			function	(boundmethod)	{	

3					return	boundmethod()	

4			}

5)

6			//=>	[36,	12,	42]

As we noted, it’s ugly to write

1	function	(boundmethod)	{	

2			return	boundmethod()	

3	}

So instead, we write a new recipe:

	1	var	send	=	variadic(function	(args)	{

	2			var	fn	=	bound.apply(this,	args);

	3			

	4			return	function	(instance)	{

	5					return	fn(instance)();

	6			}

	7	})

	8	

	9	mapWith(send('apples'))(inventories)

10			//=>	[0,	240,	24]

send('apples') works very much like &:apples in the Ruby programming language. You may
ask, why retain bound? Well, sometimes we want the function but don’t want to evaluate it
immediately, such as when creating callbacks. bound does that well.

Here’s a robust version that doesn’t rely on bound:

1	var	send	=	variadic(function	(methodName,	leftArguments)	{

2			return	variadic(function	(receiver,	rightArguments)	{

3					return	receiver[methodName].apply(receiver,	leftArguments.concat(rightArgume\

4	nts))

5			})

6	});

Invoke
Send is useful when invoking a function that’s a member of an object (or of an instance’s
prototype). But we sometimes want to invoke a function that is designed to be executed
within an object’s context. This happens most often when we want to “borrow” a method

from one “class” and use it on another object.

It’s not an unprecedented use case. The Ruby programming language has a handy
feature called instance_exec. It lets you execute an arbitrary block of code in the context
of any object. Does this sound familiar? JavaScript has this exact feature, we just call it
.apply (or .call as the case may be). We can execute any function in the context of any
arbitrary object.

The only trouble with .apply is that being a method, it doesn’t compose nicely with other
functions like combinators. So, we create a function that allows us to use it as a
combinator:

1	var	__slice	=	Array.prototype.slice;

2	

3	function	invoke	(fn)	{

4			var	args	=	__slice.call(arguments,	1);

5			

6			return	function	(instance)	{

7					return	fn.apply(instance,	args)

8			}

9	}

For example, let’s say someone else’s code gives you an array of objects that are in part,
but not entirely like arrays. Something like:

1	var	data	=	[

2			{	0:	'zero',	

3					1:	'one',	

4					2:	'two',	

5					foo:	'foo',	

6					length:	3	},

7			//	...

8];

We can use the pattern from Partial Application, Binding, and Currying to create a
context-dependent copy function:

1	var	__copy	=	callFirst(Array.prototype.slice,	0);

And now we can compose mapWith with invoke to convert the data to arrays:

1	mapWith(invoke(__copy))(data)

http://www.ruby-doc.org/core-1.8.7/Object.html#method-i-instance_exec

2			//=>	[

3			//					['zero',	'one',	'two'],

4			//					//	...

5			//]

invoke is useful when you have the function and are looking for the instance. It can be
written “the other way around,” for when you have the instance and are looking for the
function:

1	function	instanceEval	(instance)	{

2			return	function	(fn)	{

3					var	args	=	__slice.call(arguments,	1);

4					

5					return	fn.apply(instance,	args)

6			}

7	}

8	

9	var	args	=	instanceEval(arguments)(__slice,	0);

Fluent
Object and instance methods can be bifurcated into two classes: Those that query
something, and those that update something. Most design philosophies arrange things
such that update methods return the value being updated. For example:

	1	function	Cake	()	{}

	2	

	3	extend(Cake.prototype,	{

	4			setFlavour:	function	(flavour)	{	

	5					return	this.flavour	=	flavour	

	6			},

	7			setLayers:	function	(layers)	{	

	8					return	this.layers	=	layers	

	9			},

10			bake:	function	()	{

11					//	do	some	baking

12			}

13	});

14	

15	var	cake	=	new	Cake();

16	cake.setFlavour('chocolate');

17	cake.setLayers(3);

18	cake.bake();

Having methods like setFlavour return the value being set mimics the behaviour of

assignment, where cake.flavour = 'chocolate' is an expression that in addition to setting a
property also evaluates to the value 'chocolate'.

The fluent style presumes that most of the time when you perform an update you are
more interested in doing other things with the receiver than the values being passed as
argument(s), so the rule is to return the receiver unless the method is a query:

	1	function	Cake	()	{}

	2	

	3	extend(Cake.prototype,	{

	4			setFlavour:	function	(flavour)	{	

	5					this.flavour	=	flavour;

	6					return	this

	7			},

	8			setLayers:	function	(layers)	{	

	9					this.layers	=	layers;

10					return	this

11			},

12			bake:	function	()	{

13					//	do	some	baking

14					return	this

15			}

16	});

The code to work with cakes is now easier to read and less repetitive:

1	var	cake	=	new	Cake().

2			setFlavour('chocolate').

3			setLayers(3).

4			bake();

For one-liners like setting a property, this is fine. But some functions are longer, and we
want to signal the intent of the method at the top, not buried at the bottom. Normally this is
done in the method’s name, but fluent interfaces are rarely written to include methods like
setLayersAndReturnThis.

The fluent method decorator solves this problem:

1	function	fluent	(methodBody)	{

2			return	function	()	{

3					methodBody.apply(this,	arguments);

4					return	this;

5			}

6	}

https://en.wikipedia.org/wiki/Fluent_interface

Now you can write methods like this:

1	Cake.prototype.bake	=	fluent(function	()	{

2			//	do	some	baking

3			//	using	many	lines	of	code

4			//	and	possibly	multiple	returns

5	});

It’s obvious at a glance that this method is “fluent.”

Once	Again
As we noted when we saw the recipe for once, you do have to be careful that you are
calling the function once returns multiple times. If you keep calling once, you’ll get a new
function that executes once, so you’ll keep calling your function:

1	once(function	()	{

2			return	'sure,	why	not?'

3	})()

4			//=>	'sure,	why	not?'

5	

6	once(function	()	{

7			return	'sure,	why	not?'

8	})()

9			//=>	'sure,	why	not?'

This is expected, but sometimes not what we want. Instead of the simple implementation,
we can use a named once:

	1	function	once	(fn)	{

	2			var	done	=	false,

	3							testAndSet;

	4							

	5			if	(!!fn.name)	{

	6					testAndSet	=	function	()	{

	7							this["__once__"]	||	(this["__once__"]	=	{})

	8							if	(this["__once__"][fn.name])	return	true;

	9							this["__once__"][fn.name]	=	true;

10							return	false

11					}

12			}

13			else		{

14					testAndSet	=	function	(fn)	{

15							if	(done)	return	true;

16							done	=	true;

17							return	false

18					}

19			}

20			

21			return	function	()	{

22					return	testAndSet.call(this)	?	void	0	:	fn.apply(this,	arguments)

23			}

24	}

If you call this with just a function, it behaves exactly like our first recipe. But if you supply
a named function, you get a different behaviour:

1	once(function	askedOnDate	()	{

2			return	'sure,	why	not?'

3	})()

4			//=>	'sure,	why	not?'		

5					

6	once(function	askedOnDate	()	{

7			return	'sure,	why	not?'

8	})()

9			//=>	undefined

The named once adds a property, __once__, to the context where the function is called and
uses it to keep track of which named functions have and haven’t been run. One very
powerful use is for defining object methods that should only be evaluated once, such as
an initialization method. Normally this is done in the constructor, but you might write a
“fluent” object that lets you call various setters:

	1	function	Widget	()	{};

	2	

	3	Widget.prototype.setVolume	=	function	setVolume	(volume)	{

	4			this.volume	=	volume;

	5			return	this;

	6	}

	7	

	8	Widget.prototype.setDensity	=	function	setDensity	(density)	{

	9			this.density	=	density;

10			return	this;

11	}

12	

13	Widget.prototype.setLength	=	function	setLength	(length)	{

14			this.length	=	length;

15			return	this;

16	}

17	

18	Widget.prototype.initialize	=	once(function	initialize()	{

19			//	do	some	initialization

20			return	this;

21	});

22	

23	var	w	=	new	Widget()

24			.setVolume(...)

25			.setDensity(...)

26			.setLength(...)

27			.initialize();

If you later call w.initialize(), it won’t be initialized again. You need a named once, because an
ordinary once would be called once for every instance sharing the same prototype,
whereas the named once will keep track of whether it has been run separately for each
instance.

Caveat: Every instance will have a __once__ property. If you later write code that iterates
over every property, you’ll have to take care not to interact with it.

Isnotlupus	on	Reddit	suggested	this	line	of	thinking	against	“weak	binding”	functions.↩

http://www.reddit.com/r/javascript/comments/15ix7s/weak_binding_in_javascript/c7n10yd

10.	 Sequence

Saltspring Island Roasting Facility

Throughout the book, we’ve looked at how functions work, and more importantly, the
many ways they can be decomposed into smaller parts and recombined in different ways.
In this chapter. we will step back and look at a larger pattern, the use of sequence to control
the processing of information.

Introduction:	Compose	and	Pipeline
In Combinators and Function Decorators, we saw the function compose:

1	function	compose	(a,	b)	{

2			return	function	(c)	{

3					return	a(b(c))

4			}

5	}

As we saw before, given:

1	function	addOne	(number)	{

2			return	number	+	1

3	}

4	

5	function	double	(number)	{

6			return	number	*	2

7	}

Instead of:

1	function	doubleOfAddOne	(number)	{

2			return	double(addOne(number))

3	}

We could write:

1	var	doubleOfAddOne	=	compose(double,	addOne);

the	semantics	of	compose
With compose, we’re usually making a new function. Although it works perfectly well, we
don’t need to write things like compose(double, addOne)(3) inline to get the result 8. It’s easier
and clearer to write double(addOne(3)).

On the other hand, when working with something like method decorators, it can help to
write:

	1	var	setter	=	compose(fluent,	maybe);

	2	

	3	//	...

	4	

	5	SomeClass.prototype.setUser	=	setter(function	(user)	{

	6			this.user	=	user;

	7	});

	8	

	9	SomeClass.prototype.setPrivileges	=	setter(function	(privileges)	{

10			this.privileges	=	privileges;

11	});

This makes it clear that setter adds the behaviour of both fluent and maybe to each method it
decorates, and it’s simpler to read var setter = compose(fluent, maybe); than:

1	function	setter	(fn)	{

2			return	fluent(maybe(fn));

3	}

The take-away is that compose is helpful when we are defining a new function that

combines the effects of existing functions.

pipeline
compose is extremely handy, but one thing it doesn’t communicate well is the order on
operations. compose is written that way because it matches the way explicitly composing
functions works in JavaScript and most other languages: When you write a(b(…)), a
happens after b.

Sometimes it makes more sense to compose functions in data flow order, as in “The
value flows through a and then through b.” For this, we can use the pipeline function:

1	var	pipeline	=	flip(compose);

2	

3	var	setter	=	pipeline(addOne,	double);

Comparing pipeline to compose, pipeline says “add one to the number and then double it.”
Compose says, “double the result of adding one to the number.” Both do the same job,
but communicate their intention in opposite ways.

Saltspring Island Roasting Facility

callbacks
pipeline and compose both work with functions that take an argument and return a value. In
our next section, we’ll discuss pipelining functions that invoke a callback rather than

returning a value.

11.	 New	Ideas

The delight of coffee is that it transports you to another world

(this bonus chapter is a work-in-progress)

How	Prototypes	and	Constructors	differ	from	Classes
In the previous section, we said that JavaScript has “classes” for some definition of the
word “class,” and we showed how JavaScript provides many of the features found in other
“object-oriented languages.” For those who want a fuller explanation, this section goes
into more detail about how JavaScript’s “prototypes” differ from the classes found in a
language like Ruby. It is not necessary to read this section to understand programming in
JavaScript, but it can be helpful when discussing JavaScript with programmers who are
more comfortable talking about classes.

Although each “object-oriented” programming language has its own particular set of
semantics, the majority in popular use have “classes.” A class is an entity responsible for
creating objects and defining the behaviour of objects. Classes may be objects in their
own right, but if they are, they’re different from other types of objects. For example, the
String class in Ruby is not itself a string, it’s an object whose class is Class. All objects in a
“classical” system have a class, and their class is a “class.”

That sounds tautological, until we look at JavaScript. But let’s start with a quick review of
a popular classist language, Ruby.

ruby
In Ruby, classes are objects, but they’re special objects. For example, here are some of
the methods associated with the Ruby class String:

	1	String.methods

	2			#=>	[:try_convert,	:allocate,	:new,	:superclass,	:freeze,	:===,	:==,

	3								:<=>,	:<,	:<=,	:>,	:>=,	:to_s,	:included_modules,	:include?,	:name,	

	4								:ancestors,	:instance_methods,	:public_instance_methods,	

	5								:protected_instance_methods,	:private_instance_methods,	:constants,	

	6								:const_get,	:const_set,	:const_defined?,	:const_missing,	

	7								:class_variables,	:remove_class_variable,	:class_variable_get,	

	8								:class_variable_set,	:class_variable_defined?,	:public_constant,	

	9								:private_constant,	:module_exec,	:class_exec,	:module_eval,	:class_eval,	

10								:method_defined?,	:public_method_defined?,	:private_method_defined?,	

11								:protected_method_defined?,	:public_class_method,	:private_class_method,	

12								#	...

13								:!=,	:instance_eval,	:instance_exec,	:__send__,	:__id__]	

And here are some of the methods associated with an instance of a string:

	1	String.new.methods

	2			#=>	[:<=>,	:==,	:===,	:eql?,	:hash,	:casecmp,	:+,	:*,	:%,	:[],

	3								:[]=,	:insert,	:length,	:size,	:bytesize,	:empty?,	:=~,

	4								:match,	:succ,	:succ!,	:next,	:next!,	:upto,	:index,	:rindex,

	5								:replace,	:clear,	:chr,	:getbyte,	:setbyte,	:byteslice,

	6								:to_i,	:to_f,	:to_s,	:to_str,	:inspect,	:dump,	:upcase,

	7								:downcase,	:capitalize,	:swapcase,	:upcase!,	:downcase!,

	8								:capitalize!,	:swapcase!,	:hex,	:oct,	:split,	:lines,	:bytes,

	9								:chars,	:codepoints,	:reverse,	:reverse!,	:concat,	:<<,

10								:prepend,	:crypt,	:intern,	:to_sym,	:ord,	:include?,

11								:start_with?,	:end_with?,	:scan,	:ljust,	:rjust,	:center,

12								#	...

13								:instance_eval,	:instance_exec,	:__send__,	:__id__]

As you can see, a “class” in Ruby is very different from an “instance of that class.” And
the methods of a class are very different from the methods of an instance of that class.

Here’s how you define a Queue in Ruby:

	1	class	Queue

	2			def	initialize

	3					@array,	@head,	@tail	=	[],	0,	-1

	4			end

	5			

	6			def	pushTail	value

	7					@array[@tail	+=	1]	=	value

	8			end

	9			

10			def	pullHead

11					if	!@isEmpty

12							@array[@head]).tap	{	|value|

13									@array[@head]	=	null

14									@head	+=	1

15							}

16					end

17			end

18			

19			def	isEmpty

20					!!(@tail	<	@head)

21			end

22	end

There is special syntax for defining a class, and special syntax for defining the behaviour
of instances. There are different ways of defining the way new instances are created in
classist languages. Ruby uses a “magic method” called initialize. Now let’s look at
JavaScript.

javascript	has	constructors	and	prototypes
JavaScript objects don’t have a formal class, and thus there’s no special syntax for
defining how to create an instance or define its behaviour.

JavaScript instances are created with a constructor. The constructor of an instance is a
function that was invoked with the new operator. In JavaScript, any function can be a
constructor, even if it doesn’t look like one:

	1	function	square	(n)	{	return	n	*	n;	}

	2			//=>	undefined

	3	square(2)

	4			//=>	4

	5	square(2).constructor

	6			//=>	[Function:	Number]

	7	new	square(2)

	8			//=>	{}

	9	new	square(2).constructor

10			//=>	[Function:	square]

As you can see, the square function will act as a constructor if you call it with new. There is
no special kind of thing that constructs new objects, every function is (potentially) a
constructor.

That’s different from a true classical language, where the class is a special kind of object
that creates new instances.

How does JavaScript define the behaviour of instances? JavaScript doesn’t have a
special syntax or special kind of object for that, it has “prototypes.” Prototypes are objects,
but unlike a classical system, there are no special methods or properties associated with
a prototype. Any object can be a prototype, even an empty object. In fact, that’s exactly
what is associated with a constructor by default:

1	function	Nullo	()	{};

2	Nullo.prototype

3			//=>	{}

There’s absolutely nothing special about a prototype object. No special class methods, no
special constructor of its own, nothing. Let’s look at a simple Queue in JavaScript:

	1	var	Queue	=	function	()	{

	2			this.array	=	[];

	3			this.head	=	0;

	4			this.tail	=	-1;

	5	};

	6			

	7	Queue.prototype.pushTail	=	function	(value)	{

	8			return	this.array[this.tail	+=	1]	=	value;

	9	};

10	Queue.prototype.pullHead	=	function	()	{

11			var	value;

12			

13			if	(!this.isEmpty())	{

14					value	=	this.array[this.head];

15					this.array[this.head]	=	void	0;

16					this.head	+=	1;

17					return	value;

18			}

19	};

20	Queue.prototype.isEmpty	=	function	()	{

21			return	this.tail	<	this.head;

22	};

23	

24	Queue.prototype

25			//=>		{	pushTail:	[Function],

26			//						pullHead:	[Function],

27			//						isEmpty:	[Function]	}

The first way a prototype in JavaScript is different from a class in Ruby is that the

prototype is an ordinary object with exactly the same properties that we expect to find in
an instance: Methods pushTail, pullHead, and isEmpty.

The second way is that any object can be a prototype. It can have functions (which act
like methods), it can have other values (like numbers, booleans, objects, or strings). It can
be an object you’re using for something else: An account, a view, a DOM object if you’re
in the browser, anything.

“Classes” are objects in most “classical” languages, but they are a special kind of object.
In JavaScript, prototypes are not a special kind of object, they’re just objects.

summary	of	the	difference	between	classes	and	prototypes
A class in a formal classist language can be an object, but it’s a special kind of object with
special properties and methods. It is responsible for creating new instances and for
defining the behaviour of instances.

Instance behaviour in a classist language is defined with special syntax. If changes are
allowed dynamically, they are done with special syntax and/or special methods invoked
on the class.

JavaScript splits the responsibility for instances into a constructor and a prototype. A
constructor in JavaScript can be any function. Constructors are responsible for creating
new instances.

A prototype in JavaScript can be any object. Prototypes are responsible for defining the
behaviour of instances. prototypes don’t have special methods or properties.

Instance behaviour in JavaScript is defined by modifying the prototype directly, e.g. by
adding functions to it as properties. There is no special syntax for defining a class or
modifying a class.

so	why	does	this	book	say	that	javascript	has	“classes”	for	some
definition	of	“class?”
Because, if:

1.	 You	use	a	function	as	a	constructor,	and;

2.	 You	use	a	prototype	for	defining	instance	methods,	and;

3.	 The	prototype	is	used	strictly	for	defining	the	instance	methods	and	nothing	else;

Then:

You will have something that works just like a simple class-based system, with the

constructor function and its prototype acting as the “class.”

But if you want more, you have a flexible system that does allow you to do much much
more. It’s up to you.

New-Agnostic	Constructors
JavaScript is inflexible about certain things. One of them is invoking new on a constructor.
In many of our recipes, we can write functions that can handle a variable number of
arguments and use .apply to invoke a function. For example:

1	function	fluent	(methodBody)	{

2			return	function	()	{

3					methodBody.apply(this,	arguments);

4					return	this

5			}

6	}

You can’t do the same thing with calling a constructor. This will not work:

	1	function	User	(name,	password)	{

	2			this.name	=	name	||	'Untitled';

	3			this.password	=	password

	4	};

	5	

	6	function	withDefaultPassword	()	{

	7			var	args	=	Array.prototype.slice.call(arguments,	0);

	8			args[1]	=	'swordfish';

	9			return	new	User.apply(this,	args);

10	}	

11	

12	withDefaultPassword('James')

13			//=>	TypeError:	function	apply()	{	[native	code]	}	is	not	a	constructor

Another weakness of constructors is that if you call them without using new, you usually
get nonsense:

1	User('James',	'swordfish')

2			//=>	undefined

In David Herman’s Effective JavaScript, he describes the “New-Agnostic Constructor
Pattern.” He gives several variations, but the simplest is this:

https://github.com/raganwald/homoiconic/blob/master/2013/01/function_and_method_decorators.md#function-and-method-decorators
http://www.amazon.com/gp/product/B00AC1RP14/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00AC1RP14&linkCode=as2&tag=raganwald001-20

1	function	User	(name,	password)	{

2			if	(!(this	instanceof	User))	{

3					return	new	User(name,	password);

4			}

5			this.name	=	name	||	'Untitled';

6			this.password	=	password

7	};

Now you can call the constructor without the new keyword:

1	User('James',	'swordfish')

2			//=>	{	name:	'James',	password:	'swordfish'	}

This in turn opens up the possibility of doing dynamic things with constructors that didn’t
work when you were forced to use new:

1	function	withDefaultPassword	()	{

2			var	args	=	Array.prototype.slice.call(arguments,	0);

3			args[1]	=	'swordfish';

4			return	User.apply(this,	args);

5	}	

6	

7	withDefaultPassword('James')

8			//=>	{	name:	'James',	password:	'swordfish'	}

(The pattern above has a tradeoff: It works for all circumstances except when you want to
set up an inheritance hierarchy.)

Another	New-Agnostic	Constructor	Pattern
Here’s another way to write a new-agnostic constructor:

1	function	User	(name,	password)	{

2			var	self	=	this	instanceof	User	?	this	:	new	User();

3			if	(name	!=	null)	{

4					self.name	=	name;

5					self.password	=	password;

6			}

7			return	self;

8	};

The principle is that the constructor initializes an object assigned to the variable self and
returns it. When you call the constructor with new, then self will be assigned the current

context. But if you call this constructor as a standard function, then it will call itself without
parameters and assign the newly created User to self.

Mixins
In A Class By Any Other Name, we saw that you can emulate “mixins” using our extend

function. We’ll revisit this subject now and spend more time looking at mixing functionality
into classes.

First, a quick recap: In JavaScript, a “class” is implemented as a constructor function and
its prototype. Instances of the class are created by calling the constructor with new. They
“inherit” shared behaviour from the constructor’s prototype property. One way to share
behaviour scattered across multiple classes, or to untangle behaviour by factoring it out of
an overweight prototype, is to extend a prototype with a mixin.

Here’s an evolved class of todo items we saw earlier:

	1	function	Todo	(name)	{

	2			var	self	=	this	instanceof	Todo

	3														?	this

	4														:	new	Todo();

	5			self.name	=	name	||	'Untitled';

	6			self.done	=	false;

	7			return	self;

	8	};

	9	

10	Todo.prototype.do	=	fluent(function	()	{

11			this.done	=	true;

12	});

13	

14	Todo.prototype.undo	=	fluent(function	()	{

15			this.done	=	false;

16	});

17	

18	Todo.prototype;

19			//=>	{	do:	[Function],	undo:	[Function]	}

And a “mixin:”

1	var	ColourCoded	=	{

2			setColourRGB:	fluent(function	(r,	g,	b)	{

3					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

4			}),

5			getColourRGB:	function	()	{

6					return	this.colourCode;

7			}

8	};

Mixing colour coding into our Todo prototype is straightforward:

1	extend(Todo.prototype,	ColourCoded);

2	

3	Todo.prototype;

4			//=>	{	do:	[Function],

5			//					undo:	[Function],

6			//					setColourRGB:	[Function],

7			//					getColourRGB:	[Function]	}

what	is	a	“mixin?”
Like “class,” the word “mixin” means different things to different people. A Ruby user will
talk about modules, for example. And a JavaScript user could in truth say that everything
is an object and we’re just extending one object (that happens to be a prototype) with the
properties of another object (that just happens to contain some functions).

A simple definition that works for most purposes is to define a mixin as: A collection of
behaviour that can be added to a class’s existing prototype. ColourCoded above is such a
mixin. If we had to actually assign a new prototype to the Todo class, that wouldn’t be
mixing functionality in, that would be replacing functionality.

functional	mixins
The mixin we have above works properly, but our little recipe had two distinct steps:
Define the mixin and then extend the class prototype. Angus Croll pointed out that it’s far
more elegant to define a mixin as a function rather than an object. He calls this a
functional mixin. Here’s our ColourCoded recast in functional form:

	1	function	becomeColourCoded	(target)	{

	2			target.setColourRGB	=	fluent(function	(r,	g,	b)	{

	3					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

	4			});

	5			

	6			target.getColourRGB	=	function	()	{

	7					return	this.colourCode;

	8			};

	9			

10			return	target;

11	};

12	

13	becomeColourCoded(Todo.prototype);

https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/

14	

15	Todo.prototype;

16			//=>	{	do:	[Function],

17			//					undo:	[Function],

18			//					setColourRGB:	[Function],

19			//					getColourRGB:	[Function]	}

Notice that we mix the functionality into the prototype. This keeps our mixing flexible: You
could mix functionality directly into an object if you so choose. Twitter’s Flight framework
uses a variation on this technique that targets the mixin function’s context:

	1	function	asColourCoded	()	{

	2			this.setColourRGB	=	fluent(function	(r,	g,	b)	{

	3					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

	4			});

	5			

	6			this.getColourRGB	=	function	()	{

	7					return	this.colourCode;

	8			};

	9			

10			return	this;

11	};

12	

13	asColourCoded.call(Todo.prototype);

This approach has some subtle benefits: You can use mixins as methods, for example.
It’s possible to write a context-agnostic functional mixin:

	1	function	colourCoded	()	{

	2			if	(arguments[0]	!==	void	0)	{

	3					return	colourCoded.call(arguments[0]);

	4			}

	5			this.setColourRGB	=	fluent(function	(r,	g,	b)	{

	6					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

	7			});

	8			

	9			this.getColourRGB	=	function	()	{

10					return	this.colourCode;

11			};

12			

13			return	this;

14	};

Bueno!

http://flightjs.github.io/

Class	Decorators
Functional Mixins look a lot like the function and method decorators we’ve seen. The big
difference is that the mixin alters its subject, whereas the function decorators return a new
function that wraps the old one. That can be handy if we wish, for example, to have some
Todos that are not colour coded and we don’t want to have a wild hierarchy of inheritance
or if we wish to dynamically mix functionality into a class.

There is a strong caveat: At this time, JavaScript is inflexible about dynamically
paramaterizing calls to constructors. Therefore, the function decorator pattern being
discussed here only works with constructors that are new agnostic1 and that can
create an “empty object.”

Once again, our Todo class:

	1	function	Todo	(name)	{

	2			var	self	=	this	instanceof	Todo

	3														?	this

	4														:	new	Todo();

	5			self.name	=	name	||	'Untitled';

	6			self.done	=	false;

	7			return	self;

	8	};

	9	

10	Todo.prototype.do	=	fluent(function	()	{

11			this.done	=	true;

12	});

13	

14	Todo.prototype.undo	=	fluent(function	()	{

15			this.done	=	false;

16	});

17	

18	Todo.prototype;

19			//=>	{	do:	[Function],	undo:	[Function]	}

Here’s our ColourCoded as a class decorator: It returns a new class rather than modifying
ToDo:

	1	function	AndColourCoded	(clazz)	{

	2			function	Decorated		()	{

	3					var	self	=	this	instanceof	Decorated

	4																?	this

	5																:	new	Decorated();

	6					

	7					return	clazz.apply(self,	arguments);

	8			};

	9			Decorated.prototype	=	new	clazz();

10			

11			Decorated.prototype.setColourRGB	=	fluent(function	(r,	g,	b)	{

12					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

13			});

14			

15			Decorated.prototype.getColourRGB	=	function	()	{

16					return	this.colourCode;

17			};

18			

19			return	Decorated;

20	};

21	

22	var	ColourTodo	=	AndColourCoded(Todo);

23	

24	Todo.prototype;

25			//=>	{	do:	[Function],	undo:	[Function]	}

26	

27	var	colourTodo	=	new	ColourTodo('Write	more	JavaScript');

28	colourTodo.setColourRGB(255,	255,	0);

29			//=>	{	name:	'Write	more	JavaScript',

30			//					done:	false,

31			//					colourCode:	{	r:	255,	g:	255,	b:	0	}	}

32			

33	colourTodo	instanceof	Todo

34			//=>	true

35			

36	colourTodo	instanceof	ColourTodo

37			//=>	true

Although the implementation is more subtle, class decorators can be an improvement on
functional mixins when you wish to avoid destructively modifying an existing prototype.

Interlude:	Tortoises,	Hares,	and	Teleporting	Turtles
A good long while ago (The First Age of Internet Startups), someone asked me one of
those pet algorithm questions. It was, “Write an algorithm to detect a loop in a linked list,
in constant space.”

I’m not particularly surprised that I couldn’t think up an answer in a few minutes at the
time. And to the interviewer’s credit, he didn’t terminate the interview on the spot, he
asked me to describe the kinds of things going through my head.

I think I told him that I was trying to figure out if I could adapt a hashing algorithm such as
XORing everything together. This is the “trick answer” to a question about finding a
missing integer from a list, so I was trying the old, “Transform this into a problem you’ve

http://www-users.cs.york.ac.uk/susan/joke/3.htm#boil

already solved” meta-algorithm. We moved on from there, and he didn’t reveal the
“solution.”

I went home and pondered the problem. I wanted to solve it. Eventually, I came up with
something and tried it (In Java!) on my home PC. I sent him an email sharing my result, to
demonstrate my ability to follow through. I then forgot about it for a while. Some time later,
I was told that the correct solution was:

	1	var	LinkedList,	list,	tortoiseAndHareLoopDetector;

	2	

	3	LinkedList	=	(function()	{

	4	

	5			function	LinkedList(content,	next)	{

	6					this.content	=	content;

	7					this.next	=	next	!=	null	?	next	:	void	0;

	8			}

	9	

10			LinkedList.prototype.appendTo	=	function(content)	{

11					return	new	LinkedList(content,	this);

12			};

13	

14			LinkedList.prototype.tailNode	=	function()	{

15					var	nextThis;

16					return	((nextThis	=	this.next)	!=	null	?	nextThis.tailNode()	:	void	0)	||	th\

17	is;

18			};

19	

20			return	LinkedList;

21	

22	})();

23	

24	tortoiseAndHareLoopDetector	=	function(list)	{

25			var	hare,	tortoise,	nextHare;

26			tortoise	=	list;

27			hare	=	list.next;

28			while	((tortoise	!=	null)	&&	(hare	!=	null))	{

29					if	(tortoise	===	hare)	{

30							return	true;

31					}

32					tortoise	=	tortoise.next;

33					hare	=	(nextHare	=	hare.next)	!=	null	?	nextHare.next	:	void	0;

34			}

35			return	false;

36	};

37	

38	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

39	

40	tortoiseAndHareLoopDetector(list);

41			//=>	false

42	

43	list.tailNode().next	=	list.next;

44	

45	tortoiseAndHareLoopDetector(list);

46			//=>	true

This algorithm is called “The Tortoise and the Hare,” and was discovered by Robert Floyd
in the 1960s. You have two node references, and one traverses the list at twice the speed
of the other. No matter how large it is, you will eventually have the fast reference equal to
the slow reference, and thus you’ll detect the loop.

At the time, I couldn’t think of any way to use hashing to solve the problem, so I gave up
and tried to fit this into a powers-of-two algorithm. My first pass at it was clumsy, but it
was roughly equivalent to this:

	1	var	list,	teleportingTurtleLoopDetector;

	2	

	3	teleportingTurtleLoopDetector	=	function(list)	{

	4			var	i,	rabbit,	speed,	turtle;

	5			speed	=	1;

	6			turtle	=	rabbit	=	list;

	7			while	(true)	{

	8					for	(i	=	0;	i	<=	speed;	i	+=	1)	{

	9							rabbit	=	rabbit.next;

10							if	(rabbit	==	null)	{

11									return	false;

12							}

13							if	(rabbit	===	turtle)	{

14									return	true;

15							}

16					}

17					turtle	=	rabbit;

18					speed	*=	2;

19			}

20			return	false;

21	};

22	

23	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

24	

25	teleportingTurtleLoopDetector(list);

26			//=>	false

27	

28	list.tailNode().next	=	list.next;

29	

30	teleportingTurtleLoopDetector(list);

31			//=>	true

Years later, I came across a discussion of this algorithm, The Tale of the Teleporting
Turtle. It seems to be faster under certain circumstances, depending on the size of the
loop and the relative costs of certain operations.

What’s interesting about these two algorithms is that they both tangle two separate
concerns: How to traverse a data structure, and what to do with the elements that you
encounter. In Functional Iterators, we’ll investigate one pattern for separating these
concerns.

Functional	Iterators
Let’s consider a remarkably simple problem: Finding the sum of the elements of an array.
In iterative style, it looks like this:

1	function	sum	(array)	{

2			var	number,	total,	len;

3			total	=	0;

4			for	(i	=	0,	len	=	array.length;	i	<	len;	i++)	{

5					number	=	array[i];

6					total	+=	number;

7			}

8			return	total;

9	};

What’s the sum of a linked list of numbers? How about the sum of a tree of numbers
(represented as an array of array of numbers)? Must we re-write the sum function for each
data structure?

There are two roads ahead. One involves a generalized reduce or fold method for each data
structure. The other involves writing an Iterator for each data structure and writing our sum

to take an iterator as its argument. Let’s use iterators, especially since we need two
different iterators for the same data structure, so a single object method is inconvenient.

Since we don’t have iterators baked into the underlying JavaScript engine yet, we’ll write
our iterators as functions:

	1	var	LinkedList,	list;

	2	

	3	LinkedList	=	(function()	{

	4	

	5			function	LinkedList(content,	next)	{

http://www.penzba.co.uk/Writings/TheTeleportingTurtle.html
https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.7#Iterators

	6					this.content	=	content;

	7					this.next	=	next	!=	null	?	next	:	void	0;

	8			}

	9	

10			LinkedList.prototype.appendTo	=	function(content)	{

11					return	new	LinkedList(content,	this);

12			};

13	

14			LinkedList.prototype.tailNode	=	function()	{

15					var	nextThis;

16					return	((nextThis	=	this.next)	!=	null	?	nextThis.tailNode()	:	void	0)	||	th\

17	is;

18			};

19	

20			return	LinkedList;

21	

22	})();

23	

24	function	ListIterator	(list)	{

25			return	function()	{

26					var	node;

27					node	=	list	!=	null	?	list.content	:	void	0;

28					list	=	list	!=	null	?	list.next	:	void	0;

29					return	node;

30			};

31	};

32	

33	function	sum	(iter)	{

34			var	number,	total;

35			total	=	0;

36			number	=	iter();

37			while	(number	!=	null)	{

38					total	+=	number;

39					number	=	iter();

40			}

41			return	total;

42	};

43	

44	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

45	

46	sum(ListIterator(list));

47			//=>	15

48	

49	function	ArrayIterator	(array)	{

50			var	index;

51			index	=	0;

52			return	function()	{

53					return	array[index++];

54			};

55	};

56	

57	sum(ArrayIterator([1,	2,	3,	4,	5]));

58			//=>	15

Summing an array that can contain nested arrays adds a degree of complexity. Writing a
function that iterates recursively over a data structure is an interesting problem, one that
is trivial in a language with coroutines. Since we don’t have Generators yet, and we don’t
want to try to turn our loop detection inside-out, we’ll Greenspun our own coroutine by
maintaining our own stack.

This business of managing your own stack may seem weird to anyone born after
1970, but old fogeys fondly remember that after walking barefoot to and from
University uphill in a blizzard both ways, the interview question brain teaser of the
day was to write a “Towers of Hanoi” solver in a language like BASIC that didn’t
have reentrant subroutines.

	1	function	LeafIterator	(array)	{

	2			var	index,	myself,	state;

	3			index	=	0;

	4			state	=	[];

	5			myself	=	function()	{

	6					var	element,	tempState;

	7					element	=	array[index++];

	8					if	(element	instanceof	Array)	{

	9							state.push({

10									array:	array,

11									index:	index

12							});

13							array	=	element;

14							index	=	0;

15							return	myself();

16					}	else	if	(element	===	void	0)	{

17							if	(state.length	>	0)	{

18									tempState	=	state.pop(),	array	=	tempState.array,	index	=	tempState.inde\

19	x;

20									return	myself();

21							}	else	{

22									return	void	0;

23							}

24					}	else	{

25							return	element;

26					}

27			};

28			return	myself;

https://en.wikipedia.org/wiki/Coroutine

29	};

30	

31	sum(LeafIterator([1,	[2,	[3,	4]],	[5]]));

32			//=>	15

We’ve successfully separated the issue of what one does with data from how one
traverses over the elements.

folding
Just as pure functional programmers love to talk monads, newcomers to functional
programming in multi-paradigm languages often drool over folding a/k/a
mapping/injecting/reducing. We’re just a level of abstraction away:

	1	function	fold	(iter,	binaryFn,	seed)	{

	2			var	acc,	element;

	3			acc	=	seed;

	4			element	=	iter();

	5			while	(element	!=	null)	{

	6					acc	=	binaryFn.call(element,	acc,	element);

	7					element	=	iter();

	8			}

	9			return	acc;

10	};

11	

12	function	foldingSum	(iter)	{

13			return	fold(iter,	(function(x,	y)	{

14					return	x	+	y;

15			}),	0);

16	};

17	

18	foldingSum(LeafIterator([1,	[2,	[3,	4]],	[5]]));

19			//=>	15

Fold turns an iterator over a finite data structure into an accumulator. And once again, it
works with any data structure. You don’t need a different kind of fold for each kind of data
structure you use.

unfolding	and	laziness
Iterators are functions. When they iterate over an array or linked list, they are traversing
something that is already there. But they could, in principle, manufacture the data as they
go. Let’s consider the simplest example:

	1	function	NumberIterator	(base)	{

	2			var	number;

https://en.wikipedia.org/wiki/Fold_

	3			if	(base	==	null)	{

	4					base	=	0;

	5			}

	6			number	=	base;

	7			return	function()	{

	8					return	number++;

	9			};

10	};

11	

12	fromOne	=	NumberIterator(1);

13	

14	fromOne();

15			//=>	1

16	fromOne();

17			//=>	2

18	fromOne();

19			//=>	3

20	fromOne();

21			//=>	4

22	fromOne();

23			//=>	5

And here’s another one:

	1	function	FibonacciIterator	()	{

	2			var	current,	previous;

	3			previous	=	0;

	4			current	=	1;

	5			return	function()	{

	6					var	value,	tempValues;

	7					value	=	current;

	8					tempValues	=	[current,	current	+	previous],	previous	=	tempValues[0],	curren\

	9	t	=	tempValues[1];

10					return	value;

11			};

12	};

13			

14	fib	=	FibonacciIterator()

15	

16	fib()

17			//=>	1

18	fib()

19			//=>	1

20	fib()

21			//=>	2

22	fib()

23			//=>	3

24	fib()

25			//=>	5

A function that starts with a seed and expands it into a data structure is called an unfold.
It’s the opposite of a fold. It’s possible to write a generic unfold mechanism, but let’s pass
on to what we can do with unfolded iterators.

This business of going on forever has some drawbacks. Let’s introduce an idea: A
function that takes an Iterator and returns another iterator. We can start with take, an easy
function that returns an iterator that only returns a fixed number of elements:

	1	take	=	function(iter,	numberToTake)	{

	2			var	count;

	3			count	=	0;

	4			return	function()	{

	5					if	(++count	<=	numberToTake)	{

	6							return	iter();

	7					}	else	{

	8							return	void	0;

	9					}

10			};

11	};

12	

13	oneToFive	=	take(NumberIterator(1),	5);

14	

15	oneToFive();

16			//=>	1

17	oneToFive();

18			//=>	2

19	oneToFive();

20			//=>	3

21	oneToFive();

22			//=>	4

23	oneToFive();

24			//=>	5

25	oneToFive();

26			//=>	undefined

With take, we can do things like return the squares of the first five numbers:

1	square(take(NumberIterator(1),	5))

2	

3			//=>	[1,

4			//					4,

5			//					9,

6			//					16,

7			//					25]

How about the squares of the odd numbers from the first five numbers?

1	square(odds(take(NumberIterator(1),	5)))

2			//=>	TypeError:	object	is	not	a	function

Bzzzt! Our odds function returns an array, not an iterator.

1	square(take(odds(NumberIterator(1)),	5))

2			//=>	RangeError:	Maximum	call	stack	size	exceeded

You can’t take the first five odd numbers at all, because odds tries to get the entire set of
numbers and accumulate the odd ones in an array. This can be fixed. For unfolds and
other infinite iterators, we need more functions that transform one iterator into another:

	1	function	iteratorMap	(iter,	unaryFn)	{

	2			return	function()	{

	3					var	element;

	4					element	=	iter();

	5					if	(element	!=	null)	{

	6							return	unaryFn.call(element,	element);

	7					}	else	{

	8							return	void	0;

	9					}

10			};

11	};

12	

13	function	squaresIterator	(iter)	{

14			return	iteratorMap(iter,	function(n)	{

15					return	n	*	n;

16			});

17	};

18	

19	function	iteratorFilter	(iter,	unaryPredicateFn)	{

20			return	function()	{

21					var	element;

22					element	=	iter();

23					while	(element	!=	null)	{

24							if	(unaryPredicateFn.call(element,	element))	{

25									return	element;

26							}

27							element	=	iter();

28					}

29					return	void	0;

30			};

31	};

32	

33	function	oddsFilter	(iter)	{

34			return	iteratorFilter(iter,	odd);

35	};

Now we can do things like take the sum of the first five odd squares of fibonacci numbers:

1	foldingSum(take(oddsFilter(squaresIterator(FibonacciIterator())),	5))

2			//=>	205

This solution composes the parts we already have, rather than writing a tricky bit of code
with ifs and whiles and boundary conditions.

summary
Untangling the concerns of how to iterate over data from what to do with data leads us to
thinking of iterators and working directly with iterators. For example, we can map and filter
iterators rather than trying to write separate map and filter functions or methods for each
type of data structure. This leads to the possibility of working with lazy or infinite iterators.

caveat
Please note that unlike most of the other functions discussed in this book, iterators are
stateful. There are some important implications of stateful functions. One is that while
functions like take(...) appear to create an entirely new iterator, in reality they return a
decorated reference to the original iterator. So as you traverse the new decorator, you’re
changing the state of the original!

For all intents and purposes, once you pass an iterator to a function, you can expect that
you no longer “own” that iterator, and that its state either has changed or will change.

Refactoring	to	Functional	Iterators
In Tortoises, Hares, and Teleporting Turtles, we looked at the “Tortoise and Hare”
algorithm for detecting a linked list. Like many such algorithms, it “tangles” two different
concerns:

1.	 The	mechanism	for	iterating	over	a	list.

2.	 The	algorithm	for	detecting	a	loop	in	a	list.

	1	var	LinkedList	=	(function()	{

	2	

	3			function	LinkedList(content,	next)	{

	4					this.content	=	content;

	5					this.next	=	next	!=	null	?	next	:	void	0;

	6			}

	7	

	8			LinkedList.prototype.appendTo	=	function(content)	{

	9					return	new	LinkedList(content,	this);

10			};

11	

12			LinkedList.prototype.tailNode	=	function()	{

13					var	nextThis;

14					return	((nextThis	=	this.next)	!=	null	?	nextThis.tailNode()	:	void	0)	||	th\

15	is;

16			};

17	

18			return	LinkedList;

19	

20	})();

21	

22	function	tortoiseAndHareLoopDetector	(list)	{

23			var	hare,	tortoise,	nextHare;

24			tortoise	=	list;

25			hare	=	list.next;

26			while	((tortoise	!=	null)	&&	(hare	!=	null))	{

27					if	(tortoise	===	hare)	{

28							return	true;

29					}

30					tortoise	=	tortoise.next;

31					hare	=	(nextHare	=	hare.next)	!=	null	?	nextHare.next	:	void	0;

32			}

33			return	false;

34	};

functional	iterators
We then went on to discuss how to use functional iterators to untangle concerns like this.
A functional iterator is a stateful function that iterates over a data structure. Every time
you call it, it returns the next element from the data structure. If and when it completes its
traversal, it returns undefined.

For example, here is a function that takes an array and returns a functional iterator over
the array:

1	function	ArrayIterator	(array)	{

2			var	index	=	0;

3			return	function()	{

4					return	array[index++];

5			};

6	};

Iterators allow us to write (or refactor) functions to operate on iterators instead of data
structures. That increases reuse. We can also write higher-order functions that operate
directly on iterators such as mapping and selecting. That allows us to write lazy
algorithms.

refactoring	the	tortoise	and	hare
Now we’ll refactor the Tortoise and Hare to use iterators instead of directly operate on
linked lists. We’ll add an .iterator() method to linked lists, and we’ll rewrite our loop detector
function to take an “iterable” instead of a list:

	1	LinkedList.prototype.iterator	=	function()	{

	2			var	list	=	this;

	3			return	function()	{

	4					var	value	=	list	!=	null	?	list.content	:	void	0;

	5					list	=	list	!=	null	?	list.next	:	void	0;

	6					return	value;

	7			};

	8	};

	9	

10	function	tortoiseAndHareLoopDetector	(iterable)	{

11			var	tortoise	=	iterable.iterator(),

12							hare	=	iterable.iterator(),	

13							tortoiseValue,	

14							hareValue;

15			while	(((tortoiseValue	=	tortoise())	!=	null)	&&	((hare(),	hareValue	=	hare())\

16		!=	null))	{

17					if	(tortoiseValue	===	hareValue)	{

18							return	true;

19					}

20			}

21			return	false;

22	};

23	

24	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

25	

26	tortoiseAndHareLoopDetector(list);

27			//=>	false

28	

29	list.tailNode().next	=	list.next;

30	

31	tortoiseAndHareLoopDetector(list);

32			//=>	true

We have now refactored it into a function that operates on anything that responds to the
.iterator() method. It’s classic “Duck Typed” Object-Orientation. So, how shall we put it to
work?

A	Drunken	Walk	Across	A	Chequerboard
Here’s another job interview puzzle.2

Consider a finite checkerboard of unknown size. On each square we randomly place an
arrow pointing to one of its four sides. For convenience, we shall uniformly label the
directions: N, S, E, and W. A chequer is placed randomly on the checkerboard. Each
move consists of moving the red chequer one square in the direction of the arrow in the
square it occupies. If the arrow should cause the chequer to move off the edge of the
board, the game halts.

As a player moves the chequer, he calls out the direction of movement, e.g. “N, E, N, S,
N, E…” Write an algorithm that will determine whether the game halts strictly from the
called out directions, in constant space.

the	insight

Our solution will rest on the observation that as the chequer follows a path, if it ever visits
a square for a second time, it will cycle indefinitely without falling off the board. Otherwise,
on a finite board, it must eventually fall off the board after at most visiting every square
once.

Therefore, if we think of this as detecting whether the chequer revisits a square in
constant space, we can see this is isomorphic to detecting whether a linked list has a loop
by checking to see whether it revisits the same node.

the	game
In essence, we’re given an object that has a .iterator() method. That gives us an iterator,
and each time we call the iterator, we get a direction. Here it is:

	1	var	DIRECTION_TO_DELTA	=	{

	2			N:	[1,	0],

	3			E:	[0,	1],

	4			S:	[-1,	0],

	5			W:	[0,	-1]

	6	};

	7	

	8	var	Game	=	(function	()	{

	9			function	Game	(size)	{

10					var	i,

11									j;

12					

13					this.size	=	size

14																	?	Math.floor(Math.random()	*	8)	+	8

15																	:	size	;

16					this.board	=	[];

17					for	(i	=	0;	i	<	this.size;	++i)	{

18							this.board[i]	=	[];

19							for	(j	=	0;	j	<	this.size;	++j)	{

20									this.board[i][j]	=	'NSEW'[Math.floor(Math.random()	*	4)];

21							}

22					}

23					this.initialPosition	=	[

24							2	+	Math.floor(Math.random()	*	(this.size	-	4)),	

25							2	+	Math.floor(Math.random()	*	(this.size	-	4))

26];

27					return	this;

28			};

29			

30			Game.prototype.contains	=	function	(position)	{

31					return	position[0]	>=	0	&&	position[0]	<	this.size	&&	position[1]	>=	0	&&	po\

32	sition[1]	<	this.size;

33			};

34			

35			Game.prototype.iterator	=	function	()	{

36					var	position	=	[this.initialPosition[0],	this.initialPosition[1]];

37					return	function	()	{

38							var	direction;

39							if	(this.contains(position))	{

40									direction	=	this.board[position[0]][position[1]];

41									position[0]	+=	DIRECTION_TO_DELTA[direction][0];

42									position[1]	+=	DIRECTION_TO_DELTA[direction][1];

43									return	direction;

44							}

45							else	{

46									return	void	0;

47							}

48					}.bind(this);

49			};

50			

51			return	Game;

52			

53	})();

54	

55	var	i	=	new	Game().iterator();

56			//=>	[Function]

57	i();

58			//=>	'N'

59	i();

60			//=>	'S'

61	i();

62			//=>	'N'

63	i();

64			//=>	'S'

65			//			...

In the example above, we have the smallest possible repeating path: The chequer
shuttles back and forth between two squares. It will not always be so obvious when a
game does not terminate.

stateful	mapping
Our goal is to transform the iteration of directions into an iteration that the Tortoise and
Hare can use to detect revisiting the same square. Our approach is to convert the
directions into offsets representing the position of the chequer relative to its starting
position.

We’ll use a statefulMap:

	1	function	statefulMap	(iter,	binaryFn,	initial)	{

	2			var	state	=	initial;

	3			return	function	()	{

	4					element	=	iter();

	5					if	(element	==	null)	{

	6							return	element;

	7					}

	8					else	{

	9							if	(state	===	void	0)	{

10									return	(state	=	element);

11							}

12							else	return	(state	=	binaryFn.call(element,	state,	element));

13					}

14			}

15	};

statefulMap takes in iterator and maps it to a new iterator. Unlike a “regular” map, it
computes its elements on demand, so it will not run indefinitely when given an iteration
representing an infinitely looping chequer. We need a stateful map because we are
tracking a position that changes over time even when given the same direction over and
over again.

Here’s how we use statefulMap:

	1	function	RelativeIterator	(directionIterator)	{

	2			return	statefulMap(directionIterator,	function	(relativePositionStr,	direction\

	3	Str)	{

	4					var	delta	=	DIRECTION_TO_DELTA[directionStr],

	5									matchData	=	relativePositionStr.match(/(-?\d+)	(-?\d+)/),

	6									relative0	=	parseInt(matchData[1],	10),

	7									relative1	=	parseInt(matchData[2],	10);

	8					return	""	+	(relative0	+	delta[0])	+	"	"	+	(relative1	+	delta[1]);

	9			},	"0	0");

10	};

11	

12	var	i	=	RelativeIterator(new	Game().iterator());

13	i();

14			//=>	'-1	0'

15	i();

16			//=>	'-1	-1'

17	i();

18			//=>	'-2	-1'

19	i();

20			//=>	'-2	0'

21	i();

22			//=>	'-2	1'

23	i();

24			//=>	'-3	1'

25	i();

26			//=>	'-3	2'

27	i();

28			//=>	'-3	3'

We’re almost there! The refactored tortoiseAndHareLoopDetector expects an “iterable,” an object
that implements the .iterator() method. Let’s refactor RelativeIterable to accept a game and
return an iterable instead of accepting an iteration and returning an iteration:

	1	function	RelativeIterable	(game)	{

	2			return	{

	3					iterator:	function	()	{

	4									return	statefulMap(game.iterator(),	function	(relativePositionStr,	direc\

	5	tionStr)	{

	6											var	delta	=	DIRECTION_TO_DELTA[directionStr],

	7															matchData	=	relativePositionStr.match(/(-?\d+)	(-?\d+)/),

	8															relative0	=	parseInt(matchData[1],	10),

	9															relative1	=	parseInt(matchData[2],	10);

10											return	""	+	(relative0	+	delta[0])	+	"	"	+	(relative1	+	delta[1]);

11									},	"0	0");

12					}

13			};

14	};

15	

16	var	i	=	RelativeIterable(new	Game()).iterator();

17	i();

18			//=>	'0	-1'

19	i();

20			//=>	'1	-1'

21	i();

22			//=>	'1	0'

23	i();

24			//=>	'2	0'

25	i();

26			//=>	undefined

the	solution
So. We can take a Game instance and produce an iterable that iterates over regular strings
representing relative positions. If it terminates on its own, the game obviously terminates.
And if it repeats itself, the game does not terminate.

Our refactored tortoiseAndHareLoopDetector takes an iterable and detects this for us. Writing a
detector function is trivial:

	1	function	terminates	(game)	{

	2			return	!tortoiseAndHareLoopDetector(RelativeIterable(game));

	3	}

	4	

	5	terminates(new	Game(4));

	6			//=>	false

	7	terminates(new	Game(4));

	8			//=>	true

	9	terminates(new	Game(4));

10			//=>	false

11	terminates(new	Game(4));

12			//=>	false

preliminary	conclusion
Untangling the mechanism of following a linked list from the algorithm of searching for a
loop allows us to repurpose the Tortoise and Hare algorithm to solve a question about a
path looping.

no-charge	extra	conclusion
Can we also refactor the “Teleporting Turtle” algorithm to take an iterable? If so, we
should be able to swap algorithms for our game termination detection without rewriting
everything in sight. Let’s try it:

We start with:

	1	function	teleportingTurtleLoopDetector	(list)	{

	2			var	i,	rabbit,	speed,	turtle;

	3			speed	=	1;

	4			turtle	=	rabbit	=	list;

	5			while	(true)	{

	6					for	(i	=	0;	i	<=	speed;	i	+=	1)	{

	7							rabbit	=	rabbit.next;

	8							if	(rabbit	==	null)	{

	9									return	false;

10							}

11							if	(rabbit	===	turtle)	{

12									return	true;

13							}

14					}

15					turtle	=	rabbit;

16					speed	*=	2;

17			}

18			return	false;

19	};

20	

21	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

22	

23	teleportingTurtleLoopDetector(list);

24			//=>	false

25	

26	list.tailNode().next	=	list.next;

27	

28	teleportingTurtleLoopDetector(list);

29			//=>	true

And refactor it to become:

	1	function	teleportingTurtleLoopDetector	(iterable)	{

	2			var	i,	rabbit,	rabbitValue,	speed,	turtleValue;

	3			speed	=	1;

	4			rabbit	=	iterable.iterator();

	5			turtleValue	=	rabbitValue	=	rabbit();

	6			while	(true)	{

	7					for	(i	=	0;	i	<=	speed;	i	+=	1)	{

	8							rabbitValue	=	rabbit();

	9							if	(rabbitValue	==	null)	{

10									return	false;

11							}

12							if	(rabbitValue	===	turtleValue)	{

13									return	true;

14							}

15					}

16					turtleValue	=	rabbitValue;

17					speed	*=	2;

18			}

19			return	false;

20	};

21	

22	list	=	new	LinkedList(5).appendTo(4).appendTo(3).appendTo(2).appendTo(1);

23	

24	teleportingTurtleLoopDetector(list);

25			//=>	false

26	

27	list.tailNode().next	=	list.next;

28	

29	teleportingTurtleLoopDetector(list);

30			//=>	true

Now we can plug it into our termination detector:

	1	function	terminates	(game)	{

	2			return	!teleportingTurtleLoopDetector(RelativeIterable(game));

	3	}

	4	

	5	terminates(new	Game(4));

	6			//=>	false

	7	terminates(new	Game(4));

	8			//=>	false

	9	terminates(new	Game(4));

10			//=>	false

11	terminates(new	Game(4));

12			//=>	false

13	terminates(new	Game(4));

14			//=>	true

Refactoring an algorithm to work with iterators allows us to use the same algorithm to
solve different problems and to swap algorithms for the same problem. This is natural, we
have created an abstraction that allows us to plug different items into either side of its
interface.

Trampolining

A trampoline is a loop that iteratively invokes thunk-returning functions
(continuation-passing style). A single trampoline is sufficient to express all control
transfers of a program; a program so expressed is trampolined, or in trampolined
style; converting a program to trampolined style is trampolining. Trampolined
functions can be used to implement tail-recursive function calls in stack-oriented
programming languages.–Wikipedia

This description is exactly how one ought to answer the question “define trampolining” on
an examination, because it demonstrates that you’ve learned the subject thoroughly. But
if asked to explain trampolining, a more tutorial-focused approach is called for.

Let’s begin with a use case.

recursion,	see	recursion
Consider implementing factorial in recursive style:

1	function	factorial	(n)	{

2			return	n

3			?	n	*	factorial(n	-	1)

4			:	1

5	}

The immediate limitation of this implementation is that since it calls itself n times, to get a

https://en.wikipedia.org/wiki/Thunk_
https://en.wikipedia.org/wiki/Continuation-passing_style
https://en.wikipedia.org/wiki/Tail-recursive_function
https://en.wikipedia.org/wiki/Trampoline_

result you need a stack on n stack frames in a typical stack-based programming language
implementation. And JavaScript is such an implementation.

This creates two problems: First, we need space On for all those stack frames. It’s as if
we actually wrote out 1 x 1 x 2 x 3 x 4 x ... before doing any calculations. Second, most
languages have a limit on the size of the stack much smaller than the limit on the amount
of memory you need for data.

For example:

1	factorial(10)

2			//=>	3628800

3	factorial(32768)

4			//=>	RangeError:	Maximum	call	stack	size	exceeded

We can easily rewrite this in iterative style, but there are other functions that aren’t so
amenable to rewriting and using a simple example allows us to concentrate on the
mechanism rather than the “domain.”

tail-call	elimination
Lisp programmers in days of yore would rewrite functions like this into “Tail Recursive
Form,” and that made it possible for their compilers to perform Tail-Call Optimization.
Meaning, that when a function returns the result of calling itself, the language doesn’t
actually perform another function call, it turns the whole thing into a loop for you.

What we need to do is take the expression n * factorial(n - 1) and push it down into a function
so we can just call it with parameters. When a function is called, a stack frame is created
that contains all the information needed to resume execution with the result. Stack frames
hold a kind of pointer to where to carry on evaluating, the function parameters, and other
bookkeeping information.3

If we use the symbol _ to represent a kind of “hole” in an expression where we plan to put
the result, every time factorial calls itself, it needs to remember n * _ so that when it gets a
result back, it can multiply it by n and return that. So the first time it calls itself, it
remembers 10 * _, the second time it calls itself, it remembers 9 * _, and all these things
stack up like this when we call factorial(10):

	1		1	*	_

	2		2	*	_

	3		3	*	_

	4		4	*	_

	5		5	*	_

https://en.wikipedia.org/wiki/Tail-call_optimization

	6		6	*	_

	7		7	*	_

	8		8	*	_

	9		9	*	_

10	10	*	_

Finally, we call factorial(0) and it returns 1. Then the top is popped off the stack, so we
calculate 1 * 1. It returns 1 again and we calculate 2 * 1. That returns 2 and we calculate 3 * 2

and so on up the stack until we return 10 * 362880 and return 3628800, which we print.

How can we get around this? Well, imagine if we don’t have a hole in a computation to
return. In that case, we wouldn’t need to “remember” anything on the stack. To make this
happen, we need to either return a value or return the result of calling another function
without any further computation.

Such a call is said to be in “tail position” and to be a “tail call.” The “elimination” of tail-call
elimination means that we don’t perform a full call including setting up a new stack frame.
We perform the equivalent of a “jump.”

For example:

1	function	factorial	(n)	{

2			var	_factorial	=	function	myself	(acc,	n)	{

3					return	n

4					?	myself(acc	*	n,	n	-	1)

5					:	acc

6			};

7			

8			return	_factorial(1,	n);

9	}

Now our function either returns a value or it returns the result of calling another function
without doing anything with that result. This gives us the correct results, but we can see
that current implementations of JavaScript don’t perform this magic “tail-call elimination.”

1	factorial(10)

2			//=>	3628800

3	factorial(32768)

4			//=>	RangeError:	Maximum	call	stack	size	exceeded

So we’ll do it ourselves.

trampolining

One way to implement tail-call elimination is also handy for many other general things we
might want to do with control flow, it’s called trampolining. What we do is this:

When we call a function, it returns a thunk that we call to get a result. Of course, the thunk
can return another thunk, so every time we get a result, we check to see if it’s a thunk. If
not, we have our final result.

A thunk is a function taking no arguments that delays evaluating an expression. For
example, this is a thunk: function () { return 'Hello World'; }.

An extremely simple and useful implementation of trampolining can be found in the
Lemonad library. It works provided that you want to trampoline a function that doesn’t
return a function. Here it is:

1	L.trampoline	=	function(fun	/*,	args	*/)	{

2			var	result	=	fun.apply(fun,	_.rest(arguments));

3	

4			while	(_.isFunction(result))	{

5					result	=	result();

6			}

7	

8			return	result;

9	};

We’ll rewrite it in combinatorial style for consistency and composeability:

	1	var	trampoline	=	function	(fn)	{

	2			return	variadic(function	(args)	{

	3					var	result	=	fn.apply(this,	args);

	4	

	5					while	(result	instanceof	Function)	{

	6							result	=	result();

	7					}

	8	

	9					return	result;

10			});

11	};

Now here’s our implementation of factorial that is wrapped around a trampolined tail
recursive function:

	1	function	factorial	(n)	{

	2			var	_factorial	=	trampoline(function	myself	(acc,	n)	{

	3					return	n

http://fogus.github.com/lemonad/

	4					?	function	()	{	return	myself(acc	*	n,	n	-	1);	}

	5					:	acc

	6			});

	7			

	8			return	_factorial(1,	n);

	9	}

10	

11	factorial(10);

12			//=>	362800

13	factorial(32768);

14			//=>	Infinity

Presto, it runs for n = 32768. Sadly, JavaScript’s built-in support for integers cannot keep up,
so we’d better fix the “infinity” problem with a “big integer” library:4

	1	npm	install	big-integer

	2	

	3	var	variadic	=	require('allong.es').variadic,

	4					bigInt	=	require("big-integer");

	5	

	6	var	trampoline	=	function	(fn)	{

	7			return	variadic(function	(args)	{

	8					var	result	=	fn.apply(this,	args);

	9	

10					while	(result	instanceof	Function)	{

11							result	=	result();

12					}

13	

14					return	result;

15					

16			});

17	};

18	

19	function	factorial	(n)	{

20			var	_factorial	=	trampoline(function	myself	(acc,	n)	{

21					return	n.greater(0)

22					?	function	()	{	return	myself(acc.times(n),	n.minus(1));	}

23					:	acc

24			});

25			

26			return	_factorial(bigInt.one,	bigInt(n));

27	}

28	

29	factorial(10).toString()

30			//=>	'3628800'

31	factorial(32768)

32			//=>	GO	FOR	LUNCH

Well, it now takes a very long time to run, but it is going to get us the proper result and we
can print that as a string, so we’ll leave it calculating in another process and carry on.

The limitation of the implementation shown here is that because it tests for the function
returning a function, it will not work for functions that return functions. If you want to
trampoline a function that returns a function, you will need a more sophisticated
mechanism, but the basic principle will be the same: The function will return a thunk
instead of a value, and the trampolining loop will test the returned thunk to see if it
represents a value or another computation to be evaluated.

trampolining	co-recursive	functions
If trampolining was only for recursive functions, it would have extremely limited value: All
such functions can be re-written iteratively and will be much faster (although possibly less
elegant). However, trampolining eliminates all calls in tail position, including calls to other
functions.

Consider this delightfully simple example of two co-recursive functions:

	1	function	even	(n)	{

	2			return	n	==	0

	3					?	true

	4					:	odd(n	-	1);

	5	};

	6	

	7	function	odd	(n)	{

	8			return	n	==	0

	9					?	false

10					:	even(n	-	1);

11	};

Like our factorial, it consumes n stack space of alternating calls to even and odd:

1	even(32768);

2			//=>	RangeError:	Maximum	call	stack	size	exceeded

Obviously we can solve this problem with modulo arithmetic, but consider that what this
shows is a pair of functions that call other functions in tail position, not just themselves. As
with factorial, we separate the public interface that is not trampolined from the trampolined
implementation:

	1	var	even	=	trampoline(_even),

	2					odd		=	trampoline(_odd);

	3	

	4	function	_even	(n)	{

	5			return	n	==	0

	6					?	true

	7					:	function	()	{	return	_odd(n	-	1);	};

	8	};

	9	

10	function	_odd	(n)	{

11			return	n	==	0

12					?	false

13					:	function	()	{	return	_even(n	-	1);	};

14	};

And presto:

1	even(32768);

2			//=>	true

Trampolining works with co-recursive functions, or indeed any function that can be
rewritten in tail-call form.

summary
Trampolining is a technique for implementing tail-call elimination. Meaning, if you take a
function (whether recursive, co-recursive, or any other form) and rewrite it in tail-call form,
you can eliminate the need to create a stack frame for every ‘invocation’.

Trampolining is very handy in a language like JavaScript, in that it allows you to use a
recursive style for functions without worrying about limitations on stack sizes.

Another	approach	that	works	with	ECMAScript	5	and	later	is	to	base	all	classes	around
Object.create↩

This	book	does	not	blindly	endorse	asking	programmers	to	solve	this	or	any	abstract	problem	in	a
job	interview.↩

Did	you	know	that	“bookkeeping”	is	the	only	word	in	the	English	language	containing	three
consecutive	letter	pairs?	You’re	welcome.↩

The	use	of	a	third-party	big	integer	library	is	not	essential	to	understand	trampolining.↩

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/create

12.	 Recipes	for	New	Ideas

For the love of coffee: a collection

“The entire history of Mankind’s relationship with coffee is a futile attempt to have
the reality of its taste live up to the promise of its aroma.”

Before
Combinators for functions come in an unlimited panoply of purposes and effects. So do
method combinators, but whether from intrinsic utility or custom, certain themes have
emerged. One of them that forms a core part of the original Lisp Flavors system and also
the Aspect-Oriented Programming movement, is decorating a method with some
functionality to be performed before the method’s body is evaluated.

For example, using our fluent recipe:

	1	function	Cake	()	{

	2			this.ingredients	=	{}

	3	}

	4	

	5	extend(Cake.prototype,	{

	6			setFlavour:	fluent(function	(flavour)	{	

	7					this.flavour	=	flavour

https://en.wikipedia.org/wiki/Flavors_
https://en.wikipedia.org/wiki/Aspect-oriented_programming

	8			}),

	9			setLayers:	fluent(function	(layers)	{	

10					this.layers	=	layers;

11			}),

12			add:	fluent(function	(ingredientMap)	{

13					var	ingredient;

14					

15					for	(ingredient	in	ingredientMap)	{

16							this.ingredients[ingredient]	||	

17									(this.ingredients[ingredient]	=	0);

18							this.ingredients[ingredient]	=	this.ingredients[ingredient]	+	

19									ingredientMap[ingredient]

20					}

21			}),

22			mix:	fluent(function	()	{

23					//	mix	ingredients	together

24			}),

25			rise:	fluent(function	(duration)	{

26					//	let	the	ingredients	rise

27			}),

28			bake:	fluent(function	()	{

29					//	do	some	baking

30			})

31	});

This particular example might be better-served as a state machine, but what we want to
encode is that we must always mix the ingredients before allowing the batter to rise or
baking the cake. The direct way to write that is:

1			rise:	fluent(function	(duration)	{

2					this.mix();

3					//	let	the	ingredients	rise

4			}),

5			bake:	fluent(function	()	{

6					this.mix();

7					//	do	some	baking

8			})

Nothing wrong with that, however it does clutter the core functionality of rising and baking
with a secondary concern, preconditions. There is a similar problem with cross-cutting
concerns like logging or checking permissions: You want functions to be smaller and
more focused, and decomposing into smaller methods is ugly:

	1	reallyRise:	function	(duration)	{

	2			//	let	the	ingredients	rise

	3	},

	4	rise:	fluent	(function	(duration)	{

	5			this.mix();

	6			this.reallyRise(duration)

	7	}),

	8	reallyBake:	function	()	{

	9			//	do	some	baking

10	},

11	bake:	fluent(function	()	{

12			this.mix();

13			this.reallyBake()

14	})

the	before	recipe
This recipe is for a combinator that turns a function into a method decorator. The
decorator evaluates the function before evaluating the base method. Here it is:

1	function	before	(decoration)	{

2			return	function	(method)	{

3					return	function	()	{

4							decoration.apply(this,	arguments);

5							return	method.apply(this,	arguments)

6					}

7			}

8	}

And here we are using it in conjunction with fluent, showing the power of composing
combinators:

	1	var	mixFirst	=	before(function	()	{

	2			this.mix()

	3	});

	4	

	5	extend(Cake.prototype,	{

	6			

	7			//	Other	methods...

	8			

	9			mix:	fluent(function	()	{

10					//	mix	ingredients	together

11			}),

12			rise:	fluent(mixFirst(function	(duration)	{

13					//	let	the	ingredients	rise

14			})),

15			bake:	fluent(mixFirst(function	()	{

16					//	do	some	baking

17			}))

18	});

The decorators act like keywords or annotations, documenting the method’s behaviour
but clearly separating these secondary concerns from the core logic of the method.

(before, after, and many more combinators for building method decorators can be found
in the method combinators module.)

After
Combinators for functions come in an unlimited panoply of purposes and effects. So do
method combinators, but whether from intrinsic utility or custom, certain themes have
emerged. One of them that forms a core part of the original Lisp Flavors system and also
the Aspect-Oriented Programming movement, is decorating a method with some
functionality to be performed after the method’s body is evaluated.

For example, consider this “class:”

	1	Todo	=	function	(name)	{

	2			this.name	=	name	||	'Untitled';

	3			this.done	=	false

	4	}

	5	

	6	extend(Todo.prototype,	{

	7			do:	fluent(function	{

	8					this.done	=	true

	9			}),

10			undo:	fluent(function	{

11					this.done	=	false

12			}),

13			setName:	fluent(maybe(function	(name)	{

14					this.name	=	name

15			}))

16	});

If we’re rolling our own model class, we might mix in Backbone.Events. Now we can have
views listen to our todo items and render themselves when there’s a change. Since we’ve
already seen before, we’ll jump right to the recipe for after, a combinator that turns a
function into a method decorator:

1	function	after	(decoration)	{

2			return	function	(method)	{

3					return	function	()	{

https://github.com/raganwald/method-combinators/blob/master/README-JS.md#method-combinators
https://en.wikipedia.org/wiki/Flavors_
https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://backbonejs.org/#Events

4							var	value	=	method.apply(this,	arguments);

5							decoration.call(this,	value);

6							return	value

7					}

8			}

9	}

And here it is in use to trigger change events on our Todo “class.” We’re going to be even
more sophisticated and paramaterize our decorators.

	1	extend(Todo.prototype,	Backbone.Events);

	2	

	3	function	changes	(propertyName)	{

	4			return	after(function	()	{

	5					this.trigger('changed	changed:'+propertyName,	this[propertyName])

	6			})

	7	}

	8	

	9	extend(Todo.prototype,	{

10			do:	fluent(changes('done')(function	{

11					this.done	=	true

12			})),

13			undo:	fluent(changes('done')(function	{

14					this.done	=	false

15			})),

16			setName:	fluent(changes('name')(maybe(function	(name)	{

17					this.name	=	name

18			})))

19	});

The decorators act like keywords or annotations, documenting the method’s behaviour
but clearly separating these secondary concerns from the core logic of the method.

(before, after, and many more combinators for building method decorators can be found
in the method combinators module.)

Provided	and	Except
Neither the before and after decorators can actually terminate evaluation without throwing
something. Normal execution always results in the base method being evaluated. The
provided and excepting recipes are combinators that produce method decorators that apply a
precondition to evaluating the base method body. If the precondition fails, nothing is
returned.

https://github.com/raganwald/method-combinators/blob/master/README-JS.md#method-combinators

The provided combinator turns a function into a method decorator. The function must
evaluate to truthy for the base method to be evaluated:

1	function	provided	(predicate)	{

2			return	function(base)	{

3					return	function()	{

4							if	(predicate.apply(this,	arguments))	{

5									return	base.apply(this,	arguments);

6							}

7					};

8			};

9	};

provided can be used to create named decorators like maybe:

1	var	maybe	=	provided(function	(value)	{

2			return	value	!=	null

3	});

4			

5	SomeModel.prototype.setAttribute	=	maybe(function	(value)	{

6			this.attribute	=	value

7	});

You can build your own domain-specific decorators:

1	var	whenNamed	=	provided(function	(record)	{

2			return	record.name	&&	record.name.length	>	0

3	})

except works identically, but with the logic reversed.

	1	function	except	(predicate)	{

	2			return	function(base)	{

	3					return	function()	{

	4							if	(!predicate.apply(this,	arguments))	{

	5									return	base.apply(this,	arguments);

	6							}

	7					};

	8			};

	9	};

10	

11	var	exceptAdmin	=	except(function	(user)	{

12			return	user.role.isAdmin()

13	});

A	Functional	Mixin	Factory
Functional Mixins extend an existing class’s prototype. Let’s start with:

	1	function	Todo	(name)	{

	2			var	self	=	this	instanceof	Todo

	3														?	this

	4														:	new	Todo();

	5			self.name	=	name	||	'Untitled';

	6			self.done	=	false;

	7			return	self;

	8	};

	9	

10	Todo.prototype.do	=	fluent(function	()	{

11			this.done	=	true;

12	});

13	

14	Todo.prototype.undo	=	fluent(function	()	{

15			this.done	=	false;

16	});

We wish to decorate this with:

1	({

2			setLocation:	fluent(function	(location)	{

3					this.location	=	location;

4			}),

5			getLocation:	function	()	{	return	this.location;	}

6	});

Instead of writing:

1	function	becomeLocationAware	()	{

2			this.setLocation	=	fluent(function	(location)	{

3					this.location	=	location;

4			});

5			

6			this.getLocation	=	function	()	{	return	this.location;	};

7			

8			return	this;

9	};

We’ll extract the decoration into a parameter like this:

1	function	mixin	(decoration)	{

2			extend(this,	decoration);

3			return	this;

4	};

And then “curry” the function manually like this:

1	function	mixin	(decoration)	{

2	

3			return	function	()	{

4					extend(this,	decoration);

5					return	this;

6			};

7			

8	};

We can try it:

	1	var	MixinLocation	=	mixin({

	2			setLocation:	fluent(function	(location)	{

	3					this.location	=	location;

	4			}),

	5			getLocation:	function	()	{	return	this.location;	}

	6	});

	7	

	8	MixinLocation.call(Todo.prototype);

	9	

10	new	Todo('Paint	Bedroom').setLocation('Home');

11			//=>	{	name:	'Paint	Bedroom',

12			//					done:	false,

13			//					location:	'Home'

Success! Our mixin function makes functional mixins. A final refinement is to make it
“context-agnostic,” so that we can write either MixinLocation.call(Todo.prototype) or
MixinLocation(Todo.prototype):

	1	function	mixin	(decoration)	{

	2	

	3			return	function	decorate	()	{

	4					if	(arguments[0]	!===	void	0)	{

	5							return	decorate.call(arguments[0]);

	6					}

	7					else	{

	8							extend(this,	decoration);

	9							return	this;

10					};

11			};

12			

13	};

A	Class	Decorator	Factory
As discussed, a class decorator creates a new class with some additional decoration. It’s
lighter weight than subclassing. It’s also easy to write a factory function that makes
decorators for us. Recall:

	1	function	Todo	(name)	{

	2			var	self	=	this	instanceof	Todo

	3														?	this

	4														:	new	Todo();

	5			self.name	=	name	||	'Untitled';

	6			self.done	=	false;

	7			return	self;

	8	};

	9	

10	Todo.prototype.do	=	fluent(function	()	{

11			this.done	=	true;

12	});

13	

14	Todo.prototype.undo	=	fluent(function	()	{

15			this.done	=	false;

16	});

We wish to decorate this with:

1	({

2			setColourRGB:	fluent(function	(r,	g,	b)	{

3					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

4			}),

5			getColourRGB:	function	()	{

6					return	this.colourCode;

7			}

8	});

Instead of writing:

	1	function	AndColourCoded	(clazz)	{

	2			function	Decorated		()	{

	3					var	self	=	this	instanceof	Decorated

	4																?	this

	5																:	new	Decorated();

	6					

	7					return	clazz.apply(self,	arguments);

	8			};

	9			Decorated.prototype	=	new	clazz();

10			

11			Decorated.prototype.setColourRGB	=	fluent(function	(r,	g,	b)	{

12					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

13			});

14			

15			Decorated.prototype.getColourRGB	=	function	()	{

16					return	this.colourCode;

17			};

18			

19			return	Decorated;

20	};

We’ll extract the decoration into a parameter like this:

	1	function	classDecorator	(decoration,	clazz)	{

	2			function	Decorated		()	{

	3					var	self	=	this	instanceof	Decorated

	4																?	this

	5																:	new	Decorated();

	6					

	7					return	clazz.apply(self,	arguments);

	8			};

	9			Decorated.prototype	=	extend(new	clazz(),	decoration);

10			return	Decorated;

11	};

And then “curry” the function manually like this:

	1	function	classDecorator	(decoration)	{

	2	

	3			return	function	(clazz)	{

	4					function	Decorated		()	{

	5							var	self	=	this	instanceof	Decorated

	6																		?	this

	7																		:	new	Decorated();

	8					

	9							return	clazz.apply(self,	arguments);

10					};

11					Decorated.prototype	=	extend(new	clazz(),	decoration);

12					return	Decorated;

13			};

14			

15	};

We can try it:

	1	var	AndColourCoded	=	classDecorator({

	2			setColourRGB:	fluent(function	(r,	g,	b)	{

	3					this.colourCode	=	{	r:	r,	g:	g,	b:	b	};

	4			}),

	5			getColourRGB:	function	()	{

	6					return	this.colourCode;

	7			}

	8	});

	9	

10	var	ColourTodo	=	AndColourCoded(Todo);

11	

12	new	ColourTodo('Use	More	Decorators').setColourRGB(0,	255,	0);

13			//=>	{	name:	'Use	More	Decorators',

14			//					done:	false,

15			//					colourCode:	{	r:	0,	g:	255,	b:	0	}	}

Success! Our classDecorator function makes class decorators.

Iterator	Recipes

iterators	for	standard	data	structures
Note: Despite having capitalized names, iterators are not meant to be used with the new

keyword.

	1	function	FlatArrayIterator	(array)	{

	2			var	index;

	3			index	=	0;

	4			return	function()	{

	5					return	array[index++];

	6			};

	7	};

	8	

	9	function	RecursiveArrayIterator	(array)	{

10			var	index,	myself,	state;

11			index	=	0;

12			state	=	[];

13			myself	=	function()	{

14					var	element,	tempState;

15					element	=	array[index++];

16					if	(element	instanceof	Array)	{

17							state.push({

18									array:	array,

19									index:	index

20							});

21							array	=	element;

22							index	=	0;

23							return	myself();

24					}	else	if	(element	===	void	0)	{

25							if	(state.length	>	0)	{

26									tempState	=	state.pop(),	array	=	tempState.array,	index	=	tempState.inde\

27	x;

28									return	myself();

29							}	else	{

30									return	void	0;

31							}

32					}	else	{

33							return	element;

34					}

35			};

36			return	myself;

37	};

unfolding	iterators

	1	function	NumberIterator	(base)	{

	2			var	number;

	3			if	(base	==	null)	{

	4					base	=	0;

	5			}

	6			number	=	base;

	7			return	function()	{

	8					return	number++;

	9			};

10	};

11	

12	function	FibonacciIterator	()	{

13			var	current,	previous;

14			previous	=	0;

15			current	=	1;

16			return	function()	{

17					var	value,	tempValues;

18					value	=	current;

19					tempValues	=	[current,	current	+	previous],	previous	=	tempValues[0],	curren\

20	t	=	tempValues[1];

21					return	value;

22			};

23	};

decorators	for	slicing	iterators

	1	function	take	(iter,	numberToTake)	{

	2			var	count	=	0;

	3			return	function()	{

	4					if	(++count	<=	numberToTake)	{

	5							return	iter();

	6					}	else	{

	7							return	void	0;

	8					}

	9			};

10	};

11	

12	function	drop	(iter,	numberToDrop)	{

13			while	(numberToDrop--	!==	0)	{

14					iter();

15			}

16			return	iter;

17	};

18	

19	function	slice	(iter,	numberToDrop,	numberToTake)	{

20			var	count	=	0;

21			while	(numberToDrop--	!==	0)	{

22					iter();

23			}

24			if	(numberToTake	!=	null)	{

25					return	function()	{

26							if	(++count	<=	numberToTake)	{

27									return	iter();

28							}	else	{

29									return	void	0;

30							}

31					};

32			}

33			else	return	iter;

34	};

(drop was suggested by Redditor skeeto. His code also cleaned up an earlier version of
slice.)

catamorphic	decorator

	1	function	fold	(iter,	binaryFn,	seed)	{

	2			var	acc,	element;

	3			acc	=	seed;

	4			element	=	iter();

	5			while	(element	!=	null)	{

http://www.reddit.com/user/skeeto

	6					acc	=	binaryFn.call(element,	acc,	element);

	7					element	=	iter();

	8			}

	9			return	acc;

10	};

hylomorphic	decorators

	1	function	map	(iter,	unaryFn)	{

	2			return	function()	{

	3					var	element;

	4					element	=	iter();

	5					if	(element	!=	null)	{

	6							return	unaryFn.call(element,	element);

	7					}	else	{

	8							return	void	0;

	9					}

10			};

11	};

12	

13	function	statefulMap	(iter,	binaryFn,	initial)	{

14			var	state	=	initial;

15			return	function	()	{

16					element	=	iter();

17					if	(element	==	null)	{

18							return	element;

19					}

20					else	{

21							if	(state	===	void	0)	{

22									return	(state	=	element);

23							}

24							else	return	(state	=	binaryFn.call(element,	state,	element));

25					}

26			}

27	};

28	

29	function	filter	(iter,	unaryPredicateFn)	{

30			return	function()	{

31					var	element;

32					element	=	iter();

33					while	(element	!=	null)	{

34							if	(unaryPredicateFn.call(element,	element))	{

35									return	element;

36							}

37							element	=	iter();

38					}

39					return	void	0;

40			};

41	};

The	Golden	Crema

You’ve earned a break!

Author’s	Notes
Dear friends and readers:

On October 1st, 2013, I announced that JavaScript Allongé became free: It is now
licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. You
are free:

to	Share—to	copy,	distribute	and	transmit	the	work

to	Remix—to	adapt	the	work

to	make	commercial	use	of	the	work

Read the license yourself for the full details. But the bottom line is, it’s free, free, FREE!

And now, a few questions and answers…

allong.es	sounds	familiar…
The recipes in JavaScript Allonge inspired a companion library called allong.es. It’s free to

https://leanpub.com/javascript-allonge
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://allong.es/

use, of course. Please try it out. It complements the libraries you may already be using
like Underscore.

I	noticed	that	the	recipes	changed	in	early	2013.	Why?
Based on feedback from people exposed to other programming languages, I’ve renamed
some of the recipe functions. While doing so, I also rewrote the partial application and
some other parts of allong.es to exploit symmetry.

The new nomenclature has a few conventions. First, unless suffixed with Now, all functions
are already curried. So you can write either map(list, function) or map(list)(function). There isn’t
one, but if there was a map that wasn’t curried, it would be called mapNow.

By default, functions take a data structure first and an operation second and are named
after a verb, i.e. map, filter. As noted, they are curried by default.

Binary functions like map have a variation with their arguments flipped to have the “verb”
first and the subject second. They are suffixed With, so you call map(list, function) or
mapWith(function, list).

Under the new nomenclature, what used to be called splat is now called mapWith, and when
you supply only the function, the currying takes care of returning a function that takes as
list as its argument. You’re mapping with a function.

The	examples	seem	to	use	apply	and	call	indiscriminately.	Why?
In functional programming tradition, the function apply is used for functional application.
Variations include applyLeft and applyLast. JavaScript is a little different: All functions have
two methods: .apply takes an array of arguments, while .call takes separate arguments.

So the recipes in JavaScript Allongé follow the JavaScript convention: Those named apply

take an array of arguments, while those named call take individual arguments. If you’re
coming to this book with some functional programming under your belt, you’ll find the
functions work the same way, it’s just that there are two of them to handle the two
different ways to apply arguments to a function.

I	don’t	want	to	pay	to	download	a	PDF.	Can	I	make	my	own?
Yes, you can take the HTML that is available online or the markdown source in the
repository and make your own PDF. Or any other format. Please be aware that while it’s
technically possible to game the LeanPub system to produce the PDF or other formats, I
ask you as a personal favour to find another way to make a PDF.

The license permits this choice, but IMO it is contrary to the spirit of sharing and

http://allong.es/
https://github.com/raganwald/javascript-allonge/

openness to use their resources and work to do something that isn’t aligned with their
mission. And of course, they may not care for the idea, I don’t know and I don’t want to
undermine what has been a tremendous service for helping people write great technical
books.

Great	book!	Can	I	share	it?
And I’d also like you to share it, in this form, in PDF, or anything else. Go wild, just follow
the attribution rules in the license.

Great	book!	Can	I	still	buy	it?
Yes, please do.

I	don’t	want	to	buy	it,	but	I’d	like	to	say	“thank	you”	with	a	tip.
Sure thing, you can send a donation via PayPal to reg@braythwayt.com, or click this
button to donate $10 to help me write:

Hey,	I	have	a	great	way	to	make	money	with	this…
Go for it, you are free to make commercial use of the work. For example, you could host it
on your site and make money from ads, or write a JS tool and use the book as part of the
help content.

It’s all good, just follow the license terms. It is technically possible to create an identical
clone of the book on LeanPub. I do not prohibit this activity, but I do ask you as a personal
favour to ask yourself whether you could do even better, for instance to add value by
adding your own annotations, expansions, and commentary. I’d love to see an “Annotated
JavaScript Allongé.”

I’d also love to see translations, editions with large print, or anything else that brings
something new to the world. Many people have asked for a hard-copy version. Who will
be the first to set up shop on lulu.com?

I	found	a	typo!	How	do	I	tell	you	about	it?
My email inbox is a disaster zone, so let’s treat the book like open source. In order of my
preference, you should:

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://braythwayt.com/2013/10/04/the-freedom-to-pay-thirty-bucks.html
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=PNL4TZ4S37R34
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

1.	 Create	an	issue,	fork	the	repo,	fix	the	issue,	and	then	send	me	a	pull	request.	(Best!!)

2.	 Fork	the	repo,	fix	things	to	your	satisfaction,	and	then	send	me	a	pull	request.	(Better!)

3.	 Create	an	issue.	(Good.)

Thanks!

How	to	run	the	examples
If you follow the instructions at nodejs.org to install NodeJS and JavaScript,1 you can run
an interactive JavaScript REPL on your command line simply by typing node. This is how
the examples in this book were tested, and what many programmers will do.

On OS X, you have the option of running Safaris’s JavaScript engine from the command
line, or of installing a TextMate bundle. We didn’t use this method to test the examples, so
proceed at your own risk. But have fun!

Almost all browsers have a mechanism to function as JavaScript REPLs, allowing you to
type JavaScript expressions into a debug console.

Thanks!

Daniel	Friedman	and	Matthias	Felleisen

https://github.com/raganwald/javascript-allonge/issues
https://github.com/raganwald/javascript-allonge/
https://github.com/raganwald/javascript-allonge/pulls
https://github.com/raganwald/javascript-allonge/
https://github.com/raganwald/javascript-allonge/pulls
https://github.com/raganwald/javascript-allonge/issues
http://nodejs.org/
https://en.wikipedia.org/wiki/REPL
http://metaskills.net/2010/07/09/interactive-javascript-console-with-textmate/
https://en.wikipedia.org/wiki/REPL

The Little Schemer

JavaScript Allongé was inspired by The Little Schemer by Daniel Friedman and Matthias
Felleisen. But where The Little Schemer’s primary focus is recursion, JavaScript Allongé’s
primary focus is functions as first-class values.

http://www.amzn.com/0262560992?tag=raganwald001-20

Richard	Feynman

QED: The Strange Theory of Light and Matter

Richard Feynman’s QED was another inspiration: A book that explains Quantum
Electrodynamics and the “Sum of the Histories” methodology using the simple expedient
of explaining how light reflects off a mirror, and showing how most of the things we think
are happening–such as light travelling on a straight line, the angle of reflection equalling
the angle of refraction, or that a beam of light only interacts with a small portion of the
mirror, or that it reflects off a plane–are all wrong. And everything is explained in simple,
concise terms that build upon each other logically.

JavaScript	Spessore

http://www.amzn.com/0691125759?tag=raganwald001-20

JavaScript Spessore

Programming languages are (loosely) defined by their basic activity. In FORTRAN, we
program with numbers. In C, we program with pointers. In ML, we program with types.
And as JavaScript Allongé explains, in JavaScript we program with functions.

Functions are very interesting building blocks for programs, because they compose: It’s
easy to build a programming style based on making many small things that can be

https://leanpub.com/javascript-allonge

combined and recombined to make bigger things.

This is the basis of the vaunted “Unix Philosophy:” Write small utilities and scripts that
compose neatly. This is also the JavaScript philosophy: Make small things that can be
combined and recombined to make bigger things.

Programming with objects can be done in this style, and JavaScript makes it particularly
easy to combine and recombine small parts. Classes can be built from traits instead of
from superclasses. Objects can delegate and forward behaviour to helpers and meta-
objects. Adaptors can be written to change an object’s interface without needing to create
another class in a hierarchy.

JavaScript Spessore is a book that describes this approach to working with objects and
metaobjects in JavaScript. It’s exactly the same philosophy as you find in JavaScript
Allongé, only it talks to programming with objects instead of programming with functions.

JavaScript Spessore describes how to build JavaScript programs that scale in code, in
time, and across a team, using the one technique that has passed the test of time:
Objects and metaobjects that have a single responsibility, are decoupled from each other,
and can be composed freely.

Now that you’ve read JavaScript Allongé, JavaScript Spessore should be next.

Copyright	Notice
The original words in this book are (c) 2012-2013, Reginald Braithwaite. All rights
reserved.

images
The	picture	of	the	author	is	(c)	2008,	Joseph	Hurtado,	All	Rights	Reserved.

Cover	image	(c)	2010,	avlxyz.	Some	rights	reserved.

Double	ristretto	menu	(c)	2010,	Michael	Allen	Smith.	Some	rights	reserved.

Short	espresso	shot	in	a	white	cup	with	blunt	handle	(c)	2007,	EVERYDAYLIFEMODERN.
Some	rights	reserved.

Espresso	shot	in	a	caffe	molinari	cup	(c)	2007,	EVERYDAYLIFEMODERN.	Some	rights
reserved.

Beans	in	a	Bag	(c)	2008,	Stirling	Noyes.	Some	Rights	Reserved.

Free	Samples	(c)	2011,	Myrtle	Bech	Digitel.	Some	Rights	Reserved.

Free	Coffees	image	(c)	2010,	Michael	Francis	McCarthy.	Some	Rights	Reserved.

La	Marzocco	(c)	2009,	Michael	Allen	Smith.	Some	rights	reserved.

https://leanpub.com/javascript-spessore
https://leanpub.com/javascript-allonge
https://leanpub.com/javascript-allonge
https://leanpub.com/javascript-spessore
http://www.flickr.com/photos/trumpetca/
http://www.flickr.com/photos/avlxyz/4907262046
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/5054568279/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/1353570874/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/everydaylifemodern/434299813/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/the_rev/2295096211/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/thedigitelmyr/6199419022/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/sagamiono/4391542823/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/3924227011/
http://creativecommons.org/licenses/by-sa/2.0/deed.en

Cafe	Diplomatico	(c)	2011,	Missi.	Some	rights	reserved.

Sugar	Service	(c)	2008	Tiago	Fernandes.	Some	rights	reserved.

Biscotti	on	a	Rack	(c)	2010	Kirsten	Loza.	Some	rights	reserved.

Coffee	Spoons	(c)	2010	Jenny	Downing.	Some	rights	reserved.

Drawing	a	Doppio	(c)	2008	Osman	Bas.	Some	rights	reserved.

Cupping	Coffees	(c)	2011	Dennis	Tang.	Some	rights	reserved.

Three	Coffee	Roasters	(c)	2009	Michael	Allen	Smith.	Some	rights	reserved.

Blue	Diedrich	Roaster	(c)	2010	Michael	Allen	Smith.	Some	rights	reserved.

Red	Diedrich	Roaster	(c)	2009	Richard	Masoner.	Some	rights	reserved.

Roaster	with	Tree	Leaves	(c)	2007	ting.	Some	rights	reserved.

Half	Drunk	(c)	2010	Nicholas	Lundgaard.	Some	rights	reserved.

Anticipation	(c)	2012	Paul	McCoubrie.	Some	rights	reserved.

Ooh!	(c)	2012	Michael	Coghlan.	Some	rights	reserved.

Intestines	of	an	Espresso	Machine	(c)	2011	Angie	Chung.	Some	rights	reserved.

Bezzera	Espresso	Machine	(c)	2011	Andrew	Nash.	Some	rights	reserved.	*Beans	Ripening	on
a	Branch	(c)	2008	John	Pavelka.	Some	rights	reserved.

Cafe	Macchiato	on	Gazotta	Della	Sport	(c)	2008	Jon	Shave.	Some	rights	reserved.

Jars	of	Coffee	Beans	(c)	2012	Memphis	CVB.	Some	rights	reserved.

Types	of	Coffee	Drinks	(c)	2012	Michael	Coghlan.	Some	rights	reserved.

Coffee	Trees	(c)	2011	Dave	Townsend.	Some	rights	reserved.

Cafe	do	Brasil	(c)	2003	Temporalata.	Some	rights	reserved.

Brown	Cups	(c)	2007	Michael	Allen	Smith.	Some	rights	reserved.

Mirage	(c)	2010	Mira	Helder.	Some	rights	reserved.

Coffee	Van	with	Bullet	Holes	(c)	2006	Jon	Crel.	Some	rights	reserved.

Disassembled	Elektra	(c)	2009	Nicholas	Lundgaard.	Some	rights	reserved.

Nederland	Buffalo	Bills	Coffee	Shop	(c)	2009	Charlie	Stinchcomb.	Some	rights	reserved.

For	the	love	of	coffee	(c)	2007	Lotzman	Katzman.	Some	rights	reserved.

Saltspring	Processing	Facility	Pictures	(c)	2011	Kris	Krug.	Some	rights	reserved.

About	The	Author
When he’s not shipping JavaScript, Ruby, CoffeeScript and Java applications scaling out
to millions of users, Reg “Raganwald” Braithwaite has authored libraries for JavaScript,
CoffeeScript, and Ruby programming such as Method Combinators, Katy, JQuery
Combinators, YouAreDaChef, andand, and others.

He writes about programming on “Raganwald,” as well as general-purpose ruminations on

http://www.flickr.com/photos/15481483@N06/6231443466/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/tjgfernandes/2785677276/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/kirstenloza/4805716699/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/jenny-pics/5053954146/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/33388953@N04/4017985434/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/tangysd/5953453156/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4000837035/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/4309812256/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/bike/3237859728/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/lacerabbit/2102801319/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/nalundgaard/4785922266/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/paulmccoubrie/6828131856/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/mikecogh/7676649034/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/yellowskyphotography/5641003165/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/andynash/6204253236/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/28705377@N04/5306009552/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/shavejonathan/2343081208/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/ilovememphis/7103931235/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/mikecogh/7561440544/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/dtownsend/6171015997/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/93425126@N00/313053257/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/digitalcolony/2833809436/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/citizenhelder/5006498068/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/joncrel/237026246/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.flickr.com/photos/nalundgaard/3163852170/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/47000103@N05/6525288841/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://www.flickr.com/photos/lotzman/978418891/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/kk/sets/72157626168201654/with/5484839102/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://github.com/raganwald
http://raganwald/

“Braythwayt Dot Com”.

contact
Twitter: @raganwald Email: reg@braythwayt.com

http://braythwayt.com/
https://twitter.com/raganwald
mailto:reg@braythwayt.com

Reg “Raganwald” Braithwaite

Instructions	for	installing	NodeJS	and	modules	like	JavaScript	onto	a	desktop	computer	is	beyond

the	scope	of	this	book,	especially	given	the	speed	with	which	things	advance.	Fortunately,	there	are
always	up-to-date	instructions	on	the	web.↩

	A Pull of the Lever: Prefaces
	Foreword by Michael Fogus
	Foreword by Matthew Knox
	Why JavaScript Allongé?
	A Personal Word About The Recipes
	Legend
	JavaScript Spessore

	Prelude: Values and Expressions
	values and expressions
	values and identity

	1. The first sip: Basic Functions
	As Little As Possible About Functions, But No Less
	Ah. I’d Like to Have an Argument, Please.
	Closures and Scope
	Let’s Talk Var
	Naming Functions
	Combinators and Function Decorators
	Building Blocks
	I’d Like to Have Some Arguments. Again.
	Summary

	2. The Recipe Cheat Sheet
	3. Recipes with Basic Functions
	Partial Application
	Ellipses and improved Partial Application
	Unary
	Tap
	Maybe

	4. The Pause That Refreshes: Rebinding and References
	Arguments and Arrays
	References and Objects
	Reassignment and Mutation
	How to Shoot Yourself in the Foot With Var
	When Rebinding Meets Recursion
	From Let to Modules

	5. Recipes with Rebinding and References
	Once
	mapWith
	Flip
	Extend
	Why?

	6. Stir the Allongé: Objects, Mutation, and State
	Encapsulating State with Closures
	Composition and Extension
	This and That
	What Context Applies When We Call a Function?
	Method Decorators

	7. Recipes with Objects, Mutations, and State
	Memoize
	getWith
	pluckWith
	Deep Mapping

	8. Finish the Cup: Instances and Classes
	Prototypes are Simple, it’s the Explanations that are Hard To Understand
	Binding Functions to Contexts
	Partial Application, Binding, and Currying
	A Class By Any Other Name
	Object Methods
	Extending Classes with Inheritance
	Summary

	9. Recipes with Instances and Classes
	Currying
	Bound
	Unbinding
	Send
	Invoke
	Fluent
	Once Again

	10. Sequence
	Introduction: Compose and Pipeline

	11. New Ideas
	How Prototypes and Constructors differ from Classes
	New-Agnostic Constructors
	Another New-Agnostic Constructor Pattern
	Mixins
	Class Decorators
	Interlude: Tortoises, Hares, and Teleporting Turtles
	Functional Iterators
	Refactoring to Functional Iterators
	A Drunken Walk Across A Chequerboard
	Trampolining

	12. Recipes for New Ideas
	Before
	After
	Provided and Except
	A Functional Mixin Factory
	A Class Decorator Factory
	Iterator Recipes

	The Golden Crema
	Author’s Notes
	How to run the examples
	Thanks!
	JavaScript Spessore
	Copyright Notice
	About The Author

