This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ Maintain attribution The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/
LEHRBUCH
DER
CHEMISCH-ANALY蒂CHEN
TITRIMETHODE.

NACH
EIGENEN VERSUCHEN UND SYSTEMATISCH DARGESTELLT
VON
FRIEDRICH MOHR,
Dr. der Philosophie und Medicin, Professor der Pharmacie an der Universität Bonn,
Medicinalrat und Assessor Pharmacie beim Rheinischen Medicinal-Collegium zu Coblenz, der
Bayerischen Akademie der Wissenschaften corrispondirendes Mitglied, der pharmaceutischen
Gesellschaften zu Erlangen, Wien, Antwerpen, London, Brüssel, St. Petersburg, Philadelphia,
Boston (Massachusetts), Chicago, New-Hampshire, der Pollichia, der naturforschenenden Gesell-
schaften und Gewerbevereine zu Embden, Mainz, Aachen, Frankfurt a. M., Lahr, Darmstadt,
Hamburg etc., der Kaiserlich Leopoldinischen Akademie der Naturforscher, corrispondirendes
resp. Ehrenmitglied, Ritter des rothen Adlerordens vierten Grades.

FÜR
CHEMIKER, ÄRZTE UND PHARMACEUTEN,
BERG- UND HÜTTENMÄNNER, FABRIKANTEN, AGRONOMEN,
METALLURGEN, MÜNZBEAMTE etc.

Fünfte durchaus umgearbeitete Auflage.

Mit zahlreichen in den Text eingedruckten Holzstichen
und angehängten Berechnungstafeln.

BRAUNSCHWEIG,
DRUCK UND VERLAG VON FRIEDRICH VIEWEG UND SOHN.
1877.
Die Herausgabe einer Uebersetzung in französischer und englischer Sprache, sowie in anderen modernen Sprachen wird vorbehalten.
Die maassanalytischen Methoden waren bis jetzt nur als vereinzelte Verfahrensarten und Hülfen der Analyse veröffentlicht und angewendet worden. Ich unternehme es, die einzelnen Arbeiten unter einem gemeinschaftlichen Gesichtspunkte zu sammeln und nach einem Systeme darzustellen. Dabei will ich jedoch von vornherein die Ansicht ablehnen, als betrachte ich die Maassanalyse als eine besondere Wissenschaft und als sei schon damit etwas gewonnen, wenn man eine gute Gewichtsanalyse in eine Maassanalyse verwandelt habe. Im Gegentheil möchte ich gleich aussprechen, dass die chemische Analyse nur ein Ganzes ist, dass die verschiedenen Methoden sich ergänzen, bestätigen und begründen sollen, und dass die Gewichtsanalyse immer die Grundlage bleibt.

Wenn die Gewichtsanalyse in vielen Fällen weit zeitraubender und umständlicher ist, so hat sie doch einen bis jetzt nicht genug hervorgehobenen Vorzug, dass sie dem Chemiker bekannte erkennbare Stoffe als Gewährleistung seiner Arbeit in die Hand gibt. Die Beschaffenheit des Chlorsilbers, des schwefelsauren Baryts, des me-
tallischen Kupfers, des chromsauren Bleioxyds und anderer Stoffe geben dem mit den Erscheinungen Vertrauten die Gewissheit, dass er die bewussten Stoffe in Händen habe.

Bei der Maassanalyse liegt uns diese Sicherheit viel ferner. Die meisten Oxydure entfärben in gleicher Art das übermangansaure Kali, alle Salzbilder erzeugen in gewissen Arbeiten die blaue Farbe der Jodstärke, alle Säuren färben das Lackmuspigment roth, und alle Basen das rothe blau. Es muss also hier noch mehr Garantie geleistet werden, wenn man aus einer Erscheinung ein ganz bestimmtes Zahlenresultat ableiten will. Die Maassanalyse ist deshalb in unsicheren Händen ein äusserst gefährliches Hülfsmittel, mit dem man bei mangelnder Umsicht und Vorsicht weit grössere Fehler als mit der Gewichtsanalyse begehen kann. Ich habe mein besonderes Augenmerk auf diese Garantien gerichtet, und die Zuverlässigkeit einer Methode immer aus directen quantitativen Bestimmungen bekannter Mengen reiner Stoffe abgeleitet. Wenn diese Zweifel gehoben sind, so ist die Maassanalyse das werthvollste Geschenk, was die Chemie der neueren Zeit der Agricultur und Physiologie, der Technologie und Hüttenkunde, überhaupt der Menschheit gemacht hat. Sie vervielfältigt die Hände und die Zahl der von ihnen zu erlangenden Resultate, sie erlaubt Untersuchungen während des Fortganges einer technischen Operation vorzunehmen, die darauf vom grössten Einflusse sind; sie ist ein Mikroskop, womit man Zahlen augenblicklich sieht, welche man sonst mühsam erringen musste. Es können nun Fragen gestellt werden, die man früher einem Chemiker vom Fach nicht stellen konnte, wenn er zu ihrer Beantwortung ganze Tage gebrauchte. Der Nutzen chemischer Thatsachen wird aus den Laboratorien der Chemiker in das Leben hinabsteigen, da diejenigen, denen es nicht um Pflege der Wissenschaft zu thun ist, für einzelne Operationen leicht Uebung genug erlangen können, um die Wissenschaft praktisch nutzbar zu machen. Das Lehrbuch der Wissenschaft hat alle diese Gewährleistungen zu übernehmen, während die Praxis dieselben ausbeutet.

Eine grosse Erschwerung der Methode waren die sehr abweichenden Stärken der Maassflüssigkeiten. Während die Arbeiten in den Händen der Chemiker abnahmen, häuften sich die Flaschen im Laboratorium zu einer unbequemen Masse an. Jeder Entdecker einer Methode gab seinen Maassflüssigkeiten entweder eine ganz beliebige Stärke oder eine solche, die nur mit dem gerade zu untersuchenden Stoffe in einem ganz einfachen Verhältnisse stand. Wir erhielten da ganz verschiedene Probesäuren für Kali, Natron,

Eine andere Sorge betraf die Messinstrumente. Ich habe bei den Büretten eine neue Form eingeführt, welche sich bis jetzt des allgemeinsten Beifalles und grosser Verbreitung zu erfreuen hatte. Die dabei vorkommende elastische Klemme hat im Laboratorium des Chemikers die mannigfaltigsten Anwendungen zum Durchlassen und Absperren von Gasarten und Flüssigkeiten gefunden. Wenn die Massanalyse wirklich abkürzend sein sollte, so mussten die Volumina unmittelbar an der Röhre abgelesen werden können. Um dies mit der grössten Sicherheit thun zu können, musste die Methode der Theilung der Röhre vervollkommnet werden.

In Betreff des materiellen Inhaltes wird der sachkundige Leser eine umfangreiche Kritik des Vorhandenen und manches Neue bemerken.
Vorrede.

Die Alkalimetrie ist durch Beseitigung der Kohlensäure zu einer Schärfe gelangt, welche die strengsten analytischen Operationen sonst nur auszuzeichnen pflegte. Die Bestimmung der alkalischen Erden durch eine titrirte Salpetersäure, die Bestimmung der Kohlensäure durch den alkalimetrischen Werth des mitgefallten Baryts, die Bestimmung der gebundenen Schwefelsäure, des Essigäthers sind wesentlich neu.

Die Chromanalyse hat in dem Zinnchlorür-Chlorammonium eine neue unveränderliche Titersubstanz erhalten*), und endlich ist die von dem Verfasser angegebene Arsenikanalyse auf die meisten Oxydations- und Reductionerscheinungen mit absolutem Erfolg angewendet worden. Es sind jetzt in dieser Analyse zwei haltbare unveränderliche Stoffe als gegenwirkend gegeben, und die Operationen gegen gleichlaufende Methoden mit derselben Schärfe des Resultats auf die Hälfte abgekürzt.

Was die Form der Darstellung betrifft, so glaube ich erwähnen zu müssen, dass ich mich bemüht habe, den Gegenstand überall mit der grössten Deutlichkeit zu behandeln, dass er nicht nur dem Chemiker vom Fach, sondern auch dem Fabrikanten, dem praktischen Berg- und Hüttenmanne leicht verständlich ist. Es bleibt Demjenigen, welcher die Chemie nicht als Wissenschaft betreibt, ganz freigestellt, sich das Verständniss des Zusammenhanges oder auch nur die praktischen Resultate und Methoden der Analyse anzueignen und sich wegen der Begründung auf die Angaben der Wissenschaft zu verlassen. Gerade für diese Analysen, welche bestimmt sind, von Technikern ausgeübt zu werden, sind die einfachsten, unzweideutigsten und leichtesten Methoden gesucht worden. Die Analysen des Braunsteins, der Eisenerze, der Schlacken, des Chlorkalks, der Soda, der Pottasche, die Bestimmung des Kalks im Mergel, im Brunnenwasser sind zu einer so grossen Leichtigkeit

*) Gilt nicht mehr.
Vorrede.

gelangt, dass sie selbst in wenig geübten Händen zu sicheren Resultaten führen können.

Die Entwicklung dieses Zweiges der Wissenschaft ist so ungemessen rasch, dass jetzt bei Ausgabe des Werkes einige Methoden schon nicht mehr dieselbe Bedeutung haben, die sie während der Bearbeitung hatten, was in Betreff der Beurteilung nicht ausser Augen zu lassen ist.

Coblenz, im Juli 1855.

Dr. Mohr.

VORREDE ZUR FÜNFTEN AUFLAGE.

Da dies Werk jetzt unbestritten das Hauptwerk über Titrirmethode ist, sowohl wegen der wissenschaftlichen Begründung als wegen des grossen Umfangs des Materials und weil die vom Verfasser erfundenen Apparate und Methoden darin zuerst originaliter niedergelegt sind, so ist der Plan desselben unverändert beibehalten worden. Darnach sind alle Analysen zusammengestellt, welche nach derselben Methode ausgeführt werden, und es ist damit der Umstand
verbunden, dass die verschiedenen Bestimmungsmethoden desselben Körpers unter verschiedenen Abschnitten vorkommen. Eine andere Art der Aufstellung, welche von der wissenschaftlichen Begründung mehr absieht, stellt die verschiedenen Bestimmungsmethoden desselben Körpers zusammen. Nach diesem System sind die kleineren Werke bearbeitet, welche zahlreich aus dem vorliegenden Werke mit Benutzung aller Abbildungen und Entwicklungen, oft ohne Quellenangabe, herausgeschnitten sind. Wer alle für denselben Körper angegebenen Methoden nachschlagen will, findet sie im alphabetischen Register mit Seitenzahl aufgeführt.

Die Beleganalysen für die durch vielfältige Prüfung als unzweifelhaft richtig anerkannten Methoden sind in dieser Auflage weggelassen worden, und dafür Raum für neue Methoden gewonnen worden, ohne den Umfang zu vergrößern. So namentlich bei der Alkalimetrie. Der Abschnitt Chamäleon ist nach einem neuen Plane bearbeitet, und alle Resultate auf ein gemeinschaftliches Maass, Eisen als Oxydul, bezogen.

Bonn, im October 1877.

Dr. Mohr.
Inhaltsverzeichnis

I. Die Instrumente

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>Die Büretten</td>
<td>2</td>
</tr>
<tr>
<td>Ab- und Zuflussbüretten</td>
<td>16</td>
</tr>
<tr>
<td>Gay-Lussac's Bürrette</td>
<td>20</td>
</tr>
<tr>
<td>Die Pipetten</td>
<td>28</td>
</tr>
<tr>
<td>Maasflaschen, Metrisches Maass- und Gewichtssystem</td>
<td>37</td>
</tr>
<tr>
<td>Das titrimetrische System</td>
<td>50</td>
</tr>
<tr>
<td>Über die verschiedenen Arten der Maassanalyse</td>
<td>53</td>
</tr>
<tr>
<td>Analysen ohne Büretten</td>
<td>57</td>
</tr>
<tr>
<td>Analysen ohne Gewichte</td>
<td>58</td>
</tr>
<tr>
<td>Wage und Gewichte</td>
<td>62</td>
</tr>
<tr>
<td>Schutz gegen Dämpfe</td>
<td>66</td>
</tr>
<tr>
<td>Richtig trocknen</td>
<td>67</td>
</tr>
<tr>
<td>Abscheidung von Niederschlägen ohne Papierfilter</td>
<td>69</td>
</tr>
<tr>
<td>Berechnungen</td>
<td>70</td>
</tr>
</tbody>
</table>

II. Alkalimetrie

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeines</td>
<td>72</td>
</tr>
<tr>
<td>Die Pflanzpigmente und der Farbenwechsel</td>
<td>73</td>
</tr>
<tr>
<td>Bereitung der normalen kohlensauren Natronlösung</td>
<td>83</td>
</tr>
<tr>
<td>Bereitung der Normalsäure</td>
<td>85</td>
</tr>
<tr>
<td>Die alkalimetrische Operation nach der ersten Methode</td>
<td>87</td>
</tr>
<tr>
<td>Richtigstellung der Normalflassigkeiten und Urprüfung derselben</td>
<td>87</td>
</tr>
<tr>
<td>Zweite Methode, vom Verfasser. Oxalsäure (Klebsäure) als Grundlage der Alkalimetrie</td>
<td>90</td>
</tr>
<tr>
<td>Darstellung der Normaloxalsäure</td>
<td>93</td>
</tr>
<tr>
<td>Darstellung der alkalischen Normalflassigkeit</td>
<td>-</td>
</tr>
<tr>
<td>Die alkalimetrische Operation nach der zweiten Methode</td>
<td>99</td>
</tr>
<tr>
<td>Natron</td>
<td>100</td>
</tr>
<tr>
<td>Kali</td>
<td>101</td>
</tr>
<tr>
<td>Aetzendes Natron und Kali mit kohlensauren Alkalien. Dieselben Konstanten wie bei Kali und Natron</td>
<td>103</td>
</tr>
<tr>
<td>Gebundenes Kali und Natron in neutralen und sauren Salzen. Dieselben Konstanten wie bei Kali und Natron</td>
<td>105</td>
</tr>
<tr>
<td>Inhaltsverzeichniss</td>
<td>Seite</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Alkalien und Erden in organischsauren Salzen</td>
<td>105</td>
</tr>
<tr>
<td>Ammoniak</td>
<td>106</td>
</tr>
<tr>
<td>Gebundenes Ammoniak in neutralen Salzen</td>
<td></td>
</tr>
<tr>
<td>1. Mit normalen Flüssigkeiten</td>
<td>111</td>
</tr>
<tr>
<td>2. Nach Pettenkofer's Methode</td>
<td></td>
</tr>
<tr>
<td>3. Directe Bestimmung</td>
<td>112</td>
</tr>
<tr>
<td>Alkalische Erden</td>
<td>115</td>
</tr>
<tr>
<td>Kalk</td>
<td>116</td>
</tr>
<tr>
<td>Kohlensaurer Kalk in natürlichen Wässern</td>
<td>117</td>
</tr>
<tr>
<td>Kohlensaure Bittererde in Lösung</td>
<td>118</td>
</tr>
<tr>
<td>Baryt</td>
<td></td>
</tr>
<tr>
<td>Strontian</td>
<td>119</td>
</tr>
<tr>
<td>Rohrzucker</td>
<td></td>
</tr>
<tr>
<td>Salpetersäure</td>
<td>120</td>
</tr>
<tr>
<td>Kohlensaure</td>
<td>122</td>
</tr>
<tr>
<td>Zinkoxyd</td>
<td>127</td>
</tr>
<tr>
<td>Bittererde</td>
<td>128</td>
</tr>
<tr>
<td>Gebundene Schwefelsäre</td>
<td></td>
</tr>
<tr>
<td>a. Direct als kohlensaures Alkali</td>
<td>129</td>
</tr>
<tr>
<td>b. Als Rest von kohlensaurem Baryt</td>
<td></td>
</tr>
<tr>
<td>c. Directe Methode, als kohlensaures Bleioxyd</td>
<td>130</td>
</tr>
<tr>
<td>d. Directe Methode, als kohlensaurem Strontian</td>
<td></td>
</tr>
<tr>
<td>Acidimetrie</td>
<td>132</td>
</tr>
<tr>
<td>1. Allgemeine Methode</td>
<td></td>
</tr>
<tr>
<td>2. Kieffer's Methode</td>
<td>134</td>
</tr>
<tr>
<td>3. Pettenkofer's Methode</td>
<td>138</td>
</tr>
<tr>
<td>Salzsäure</td>
<td>141</td>
</tr>
<tr>
<td>Salpetersäure</td>
<td></td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>142</td>
</tr>
<tr>
<td>Doppelt schwefelsaures Kali und Natron</td>
<td></td>
</tr>
<tr>
<td>Kohlensaure</td>
<td>143</td>
</tr>
<tr>
<td>Thonerde</td>
<td>146</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>148</td>
</tr>
<tr>
<td>Weinsäure</td>
<td>149</td>
</tr>
<tr>
<td>Weinstein</td>
<td>150</td>
</tr>
<tr>
<td>Doppelt weinsaures Natron</td>
<td>151</td>
</tr>
<tr>
<td>Zitronensäure</td>
<td></td>
</tr>
<tr>
<td>Bernstein säure</td>
<td>152</td>
</tr>
<tr>
<td>Salicylsäure</td>
<td></td>
</tr>
<tr>
<td>Oxalsaure und Kleesalz (Oxalium)</td>
<td>153</td>
</tr>
<tr>
<td>Gebundenes Kali als Weinstein bestimmt</td>
<td></td>
</tr>
<tr>
<td>Gebundenes Kali und Natron als Kieselfuorkalium und -Natrium bestimmt</td>
<td>159</td>
</tr>
<tr>
<td>Borsäure</td>
<td>161</td>
</tr>
<tr>
<td>Säuremessung im Harn</td>
<td>162</td>
</tr>
<tr>
<td>Essigäther. (Ueberaupt Aether organischer Säuren.)</td>
<td>163</td>
</tr>
<tr>
<td>Chloralhydrat</td>
<td>165</td>
</tr>
<tr>
<td>Säurebestimmung in gefärbten Flüssigkeiten. (Essig, Holzessig, weisser Wein, rother Wein, Most etc.)</td>
<td>166</td>
</tr>
<tr>
<td>Allgemeine Bestimmung gebundener Säuren in Erd- und Metalloxydsalzen</td>
<td>167</td>
</tr>
<tr>
<td>Atomgewichtsbestimmungen durch Tittrirung</td>
<td>170</td>
</tr>
</tbody>
</table>

III. Oxydations- und Reductionsanalyzen. (Oxydometrie) 172

<p>| Allgemeines | |
| Chamäleon minerale. Überrangansaures Kali gegen Eisenoxydul oder Oxalsäure. Allgemeines Verhalten | 174 |
| Bereitung des Chamaleons | 178 |
| Bereitung der Messflüssigkeiten | |
| Titerstellung des Chamaleons | |
| 1. Mit metallischem Eisen | |
| 2. Mit schwefelsaurem Eisenoxydul-Ammoniak | 182 |
| 3. Mit Oxalsaure | 184 |</p>
<table>
<thead>
<tr>
<th>Inhaltsverzeichniss.</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Mit Blutlaugensalz</td>
<td>185</td>
</tr>
<tr>
<td>Berechnung der mit Chamäleon gemachten Analysen</td>
<td>186</td>
</tr>
<tr>
<td>Praktische Bemerkungen über den Gebrauch des Chamäleons</td>
<td>190</td>
</tr>
<tr>
<td>Korrigierung überstürzter Analysen</td>
<td>195</td>
</tr>
<tr>
<td>Eisen</td>
<td>196</td>
</tr>
<tr>
<td>Mangan</td>
<td>197</td>
</tr>
<tr>
<td>Hyperoxyde</td>
<td>198</td>
</tr>
<tr>
<td>Uebermangansäure</td>
<td>200</td>
</tr>
<tr>
<td>Oxalsäure</td>
<td>201</td>
</tr>
<tr>
<td>Kalk</td>
<td>203</td>
</tr>
<tr>
<td>Blei</td>
<td>204</td>
</tr>
<tr>
<td>Wismuth</td>
<td>205</td>
</tr>
<tr>
<td>Kupfer</td>
<td>206</td>
</tr>
<tr>
<td>Blutlaugensalz (Kaliumeisencyanür)</td>
<td>207</td>
</tr>
<tr>
<td>Berlinerblau, Pariserblau. (Eisencyanürcyanid.)</td>
<td>209</td>
</tr>
<tr>
<td>Kaliumeisencyanid. Rothe Blutlaugensalz. Gmelin’s Salz</td>
<td>211</td>
</tr>
<tr>
<td>Salpetersäure</td>
<td>214</td>
</tr>
<tr>
<td>Salpetrige Säure</td>
<td>216</td>
</tr>
<tr>
<td>Phosphorsäure</td>
<td>217</td>
</tr>
<tr>
<td>Schwefelwasserstoff</td>
<td>218</td>
</tr>
<tr>
<td>Zink</td>
<td>219</td>
</tr>
<tr>
<td>Kadmium</td>
<td>220</td>
</tr>
<tr>
<td>Zinn</td>
<td>221</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>222</td>
</tr>
<tr>
<td>Molybdän</td>
<td>223</td>
</tr>
<tr>
<td>Titan säure</td>
<td>224</td>
</tr>
<tr>
<td>Gold</td>
<td>225</td>
</tr>
<tr>
<td>Absorbirter Sauerstoff im Wasser</td>
<td>226</td>
</tr>
<tr>
<td>Wasserstoffhyperoxyd</td>
<td>227</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>228</td>
</tr>
<tr>
<td>Chloräure</td>
<td>229</td>
</tr>
<tr>
<td>Chromäure</td>
<td>230</td>
</tr>
<tr>
<td>Chlor und unterchlorigsäure Salze</td>
<td>231</td>
</tr>
<tr>
<td>Gebundenes Jod</td>
<td>232</td>
</tr>
<tr>
<td>Traubenzucker</td>
<td>233</td>
</tr>
<tr>
<td>Harnsäure</td>
<td>234</td>
</tr>
<tr>
<td>Zusammenstellung der Factoren der verschiedenen Körper, bei Anwendung von empirischer Chamäleonlösung mit 5-648 g übermangansäurem Kali im Liter</td>
<td>235</td>
</tr>
</tbody>
</table>

<p>| IV. Chromäure. Doppelt chromsaures Kali gegen Eisen-oxydul | 236 |
| Allgemeines Verhalten | 238 |
| Eisen | 240 |
| Chrom | 242 |
| Manganoxyde | 243 |
| Kupfer | 244 |
| Salpetersäure | 245 |
| Streng’s und Kessler’s Methoden | 246 |
| V. Jod gegen unterschwefligsaures Natron | 248 |
| Wechselwirkung der Stoffe | 249 |
| Die Massflüssigkeiten und Titerstellung | 250 |
| Urprüfung beider Flüssigkeiten | 251 |
| Die Stärkelösung | 252 |
| Vorbereitende Arbeiten | 253 |
| Die Operation der Jodbestimmung | 254 |
| Bunsen’s Methode | 255 |
| Jod, freies und gebundenes. 1. Freies Jod | 256 |</p>
<table>
<thead>
<tr>
<th>Inhaltsverzeichniss.</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Gebundenes Jod.</td>
<td></td>
</tr>
<tr>
<td>a. Mit Eisenchlorid oder schwefelsaurem</td>
<td>260</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td></td>
</tr>
<tr>
<td>b. Mit Kupferchlorid oder -Vitriol</td>
<td>262</td>
</tr>
<tr>
<td>c. Mit Untersalpetersäure</td>
<td>263</td>
</tr>
<tr>
<td>Bestimmung des Jods durch Oxydation</td>
<td>264</td>
</tr>
<tr>
<td>Unterschweflige Säure</td>
<td>268</td>
</tr>
<tr>
<td>Chlor, freies</td>
<td>269</td>
</tr>
<tr>
<td>Brom, freies</td>
<td>270</td>
</tr>
<tr>
<td>Jod und Brom, gebunden</td>
<td></td>
</tr>
<tr>
<td>Unterchlorigsäure Salze, Bleichsalze</td>
<td>271</td>
</tr>
<tr>
<td>Cyan in Verbindungen</td>
<td>273</td>
</tr>
<tr>
<td>Schweflige Säure</td>
<td>276</td>
</tr>
<tr>
<td>Schwefelwasserstoff (Sulphydrometrie)</td>
<td>277</td>
</tr>
<tr>
<td>Antimonoxyd</td>
<td>279</td>
</tr>
<tr>
<td>Zinn</td>
<td>281</td>
</tr>
<tr>
<td>Kaliumeisencyanid</td>
<td>284</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>287</td>
</tr>
<tr>
<td>Kupfer</td>
<td>288</td>
</tr>
<tr>
<td>Eisen. 1. Durch Jodkalium und unterschweflige saures Natron</td>
<td>290</td>
</tr>
<tr>
<td>2. Durch Zinnchlorid und Jodlösung</td>
<td>295</td>
</tr>
<tr>
<td>Ozon</td>
<td>298</td>
</tr>
<tr>
<td>Chlorsäure</td>
<td>299</td>
</tr>
<tr>
<td>Jodsäure</td>
<td>300</td>
</tr>
<tr>
<td>Bromsäure</td>
<td>301</td>
</tr>
<tr>
<td>Chromsäure</td>
<td>302</td>
</tr>
<tr>
<td>Baryt</td>
<td>303</td>
</tr>
<tr>
<td>Manganoxyd</td>
<td>304</td>
</tr>
<tr>
<td>Kobaltyperoxyd</td>
<td>305</td>
</tr>
<tr>
<td>Nickelhyperoxyd</td>
<td>306</td>
</tr>
<tr>
<td>Ceroxyd</td>
<td>307</td>
</tr>
<tr>
<td>Salpetersäure</td>
<td>308</td>
</tr>
<tr>
<td>Salpetrigsaure Verbindungen in natürlichen Wässern</td>
<td>311</td>
</tr>
<tr>
<td>Traubenzucker</td>
<td>312</td>
</tr>
<tr>
<td>Selensäure, Mangansäure, Eisensäure, Bleihperoxyd, Silberhyperoxyd, Vanadinsäure u. a.</td>
<td>314</td>
</tr>
<tr>
<td>Ueberjodsäure</td>
<td></td>
</tr>
<tr>
<td>Jodometrische Säuremessung</td>
<td>315</td>
</tr>
<tr>
<td>Karbolsäure. (Phenol, Phenylsäure.)</td>
<td>316</td>
</tr>
<tr>
<td>Alkaloiide</td>
<td>317</td>
</tr>
<tr>
<td>VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod. (Chlorometrie.)</td>
<td>319</td>
</tr>
</tbody>
</table>

Bereitung der Massflüssigkeiten | 321 |
Das Stärkepräparat | 322 |
Die chlorometrische Operation | 323 |
Arsenige Säure | 325 |
Chlor | 327 |
Unterchlorigsäure Salze. (Bleichsalze, Labarraque'sche Flüssigkeit, Eau de Javelle, Chlorkalk.) | 328 |
Brom | 333 |
Jod | 334 |
Schwefelwasserstoff | |
Ammoniak durch bromirtes unterchlorigsaures Natron | 338 |
Salpetersäure durch Umsetzung in Ammoniak und dann nach der vorigen Nummer | 339 |
Manganhyperoxyd. (Braunstein.) | 340 |
Hyperoxyde | 341 |
Chromsäure. Die Konstanten sind dieselben wie oben S. 302 | |
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. Fällungsanalysen</td>
<td>343</td>
</tr>
<tr>
<td>Allgemeines</td>
<td></td>
</tr>
<tr>
<td>Cyan. (Cyanwasserstoff, Cyanmetalle.) a. Durch Silberlösung</td>
<td>345</td>
</tr>
<tr>
<td>b. Durch Kupferlösung</td>
<td>350</td>
</tr>
<tr>
<td>Chlor. a. Durch Silberlösung</td>
<td>352</td>
</tr>
<tr>
<td>b. Durch Silberlösung mit neutralem chromsauren Kali als Indicator, vom Verfasser</td>
<td>354</td>
</tr>
<tr>
<td>Die konzentrierte Kochsalzlösung</td>
<td>357</td>
</tr>
<tr>
<td>c. Durch Quecksilberoxydösung</td>
<td>358</td>
</tr>
<tr>
<td>Ueber die Löslichkeit des chromsauren Silberoxyds in Wasser</td>
<td>359</td>
</tr>
<tr>
<td>Chlor, Brom und Jod in salzartigen Verbindungen zusammen</td>
<td>360</td>
</tr>
<tr>
<td>Chlor und Brom</td>
<td>361</td>
</tr>
<tr>
<td>Chlor und Jod</td>
<td>364</td>
</tr>
<tr>
<td>Jod</td>
<td>366</td>
</tr>
<tr>
<td>Palladium</td>
<td>369</td>
</tr>
<tr>
<td>Silber. 1. Im Systeme. a. Mit Chlornatrium</td>
<td>370</td>
</tr>
<tr>
<td>b. Mit Jodkaliyum</td>
<td>371</td>
</tr>
<tr>
<td>c. Mit Rhodanammonium</td>
<td>372</td>
</tr>
<tr>
<td>2. Empirisch-technische Silberprobe</td>
<td></td>
</tr>
<tr>
<td>Der chemische Vorgang</td>
<td>374</td>
</tr>
<tr>
<td>Bereitung der Probefülligkeiten</td>
<td>377</td>
</tr>
<tr>
<td>Die Annäherungsprobe</td>
<td>379</td>
</tr>
<tr>
<td>Erhebung der Probe auf 1000</td>
<td>380</td>
</tr>
<tr>
<td>Das Probenehmen</td>
<td>381</td>
</tr>
<tr>
<td>Auflösung der Silberprobe</td>
<td>382</td>
</tr>
<tr>
<td>Fällung von 1 g Silber</td>
<td></td>
</tr>
<tr>
<td>Vollendung der Analyse</td>
<td>387</td>
</tr>
<tr>
<td>Die zum Probieren erforderlichen Substanzen</td>
<td>389</td>
</tr>
<tr>
<td>1. Reines Silber</td>
<td></td>
</tr>
<tr>
<td>Korrektion wegen der Temperatur</td>
<td>393</td>
</tr>
<tr>
<td>Fremde Metalle im Silber</td>
<td></td>
</tr>
<tr>
<td>Die ungleiche Erstarrung der Silberlegirung</td>
<td>394</td>
</tr>
<tr>
<td>Ammoniak, Kali, Natron, kohlensaures Ammoniak, kohlensaures Kali, kohlensaures Natron, kohlensaurer Kalk, Baryt, Strontian, Kohlensäure, Stickstoff etc. sämtlich durch Silber zu bestimmen</td>
<td>396</td>
</tr>
<tr>
<td>Quecksilberoxyd</td>
<td>401</td>
</tr>
<tr>
<td>Quecksilberoxyd. a. Mit Kochsalzlösung</td>
<td>405</td>
</tr>
<tr>
<td>b. Durch Kaliumeisencyanid</td>
<td>406</td>
</tr>
<tr>
<td>Zink. a. Mit Kaliumeisencyanür (Blutlaugensalz)</td>
<td>408</td>
</tr>
<tr>
<td>b. Mit Kaliumeisencyanid</td>
<td>409</td>
</tr>
<tr>
<td>c. Mit Schwefelnatrium</td>
<td>410</td>
</tr>
<tr>
<td>Schwefelsäuren. a. Mit Bleisalzen</td>
<td>415</td>
</tr>
<tr>
<td>b. Mit Barytsalzen</td>
<td>418</td>
</tr>
<tr>
<td>c. Schwefel in Kiesen, Blenden und Schiesspulver als Schwefelsäure bestimmt</td>
<td>420</td>
</tr>
<tr>
<td>Baryt</td>
<td>422</td>
</tr>
<tr>
<td>Chromsäure</td>
<td>425</td>
</tr>
<tr>
<td>Bleioxyd. a. Mit schwefelsaurem Kali</td>
<td></td>
</tr>
<tr>
<td>b. Mit Schwefelnatrium. c. Mit neutralen chromsauren Kali</td>
<td>424</td>
</tr>
<tr>
<td>Jodkaliyum</td>
<td>425</td>
</tr>
<tr>
<td>Phosphorsäure. a. Mit Uranoxydalsalzen, nach Pincus</td>
<td>427</td>
</tr>
<tr>
<td>c. Mit Bleisalzen</td>
<td>430</td>
</tr>
<tr>
<td>d. Dieselbe Methode, modifizirt von Schwarz</td>
<td>433</td>
</tr>
<tr>
<td>Uranoxyd</td>
<td>434</td>
</tr>
<tr>
<td>Tonerde</td>
<td></td>
</tr>
<tr>
<td>Bittererde und Manganoxyd</td>
<td>435</td>
</tr>
<tr>
<td>Kupfer. 1. Durch Schwefelnatrium</td>
<td></td>
</tr>
<tr>
<td>Inhaltspunkt</td>
<td>Seite</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>a. Aus ammoniakalischer Lösung nach Pelouze</td>
<td>435</td>
</tr>
<tr>
<td>b. Aus saurer Lösung</td>
<td>437</td>
</tr>
<tr>
<td>2. Mit Cyanalkalium</td>
<td>438</td>
</tr>
<tr>
<td>Schwefelwasserstoff</td>
<td>439</td>
</tr>
<tr>
<td>Harnstoff</td>
<td>440</td>
</tr>
<tr>
<td>Traubenzucker. (Homi[zucker, Krümelzucker, Fruchtzucker, Stärkezucker, Harnzucker.)</td>
<td>443</td>
</tr>
<tr>
<td>VIII. Angewandter Theil</td>
<td>451</td>
</tr>
<tr>
<td>Holzasche</td>
<td>452</td>
</tr>
<tr>
<td>Ausgelangte Holzasche</td>
<td>454</td>
</tr>
<tr>
<td>Pottasche. Kohlensaures Kali</td>
<td>455</td>
</tr>
<tr>
<td>Schlempekohle (Bübenasche)</td>
<td>458</td>
</tr>
<tr>
<td>Soda</td>
<td>461</td>
</tr>
<tr>
<td>Rohse Soda oder Schmelze</td>
<td>485</td>
</tr>
<tr>
<td>Sodamutterlauge</td>
<td>488</td>
</tr>
<tr>
<td>Wiedergewinnung des Schwefels aus Sodaresten</td>
<td>469</td>
</tr>
<tr>
<td>Unterschweifsgaures Natron aus Sodaresten</td>
<td>472</td>
</tr>
<tr>
<td>Gaswasser</td>
<td>—</td>
</tr>
<tr>
<td>Kalkstein</td>
<td>474</td>
</tr>
<tr>
<td>Dolomit</td>
<td>475</td>
</tr>
<tr>
<td>Baryt, Strontian, Kalk</td>
<td>475</td>
</tr>
<tr>
<td>Natürliche Soole, gradirte Soole, Mutterlauge</td>
<td>477</td>
</tr>
<tr>
<td>Kochsalz</td>
<td>—</td>
</tr>
<tr>
<td>Pfannenstein der Salinen</td>
<td>478</td>
</tr>
<tr>
<td>Kesselstein</td>
<td>479</td>
</tr>
<tr>
<td>Kali-Salpeter</td>
<td>480</td>
</tr>
<tr>
<td>Gerinigter Salpeter</td>
<td>481</td>
</tr>
<tr>
<td>Natronalsalpeter (Chilisalpeter)</td>
<td>482</td>
</tr>
<tr>
<td>Die Alaune</td>
<td>483</td>
</tr>
<tr>
<td>Knochenmehl, Phosphorit, Koproolith, Superphosphat</td>
<td>484</td>
</tr>
<tr>
<td>A. Knochenmehl</td>
<td>—</td>
</tr>
<tr>
<td>B. Natürliche Phosphorite, von der Lahn, Sombrero, Bakerinsel, Mejillones, Estremadura etc.</td>
<td>486</td>
</tr>
<tr>
<td>C. Superphosphat</td>
<td>493</td>
</tr>
<tr>
<td>D. Koproolith</td>
<td>496</td>
</tr>
<tr>
<td>Guano</td>
<td>497</td>
</tr>
<tr>
<td>Gyps. a. Restmethode. b. Directe Bestimmung</td>
<td>502</td>
</tr>
<tr>
<td>Sulfat</td>
<td>—</td>
</tr>
<tr>
<td>Chlorkalium und Chlornatrium</td>
<td>503</td>
</tr>
<tr>
<td>Scliesspulver</td>
<td>504</td>
</tr>
<tr>
<td>Zeolithe</td>
<td>506</td>
</tr>
<tr>
<td>Augit, Hornblende</td>
<td>507</td>
</tr>
<tr>
<td>Feldspath</td>
<td>508</td>
</tr>
<tr>
<td>Kohlensaure</td>
<td>510</td>
</tr>
<tr>
<td>1. Gebundene Kohlensaure nach Gewicht</td>
<td>511</td>
</tr>
<tr>
<td>2. Gebundene Kohlensaure nach Volum</td>
<td>517</td>
</tr>
<tr>
<td>3. Freie Kohlensaure. a. In der atmosphärischen Luft</td>
<td>523</td>
</tr>
<tr>
<td>b. In ausgeathmeter Luft</td>
<td>529</td>
</tr>
<tr>
<td>4. Bestimmung der freien Kohlensaure in einer Flüssigkeit mit Spannung</td>
<td>536</td>
</tr>
<tr>
<td>Analyse der Mineralwasser</td>
<td>538</td>
</tr>
<tr>
<td>Bestimmung der gesammten, der gebundenen und freien Kohlensaure</td>
<td>541</td>
</tr>
<tr>
<td>Bestimmungen der festen Bestandtheile</td>
<td>547</td>
</tr>
<tr>
<td>Bestimmung der in Wasser lösenen Salze</td>
<td>549</td>
</tr>
<tr>
<td>Bestimmung der in Wasser unlösenen Bestandtheile</td>
<td>551</td>
</tr>
<tr>
<td>Schwefelwasser</td>
<td>552</td>
</tr>
<tr>
<td>Salinische Mineralwasser</td>
<td>553</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Untersuchung von Brunnen-, Quell- und Flusswasser. a. Allgemeine Analyse</td>
<td>557</td>
</tr>
<tr>
<td>b. Spezielle Analyse</td>
<td>561</td>
</tr>
<tr>
<td>c. Die Härte des Brunnenwassers</td>
<td>562</td>
</tr>
<tr>
<td>d. Die organischen Stoffe im Wasser</td>
<td>563</td>
</tr>
<tr>
<td>Ackererde</td>
<td>567</td>
</tr>
<tr>
<td>Probeziehung</td>
<td>569</td>
</tr>
<tr>
<td>Bestimmung der einzelnen Bestandtheile. 1. Kohlensäure, d. h. kohlensaurer Kalk</td>
<td>571</td>
</tr>
<tr>
<td>2. Chlor, Eisenoxyd, Kalk, Bittererde</td>
<td>572</td>
</tr>
<tr>
<td>3. Organische Reste, Humussäure, Humuskohle (Humin)</td>
<td>573</td>
</tr>
<tr>
<td>4. Ammoniak</td>
<td>576</td>
</tr>
<tr>
<td>5. Schwefel. 6. Alkalien</td>
<td>577</td>
</tr>
<tr>
<td>7. Phosphorsäure</td>
<td>578</td>
</tr>
<tr>
<td>Roheisen, Stahl und Stabeisen</td>
<td>579</td>
</tr>
<tr>
<td>1. Bestimmung des Eisens</td>
<td>580</td>
</tr>
<tr>
<td>2. Bestimmung des Kohlenstoffs</td>
<td>581</td>
</tr>
<tr>
<td>3. Schwefel. 4. Mangan</td>
<td>583</td>
</tr>
<tr>
<td>5. Silicium. 6. Kupfer</td>
<td>584</td>
</tr>
<tr>
<td>Kohlenstoff im Graphit</td>
<td>585</td>
</tr>
<tr>
<td>Braunstein</td>
<td>586</td>
</tr>
<tr>
<td>1. Austreibung des Chloros durch Salzsäure und Auffangen desselben in Jodkalium</td>
<td>594</td>
</tr>
<tr>
<td>2. Durch Eisenoxydulsalze</td>
<td>596</td>
</tr>
<tr>
<td>3. Durch bestimmte Mengen Oxalsäure und Rückmessen der nicht oxydireten Oxalsäure</td>
<td>597</td>
</tr>
<tr>
<td>Gemischte Mangan- und Eisenerze</td>
<td>602</td>
</tr>
<tr>
<td>Meteorite. Untersuchung der Silicate</td>
<td>603</td>
</tr>
<tr>
<td>Untersuchung der Meteorreisennassen</td>
<td>604</td>
</tr>
<tr>
<td>Bitterspath, Ankerit. Trennung des Mangans und Eisens von Alkalien und Erden</td>
<td>608</td>
</tr>
<tr>
<td>Magnetiteisen in Basalten und ähnlichen Gesteinen</td>
<td>609</td>
</tr>
<tr>
<td>Phosphorsaures Eisenoxyd, Raseneisenstein</td>
<td>613</td>
</tr>
<tr>
<td>Schwefel, Phosphor und Kupfer in Eisenerzen</td>
<td>614</td>
</tr>
<tr>
<td>Eisenvitriol und Kupfervitriol</td>
<td>615</td>
</tr>
<tr>
<td>Eisenvitriol, Kupfervitriol und Zinkvitriol</td>
<td>616</td>
</tr>
<tr>
<td>Kupfervitriol und Zinkvitriol mit freier Säure (galvanische Flüssigkeit)</td>
<td></td>
</tr>
<tr>
<td>Künstliches Schwefeleisen</td>
<td>617</td>
</tr>
<tr>
<td>Schwefel</td>
<td>618</td>
</tr>
<tr>
<td>Bleiglanz</td>
<td>619</td>
</tr>
<tr>
<td>Schwefel in Kiesen und Blenden als Schwefelsäure alkalimetrisch bestimmt</td>
<td></td>
</tr>
<tr>
<td>Eisenerze</td>
<td>621</td>
</tr>
<tr>
<td>Chromeisenstein</td>
<td>622</td>
</tr>
<tr>
<td>Kupfererze und Hüttenprodukte. a. Oxydische Erze, Rothkupfererz, Malachit, phosphorsaures Kuperoxid</td>
<td>623</td>
</tr>
<tr>
<td>b. Geschwefelte Erze. 1. Das Kupfer metallisch ausgeschieden</td>
<td>624</td>
</tr>
<tr>
<td>2. Das Kupfer als Halbschwefelkupfer bestimmt</td>
<td>627</td>
</tr>
<tr>
<td>3. Titrimetrisch</td>
<td>630</td>
</tr>
<tr>
<td>4. Gemischte Methoden</td>
<td>631</td>
</tr>
<tr>
<td>Zinkerze</td>
<td>634</td>
</tr>
<tr>
<td>Metallisches Zink</td>
<td>637</td>
</tr>
<tr>
<td>Kupfer und Zink (Messing, Tombak, Similor, Talmigold)</td>
<td>638</td>
</tr>
<tr>
<td>Kupfer und Zinn (Bronze, Kanonengut, Glockenmetall)</td>
<td>639</td>
</tr>
<tr>
<td>Bleierze</td>
<td>640</td>
</tr>
<tr>
<td>Metallisches Blei auf fremde Beimischungen</td>
<td>643</td>
</tr>
<tr>
<td>Bleizucker</td>
<td>645</td>
</tr>
<tr>
<td>Zinn und Blei. (Werkzinn, Schnelllohd, Stanniol.)</td>
<td>648</td>
</tr>
<tr>
<td>Blei und Antimon. (Letternmetall.)</td>
<td>647</td>
</tr>
<tr>
<td>Zinnsalz</td>
<td></td>
</tr>
<tr>
<td>Nick er in seinen Erzen</td>
<td>648</td>
</tr>
<tr>
<td>Argentan</td>
<td>650</td>
</tr>
</tbody>
</table>
Inhaltsverzeichniss.

Kobalt und Nickel .. 654
Quecksilbererze .. 655
Zinnerze .. —
Chromgelb ... 656
Alaunerde. 1. Bestimmung des Schwefels 657
2. Eisenbestimmung. 3. Thonerdebestimmung. 4. Die organischen Bestandtheile 658
Thon. (Kaolin, Pfeifenthon, Walkererde etc.) 659
Steinkohle. 1. Feuchtigkeit. 2. Koksausbeute 660
3. Asche. 4. Schwefel ... 661
Branntkohle, Torf .. 662
Trennungen der Bittererde und Alkalien. A. Aus der schwefelsauren Verbindung ... 663
B. Aus der Chlorverbindung 664
Mineralische Rohsäuren. 1. Rohes Salzsäure 665
2. Rohes Schwefelsäure ... 666
3. Salpetersäure, Scheidewasser 667
Wasserglas. Flüssiges ... —
Harn. 1. Kochsalzbestimmung 668
3. Phosphorsäure ... 671
4. Kalk. 5. Eisen. 6. Harnsäure 672
7. Freie Säure ... 673
8. Ammoniak .. 674
e. Harnsaures Ammoniak .. 680

Indigo ... —
Opium, Morphium ... 685
Seifen ... 687
Gerbsäure, Tannin ... 689
Bier, Wein .. 692
Specielles Verfahren. 1. Alkoholbestimmung 693
2. Malzextract .. 694
Milch ... 695
Weinstein .. 698
Weinsäure, Zitronensäure .. 700
Süße Früchte. Trauben, Birnen, Apfel, Stachel-, Johannis-, Himbeeren etc. 701
Technisch-chemische Gasanalyse 702
1. Füllen von A mit dem Gase 706
2. Absorption des zu messenden Gases. 3. Herstellung des atmosphärischen Drucks in A 707
Azotometrie .. 708
Anwendung der Titrirmethode in der Pharmacie 710
Bestimmung des specifischen Gewichtes fester Körper mit der Pipette, v. V. 714
Bestimmung des specifischen Gewichtes von Flüssigkeiten mit massanalytischen Apparaten 717
Bestimmung des specifischen Gewichtes der festen Körper als Schwimmer, und der flüssigen durch Schwimmer 719
Ueber die Erfindung neuer massanalytischer Methoden 721
Nachtträger .. 724
Lackmus .. —
Pflanzenpigmente und Farbenwechsel —
Salpetersäure als Ammoniak bestimmt —
Jod in unlöschlichen Jodiden 726
Kuperoxid .. —
<table>
<thead>
<tr>
<th>Inhaltssverzeichnis.</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisenbestimmung</td>
<td>727</td>
</tr>
<tr>
<td>Salpetersäure</td>
<td>728</td>
</tr>
<tr>
<td>Kalibestimmung</td>
<td>729</td>
</tr>
<tr>
<td>Phosphorsäure in Phosphoriten</td>
<td>730</td>
</tr>
<tr>
<td>Zurückgegangene Phosphorsäure</td>
<td>731</td>
</tr>
<tr>
<td>Eisenoxyd in Mineralwässern</td>
<td>732</td>
</tr>
<tr>
<td>Phosphor im Gusseisen</td>
<td></td>
</tr>
<tr>
<td>Typenmetall</td>
<td>734</td>
</tr>
<tr>
<td>Anhang</td>
<td>735</td>
</tr>
<tr>
<td>Alkalimetrische Phosphorsäurebestimmung</td>
<td></td>
</tr>
<tr>
<td>Untersuchung von Mehl auf unorganische Beimengungen von C. Heinly in Kiel</td>
<td>737</td>
</tr>
<tr>
<td>Anleitung zum Gebrauch der Tafel</td>
<td>739</td>
</tr>
<tr>
<td>Tafel der Multipla der in der fünften Kolumne in den Rubriken der Paragraphen enthaltenen Zahlen</td>
<td>740</td>
</tr>
<tr>
<td>Vollständige Apparate zur Massanalyse</td>
<td>750</td>
</tr>
<tr>
<td>Namen</td>
<td>Zeichen</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Al</td>
</tr>
<tr>
<td>Antimon</td>
<td>Sb</td>
</tr>
<tr>
<td>Arsenik</td>
<td>As</td>
</tr>
<tr>
<td>Baryum</td>
<td>Ba</td>
</tr>
<tr>
<td>Blei</td>
<td>Pb</td>
</tr>
<tr>
<td>Boron</td>
<td>B</td>
</tr>
<tr>
<td>Brom</td>
<td>Br</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cd</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
</tr>
<tr>
<td>Cer</td>
<td>Ce</td>
</tr>
<tr>
<td>Chlor</td>
<td>Cl</td>
</tr>
<tr>
<td>Chrom</td>
<td>Cr</td>
</tr>
<tr>
<td>Eisen</td>
<td>Fe</td>
</tr>
<tr>
<td>Fluor</td>
<td>Fl</td>
</tr>
<tr>
<td>Gold</td>
<td>Au</td>
</tr>
<tr>
<td>Jod</td>
<td>J</td>
</tr>
<tr>
<td>Kalium</td>
<td>K</td>
</tr>
<tr>
<td>Kobalt</td>
<td>Co</td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>C</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Cu</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
</tr>
<tr>
<td>Mangan</td>
<td>Mn</td>
</tr>
<tr>
<td>Molybdän</td>
<td>Mo</td>
</tr>
<tr>
<td>Natrium</td>
<td>Na</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
</tr>
<tr>
<td>Palladium</td>
<td>Pd</td>
</tr>
<tr>
<td>Phosphor</td>
<td>P</td>
</tr>
<tr>
<td>Platin</td>
<td>Pt</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>Hg</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>O</td>
</tr>
<tr>
<td>Schwefel</td>
<td>S</td>
</tr>
<tr>
<td>Silber</td>
<td>Ag</td>
</tr>
<tr>
<td>Silicium (SiO₃)</td>
<td>Si</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
</tr>
<tr>
<td>Strontium</td>
<td>Sr</td>
</tr>
<tr>
<td>Uran</td>
<td>Ur</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
</tr>
<tr>
<td>Wismuth</td>
<td>Bi</td>
</tr>
<tr>
<td>Zink</td>
<td>Zn</td>
</tr>
<tr>
<td>Zinn</td>
<td>Sn</td>
</tr>
</tbody>
</table>
Beim Gebrauche zu beachten.

Die Normaltemperatur der Flüssigkeiten ist $14^\circ R. = 17,5^\circ C$.
Die Atomgewichte sind die sogenannten kleinen, $H = 1$; Wasser $= H O$.

cbm bedeutet Cubikoentimeter.
g bedeutet Gramm.
1 Liter $= 1000$ g Wasser bei $14^\circ R. = 17,5^\circ C$.
1 cbcm $= 1$ g dest. Wasser bei $14^\circ R. = 17,5^\circ C$.
Normalflüssigkeit bedeutet eine Lösung, welche 1 Atom der Substanz, in Grammen ausgedrückt, in 1 Liter enthält.
Zehntel-Normalflüssigkeit bedeutet eine Lösung, welche $\frac{1}{10}$ Atom Substanz, in Grammen ausgedrückt, auf 1 Liter enthält oder mit $\frac{1}{10}$ Atom eines darin enthaltenen Körpers (z. B. Sauerstoff) wirkt.

Die Substanz wird immer im Atomgewicht des zu suchenden Körpers abgewogen, und zwar für normale Flüssigkeiten zu $\frac{1}{10}$ Atom, für zehntel-normale zu $\frac{1}{100}$ Atom.

Die Vollpipetten werden mit Anstrich ablaufen gelassen.

Die Decimalen werden durch einen über halber Höhe stehenden Punkt abgetrennt, die Ganzen werden gar nicht abgetheilt.
Erster Abschnitt.

Die Instrumente.

Einleitung.

Titriren ist eigentlich ein Wägen ohne Wage, und dennoch sind alle Resultate im Sinne des Ausspruchs der Wage verständlich. In letzter Instanz bezieht sich Alles auf eine Wägung. Man macht jedoch nur
Die Instrumente.

Bei jeder Arbeit aber werden gewisse Werkzeuge gebraucht, mittelst deren man die titrirte Flüssigkeit in die zu untersuchende bringt. Da man hierbei immer eine Zersetzung bis an ihre Grenze führt, und nicht, wie in der gewöhnlichen Analyse, mit Ueberschüssen des Fällungsmittels arbeitet, so müssen diese Werkzeuge ein sehr bestimmtes tropfenweises Ausgießen gestatten. Die verschiedenen dazu benutzten Instrumente werden zunächst betrachtet.

Die Bürettten.

Von den verschiedenen in Anwendung gebrachten Bürettten vereinigt die jetzt allgemein eingeführte Quetschhahnbürette die meisten Vorzüge.

Sie besteht aus einer möglichst cylindrischen Glasröhre, die in fünftel oder zehntel Cubikcentimeter getheilt ist. Ihr unteres Ende ist in eine angeschwollene Spitze ausgeblasen, um eine sichere Befestigung der Kautschukröhre zu gestatten (Fig. 1). Ueber diese Anschwellung ist eine vulkanisirte Kautschukröhre von 40 bis 45 mm Länge geschoben und nach Bedarf durch Bindfaden festgebunden. Ist die Anschwellung stark genug, so schliesst die Kautschukröhre auch ohne Verband. Man fühlt dies beim Darüberschieben, ob der Schluss so fest ist, dass sich die Kautschukröhre durch Handhabung des Quetschhahns nicht leicht abzieht. In das untere Ende der Kautschukröhre ist eine spitz ausgezogene dünne Gläröhre eingeschoben, welche leicht ohne Verband schliesst, da diese weder einen Zug noch Druck der Flüssigkeitssäule auszuhalten hat.
Die Burettens.

Die Kautschukröhrte wird durch eine elastische Klemme oder einen Quetschhahn geschlossen.

Dieses kleine Werkzeug hat sich durch längeren Gebrauch als vollkommen zuverlässig und niemals versagend herausgestellt. Es wetteifert mit dem besten gläsernen Hahn im wasser- und luftdichten Schluss und kostet kaum den zwanzigsten Theil desselben. Der Quetschhahn wird aus hart gezogenem rundem Messingdraht dargestellt. Dieser ist 2 bis 3 mm dick.

Es wird zunächst der Draht, der in Fig. 2 u. 3 in natürlicher Dicke erscheint, in einen 20 bis 22 mm weiten Kreis gebogen, und die Enden in der Richtung des Halbmessers nebeneinander fortgeführt. Dieser Bogen wird auf einem glatten Amboss mit polierten Hammer etwas platt geschlagen, um ihm in dieser Richtung einen flacheren Querschnitt und eine

![Fig. 1](image1)

![Fig. 2](image2)

![Fig. 3](image3)

grössere Elasticität zu geben. Das eine Ende wird in einem rechten Winkel umgebogen und an seiner Spitze mit einem angelöhten Griffplättchen versehen. Auf den anderen abgeschnittenen Theil werden zwei kleine Winkel desselben Drahtes aufgelöht, auf welche das andere Griffplättchen gelöht wird. Hierdurch wird der Druck der beiden Drahtschenkel ganz central. Im Zustande der Ruhe liegen beide Schenkel dicht auf einander, wie in Fig. 2. Sobald man aber die beiden Griffplättchen drückt, so öffnen sich die Schenkel, und die dazwischen geklemmte Kautschukröhrte gestattet Durchfluss, wie in Fig. 3.

Die verbesserte Form des Quetschhahns, welche hier erscheint, unterscheidet sich von der älteren dadurch, dass sie einen engeren Bogen, längere Schenkel und sich weiter öffnende Griffe hat. Die Regulierung
Die Instrumente.

des Ausflusses ist durch den längeren Hebelarm schärfer, und der Druck durch den engeren Bogen stärker. Die Durchführung der Ausfluss spitze findet dicht an dem Griffe statt, während sie früher vom Bogen aus geschehen musste. Um die Quetschhähne gegen Rosten und Säuren zu schützen, werden sie erwärmt mit weissem Wachse bestrichen, welches daran schmilzt, und nach dem Erkalten mit Graphit eingerieben, bis sie glatt und glänzend erscheinen. Das Ankleben an die Kautschukröhre verhindert man durch ein umgewickeltes Stückchen Papier oder Leinwand. Das untere Ende der Bürette zeigt Fig. 4.

In Fig. 3 ist der Quetschhahn im Augenblick der Wirkung mit der dazwischen liegenden geöffneten elastischen Röhre im Durchschnitt dargestellt. Läßt man den Griff nach, so schliesst er sich durch seine Elastizität von selbst, und man hat niemals zu befürchten, dass die Röhre, wenn man sie nicht gebraucht, auch nur einen Tropfen Flüssigkeit anrinnen lasse, wenn die Kautschukröhre nicht steif und der Draht an dem Quetschhahn stark genug ist. Es ist dies ein wesentlicher Vorzug gegen den gläsernen Hahn, welcher leicht halbverschlossen zurückbleibt, oder mit aus dem Lager gehobener Lilie (Kern des Hahnes) undicht einsitzen kann. Die gläsernen Hähne zeigen leicht ein beständiges Rinnen,

1) Aus Dankbarkeit soll der älteren Form ein Platz in der Anmerkung gestattet werden.

Man hat den Quetschhähnen verschiedene zum Theil sehr complicirte Construktionen gegeben. Es sind solche empfohlen worden, welche mittelst einer Schraube geschlossen werden. Diese Anordnung lässt zwar ein sehr sicheres Reguliren des Ausflusses zu, allein sie giebt nicht die Sicherheit des vollkommenen Schlusses bei etwas unachtsamem Handhaben. Schliesst man die Bürette mit der Schraube, so kann sie im ersten Augenblicke scheinbar geschlossen sein, nach längerer Zeit aber dennoch Tropfen ausfließen lassen. Es ist hier nicht der Verlust der Flüssigkeit und die Beschmutzung der Tische im Auge gehalten, sondern der Verlust einer Analyse, da man bei vielen Analysen nicht in einem Zuge fortarbeiten kann, sondern in der Zwischenzeit erwärmen, absetzen lassen, filtriren muss. Hat nun die Bürette Tropfen fallen gelassen, so ist die Arbeit verloren. Es möchte deshalb immer eine solche Anordnung den Vorzug verdienen, die beim Verlassen der Bürette durch sich selbst einen vollkommenen Schluss gewährt.

Eine andere elastische Klammer, die auch eine sehr scharfe Regulirung des Ausflusses gestattet, ist in den Figuren 5 und 6 abgebildet.

Man kann sie aus flachen Thermometerröhren, aber noch stärker aus Horn anfertigen. Sie bestehen aus zwei in einen stumpfen Winkel gebogenen kantigen Hornstäbchen von 8 mm Breite und 5 mm Dicke.

Die Schenkel von der Biegung an sind 50 bis 55 mm lang, 8 bis 9 mm breit und 4 bis 5 mm dick. Man schiebt ein Stück einer vulkanisirten Kautschukröhre von 10 bis 12 mm Länge
über zwei zusammengehaltene Schenkel, die an dieser Seite zugespitzt sind, bis auf die Mitte der Klammer; dann schiebt man die elastische Röhre der Bürette hinein, und vor diese nochmal einen Kautschukring von derselben Stärke.

Die Röhre ist nun zusammengepresst und geschlossen und die beiden Schenkel klaffen um die Dicke der zusammengepressten Röhre. An die Stelle der Biegung der beiden Hornstäbchen schiebt man ein Stückchen Kork ein von der Dicke der zusammengepressten Kautschukröhre. Das giebt den festen Punkt der Bewegung ab.

Drückt man mit der Hand die aus einander gehenden Schenkel der Klemme zusammen, so öffnen sich die zusammengepressten und lassen Flüssigkeit ausfließen. Diese Klemmen sind sehr exact in der Wirkung, weil man mit einem langen Hebelarm arbeitet, die Wirkung aber an einem kurzen stattfindet. Dagegen sind sie etwas empfindlicher in der Zurichtung und erfordern die Prüfung und Zurechtstellung durch den Arbeitenden, während die aus einem Stücke bestehenden Messingklemmen unter allen Umständen genau schliessen. Sind die Hornklemmen nicht stark genug gepresst, so lassen sie Flüssigkeit ausrinnen. Man kann durch einen zweiten oder stärkeren Kautschukring immer wieder den Schluss herstellen, allein man muss es selbst thun. Es ist deshalb vorgekommen, dass Chemiker ausdrücklich messingene Klemmen vorgezogen haben.

Eine andere Form dieser Klemme ist von Gintl 1) angegeben worden. Sie besteht aus zwei Metallplättchen, die durch zwei Gummibünder aneinander gedrückt werden und durch zwei an Drähten befindliche Griffblättchen geöffnet werden. Es sind eine Mege Einschnitte, Löthungen und getrennte Theile daran, aber der Hauptnachtheil besteht darin, dass sich die Bürette ebenso weit öffnet, als der Druck lang ist, während bei der zuletzt beschriebenen Form durch die Länge der Hebelarme eine sehr sanfte Öffnung des Gummiwulstes möglich ist.

Eine andere aus einem Stück Messingdraht ohne Löthung hergestellte Klemme ist in Fig. 7 abgebildet. Hier drückt an einer Seite ein

1) Sitzungsber. der k. k. Akademie; Fresenius, Zeitschrift 6, 437.
Die Büretten.

Draht, an der anderen zwei Drähte, wodurch die Ausflussröhre der Bürette leicht eine schief e unbequeme Stellung erhält. Man vermeidet dies, wenn man zwei gleich hohe und breite Metallplättchen an die federnden Drähte anleht.

Bei allen Arten elastischer Klemmen ist es zweckmässig, das Kautschukröhrchen aussen mit einem Streifen Papier zu umhüllen, so dass die Klemme das Kautschuk nicht unmittelbar berührt. Ohne diese Vorsicht klebt dasselbe zuletzt so fest an der Klemme, dass man sie, ohne das Kautschuk zu zerreißen, nicht abnehmen kann. Besonders ist diesem Uebelstände das schwarze Kautschuk unterworfen, was sich zu diesem Zwecke nicht eignet, da es auch im Inneren zusammenklebt. Man soll überhaupt nur das weisse vulkanisirte anwenden.

Vielfach angewendet sind die Büretten mit gläsernem Hahn, deren untere Enden in den Figuren 8 und 9 abgebildet sind. Der Hahn selbst ist hohl und hat eine seitliche Öffnung, die bei einer bestimmten Stellung der Lilie mit der Ausflussröhre zusammenfällt und das Ausfließen gestattet. Diese Büretten können für alle Flüssigkeiten, selbst Chamäleon und Jodlösung, verwendet werden. Der untere Sack bei Fig. 9 dient dazu, etwaige Absätze aufzunehmen. Diese Büretten sind ziemlich theuer und zerbrechlich, und wenn der Hahn zerbricht, ist auch die Röhre verloren und umgekehrt. Wenn man auf die Anwendung bei Chamäleon und Jodlösung verzichtet, kann man die Hahnbürette aus zwei Stücken.
Die Instrumente.

zusammensetzen (Fig. 10 a. v. S.), und dadurch eine Röhre, deren Hahn zerbrochen ging, wieder nutzbar machen. Gläserne Hähne inmitten einer Glasröhre kann man in Apparatenhandlungen billig haben. Man zieht vor der Lampe das eine Ende in eine Spitze aus und biegt in einem rechten Winkel um, das andere Ende biegt man in der entgegengesetzten Richtung aufwärts. Mittelst dieses zweiten Endes befestigt man den Hahn mit einem Kautschukstopfen an die Bürette, die oben und unten offen ist. Eine durch Unfall am unteren Ende verletzte Bürette kann auf diese Weise wieder brauchbar gemacht werden.

In Requemlichkeit des Gebrauches stehen die Glashahnbüretten jenen mit Quetschhahn bedeutend nach. Beim Drehen des Glashahnes fühlt man nicht, ob die Flüssigkeit bald kommen werde, sondern muss die Spitze beständig mit dem Auge beobachten, und es kommt leicht ein Guss, wo man nur einen Tropfen will. Die Glashähne sind die Zuflucht der Ungeschickten.

Die einfachste Schlussvorrichtung einer Bürette wird durch ein Stück eines Glasstabes hervorgebracht. Die Länge dieses massiven Glasstäbchens ist nicht grösser als die Breite eines Fingers, also etwa 8 mm. Man schiebt dasselbe mitten in die Kautschukröhre, welche an dem unteren Ende der Bürette übergezogen ist, und darunter befindet sich noch das Ausflussröhrchen (Fig. 11). Wenn man von aussen diese Stelle mit Zeigefinger und Dau men drückt, so bilden sich neben dem Glasstäbchen (Fig. 12) eine oder zwei Öffnungen, durch welche die Flüssigkeit abfließen kann. Diese sehr einfache Vorrichtung hat noch nebenbei den Vortheil, dass man die Bürette aus dem Gestell oder der Etagère herausheben kann, ohne sie zu entleeren. Ehe man diese Bürette mit Flüssigkeiten füllt, prüft man sie mit Wasser, ob sie bei voller Füllung nicht von selbst auslaufen lässt und beim Quetschen dem Zwecke entsprechend arbeitet.

Die Aufstellung einer einzelnen Bürette kann in vielerlei Weisen geschehen. Es ist nothwendig, dass man die Bürette nach der Grösse der unterzustellenden Gefässe etwas erhöhen und senken könne.

Im Nothfalle kann man sich eines hölzernen Retortenhalters bedienen.

Eine ganz bequeme Befestigung der Bürette ist die hangende (Fig. 13).
Man schiebt ein flaches und ziemlich dickes Stück Kork über den oberen von der Theilung freien Raum der Bürette so gedrängt auf, dass sie durch ihr eigenes Gewicht nicht herausfallen kann, sich aber dennoch leicht höher und tiefer stellen lässt. Mit diesem Korkstücke hängt man die Bürette in ein weites Loch eines Filterträgers, welches aber den Kork nicht durchgehen lässt. Die Bürette schwebt nun mit ihrem unteren Ende ganz frei und gestattet die Untersetzung eines beliebig hohen Gefässes. Um die Bürette leicht gegen eine andere wechseln zu können, ohne sie auszuleeren oder den Quetschhahn abzumachen, schneidet man das Loch im Filterträger an der Seite auf und versperrt diese Öffnung durch einen Haken aus Messingdraht, der sich um einen Stift dreht, und auf der andern Seite des Einschnitts ebenfalls über einen Stift sich klemmt. Dadurch ist ein zufälliges Herausfallen der Bürette verhindert, und durch Aufhebung des Hakens macht man die Öffnung frei, um die Bürette herauszuheben.

Eine recht zweckmässige Aufstellung zweier Bürettten ist in Fig. 14 (a. S.) dargestellt. Sie bedarf kaum einer näheren Beschreibung. Die federnden Retortenhalter werden durch hölzerner Schrauben an einander gedrückt. Ganz nahe an ihrem Ende sind sie mit aufgeleimten Korkscheiben versehen, in welche eine senkrechte Rinne mit einem scharfen Messer eingeschnitten ist. Diese Rinne soll nicht rund sein, sondern einen rechten Winkel bilden, woran sich Röhren von sehr ungleicher Dicke mit gleicher Sicherheit festklemmen lassen, während dünne Röhren in einer weiten runden Rinne immer
Die Instrumente.

schlottern. Die ganze Theilung auf der Röhre ist bei dieser Aufstellung frei und sichtbar.

Wenn die Bürette von einem Versuche zum anderen mit Flüssigkeit gefüllt stehen bleiben soll, so muss man sie von oben verschlossen, um Verdunstung zu verhüten. Da jedoch die Korke nicht auf verschiedene Röhren passen und wegen ihrer Capillarität nicht verwechselt werden dürfen, dieselben auch zum Aufsetzen und Abnehmen zweier Hände benötigt sind, die eine um die Röhre festzuhalten, so hat man es für bequem gefunden, die Büretten mit übergeschobenen weiteren Glassröhren, die mit einem Stücke eines Korkes geschlossen sind oder mit kleinen unten seitwärts gebogenen Glasrichtern zu schliessen.

Auch kann man zugelassene Probirröhren über den oberen Theil der Bürette schieben, welche wegen ihrer Durchsichtigkeit das Ablesen gestatten.

Wenn man sich viel mit Maassanalysen beschäftigt und mancherlei Untersuchungen vornimmt, so ist das Wechseln der Büretten, um von einer Arbeit zu einer anderen überzugehen, eine mühsame Sache.

Bürettenklemme.
Die Büretten.

Um alles dies zu vereinigen, und die Büretten gegen Zufälligkeiten zu schützen, kann man sie in einer drehbaren Etagère vereinigen.

Eine solche ist in Fig. 15 abgebildet. Auf einem starken Brette von Nussbaumholz, oder eleganter und sauberer auf einer runden Scheibe Fig. 15.

Fig. 16.

Büretten - Etagère.

von Porzellan von 290 mm Durchmesser und 12 mm Dicke mit drei kleinen Stollen am Rande zum sicheren Aufsitzen, ist eine runde eiserne oder messingene Stange mit Ansatzscheibe und Schraubenmutter von unten befestigt.
Die Instrumente.

Auf dieser Stange gleitet ein aus zwei horizontalen Scheiben mit dazwischen befestigtem hölzernen Rohr bestehendes Gestell. Das Rohr ist weiter durchbohrt, als die eiserne Stange dick ist, damit durch Wer- fen des Holzes keine Klemmungen entstehen. Nur die Endscheiben haben genau die auf die Stange passenden Öffnungen, wodurch sich das Gestell leicht und ohne zu schlottern um die centrale Stange drehen lässt. Alle die Einzelnheiten erhehlen aus Fig. 16, sowie die durch eine Stellschraube zu befestigende Kugel, welche sich höher und tiefer stellen lässt und worauf das Gestell sich dreht.

Beim Gebrauche beginnt man damit, die Büretten bis an die 0-Marke zu füllen. Dies geschieht, indem man sie bis über die Marke anfüllt und bis 0 ablaufen lässt, weil nur auf diese Weise die Oberfläche der Flüssig- keit dieselbe Gestalt annimmt, die sie nach Beendigung der Arbeit hat. Das Ablesen findet dann unter ganz gleichen Verhältnissen statt. Die zu viel eingelassene Flüssigkeit lässt man in die Flasche zurücklaufen, wobei man diese in der linken Hand seitlich am Tische gegen die Aus- flüssigöffnung neigt, und mit der rechten Hand den Quetschhahn etwas nach vorn herüberführt. Das Auge ist der Theilung gegenüber, während die Hände unbeobachtet bleiben. Sobald der Flüssigkeitsmeniscus den 0-Punkt erreicht hat, setzt man sich an den Tisch und beginnt die Ar- beit. Ist die erste Flüssigkeit abgemacht, so führt man das Gestell herum, bis die andere Bürette ankommt, und vollendet die Arbeit.

Es soll Regel sein, Alles sogleich auszuschreiben, und zwar mit so vielen Worten, als nachher zum Verständniss der Operation nöthig ist zu wissen. Will man die Bürette nicht frisch füllen, so muss man ihren Stand genau notiren, wobei es zweckmässig ist, sie auf den nächsten ganzen Cubikcentimeter ablaufen zu lassen. Man notirt also beispiels- weise: Normalsalzsäure steht 22 ccm.

Beim Eingießen der Probenflüssigkeiten ist es wichtig, dass keine Blasen und Schaum entstehen, was namentlich bei alkalischen Flüssig-
keiten und Chamäleon leicht geschieht. Man vermeidet dies, indem man an kleinen Trichtern die untere Ausflussöffnung seitlich biegt (Fig. 17), wodurch die Flüssigkeit an der Röhre hinspritzt und ohne Blasen ankommt.

Man hat noch viele Versuche gemacht, den Büretten andere Formen und Auslassvorrichtungen zu geben. So werden noch vielfach Büretten mit gläsernen Hähnen angefertigt, die entweder in der gerade verlängerten Bürette mit horizontaler Lilie sitzen, oder in der gekröpften Bürette mit senkrecht der Lilie (siehe oben Fig. 8 und 9). Die erste Art der Büretten ist vollständig zu verwerfen, denn der Hahn hat von selbst ein Bestreben aus seiner conischen Öffnung hervorzutreten und dies wird durch den Druck der Flüssigkeit noch vermehrt. Beim Drehen des Hahnes muss man denselben immer gegen die Bürette andrücken, was leicht vergessen wird, und sich durch Hervorquellen von Flüssigkeit jedesmal bestraft. Bei der gekröpften Bürette sitzt der Hahn mit seinem Gewichte in der Höhlung und tritt nicht leicht heraus, weil die ihn führende Hand ebenfalls etwas auf ihm lastet. Der Hauptnachteil der Hähne besteht darin, dass man am blassen Bewegen des Hahns nicht fühlt, ob die Flüssigkeit rinnt, sondern dies erst mit dem Auge suchen muss, während bei der elastischen Klemme das Gefühl diese Sicherheit gibt. Letztere schliesst sich von selbst, wenn man sie loslässt, dagegen der Hahn muss durch richtiges Stellen und Aufdrücken geschlossen werden, und es kann sehr leicht durch Nachrinnen eines unvollständig geschlossenen Hahnes eine Analyse verloren gehen. Hähne schliessen um so besser, je cylindrischer ihre Lilien sind; allein um so schneller drücken sie sich bei dem Gebruch durch und es kann die Bohrung bald unterhalb des durchgehenden Kanals kommen. Eine andere Form von Büretten sind die Stopfbüretten, in denen ein massiver Glasstab von oben eingesetzt und hervorragend unten in die Bürette eingeschliffen ist. Durch Lüften dieses Stopfens wird die Flüssigkeit zum Auslaufen gebracht. Es ist dies von allen Einrichtungen die schlechteste, denn sie nöthigt den Arbeitenden mit der rechten Hand oben in der Luft zu schaffen, während er unten Acht geben soll. Der sehr lange Hebel dieses Stopfens hat oben in der Bürette einen gewissen Spielraum in der ganzen Runde und soll doch unten geschlossen bleiben. Setzen sich feste Körper ab, so kann durch die Gewalt des Stopfens die Bürette unten gesprengt werden. Oben verhindert der durchgehende Glasstab das Eingießen der Flüssigkeit und das Schliessen der Bürette gegen Verdunstung, und will man durch einen durchbohrten Kork die Bahn des Stopfens beschränken und die Verdunstung verhüten, so hat man beim Nachfählen die sehr künstliche Operation zu leisten, den Kork ohne den Glasstab zu heben. Wenn überhaupt simplex veri sigillum ist, so
weiss ich nicht, was man der Quetschhahn- oder Glasstabbürette von den Figuren 11 u. 12 noch abnehmen könnte, um sie noch einfacher zu machen.

Betrachtet man eine mit Wasser zum Theil gefüllte, äusserlich etwa 17 mm weite Glasmöhre an der Stelle, wo das Wasser endigt, so erscheint sie etwa wie Fig. 18. Es erscheinen zwei concave Linien, welche durch Schneiden oben geschlossen sind. Alles ist ziemlich trüb und undeutlich. Betrachtet man dieselbe Röhre gegen eine hellbeleuchtete Wand, so erscheint sie wie in Fig. 19. Die beiden concaven Linien schliessen einen dunkeln Raum ein, der oben mit einer lichten Schne gedeckt ist. Die dunklen Objecte hinter dem Glase spiegeln sich in dem leeren Theile der Röhre auf dem entgegengesetzten Theile besser als in dem mit Wasser gefüllten. Der tiefste Punkt des Spiegels erscheint dunkel gegen hell; da man aber nicht überall eine hell beleuchtete Wand vor sich haben kann, so ist es zweckmässig, sich davon unabhängig zu machen. Hält
man ein weißes Blatt Papier in guter Beleuchtung hinter eine halbgefüllte Glasröhre, so erscheint sie wie in Fig. 20. Die mit der Sehne gedeckten Bogen erscheinen weiß, und das Band dazwischen dunkel.

Klebt man dagegen ein Stück schwarzes Glanzpapier auf ein anderes Stück recht weisses Zeichenpapier, und führt die Berührungsgrenze von Schwarz und Weiss, das Schwarze unten, bis gegen 2 oder 3 mm Entfernung von dem untersten Punkte der Oberfläche, so spiegelt sich diese

Ablesen mit Reflex.

Oberfläche kohlschwarz gegen den weissen Hintergrund und man hat das schärfste Ablesen (Fig. 21). Hält man das schwarze Papier oben, und die Grenze an dieselbe Stelle, so erscheint die Oberfläche weiss gegen den schwarzen Hintergrund. Die erste Ablesungsart ist jedoch bequemer und schärfer. Man hält sich einige so zubereitete Ablesepapiere zur Hand, um immer damit abzulesen, oder man streift das Papier mit zwei Scheerenschnitten über die Röhre, wo es in jeder Lage stehen bleibt. Die dadurch erlangte Schärfe lässt nichts zu wünschen übrig. Sie geht weiter als die Erkennung der Reaction, und leistet deshalb Alles, was man von der Methode verlangen kann.

Das hier vom Ablesen Gesagte gilt von allen Arten Büretten und Pipetten.

Erdmann hat zur sicheren Beobachtung des Standes der Flüssigkeiten in den Büretten einen Schwimmer angegeben (Fig. 22). Es ist gleichsam ein kleines Aräometer, welches nur eine zirkelsförmige Marke in der Mitte des weiten Theiles der Spindel hat. Eine wesentliche Bedingung besteht darin, dass der Schwimmer ganz vertical schwimmt, also seinen Schwerpunkt in der geometrischen Verticalaxe hat. Diese kleinen
Die Instrumente.

Ab- und Zuflussbüretten.

Glas sind in Fig. 23 und in ihrer Vereinigung durch Kautschukröhrchen in Fig. 24, beide in etwas verkleinertem Maassstabe, dargestellt. Zwischen

Fig. 23.

Fig. 24.

Ab- und Zuflussbüretten.

die Bürette und ihre Ausflussröhre wird ein kleines Röhrchen aus Glas α, welches in der Mitte einen rechtwinkligen Ansatz derselben Dicke hat, eingeschaltet und alle drei Theile durch zwei Kautschukröhrchen verbunden. Auf den seitlichen Ansatz der Röhre α wird eine lange Kautschukröhre aufgeschoben, welche die Vorrichtung mit dem Vorrathsgläschen verbindet. Die beiden Quetschhähne werden wie in Fig. 24 angebracht.

Das Vorrathsgläschen steht mit seinem Boden etwas höher als das oberste Ende der Bürette, Fig. 25 (a. f. S.). Es ist mit einem Korke geschlossen, durch welchen drei Bohrungen gehen. Eine derselben, durch eine bis auf den Boden gehende Gläserröhre geschlossen, steht mit der Kautschukröhre in Verbindung, welche sich an den seitlichen Theil des

Mohr's Titrischer.
Zwischenröhrens a in Fig. 23 anschliesst. Ist diese Röhre einmal mit Flüssigkeit gefüllt, so wirkt sie wie ein Heber, welcher die Vorrathsflasche ganz ausleeren würde, wenn nicht der Quetschhahn es hinderte.

Wenn die Vorrathsflasche einen Tubulus nahe am Boden hat, so benutzt man diesen zum Ausfließen, in welchem Falle der die Flasche schliessende Kork nur die Kugelröhre enthält. Der Gebrauch dieser Vorrichtung ist ungemein bequem und zeitsparend. Drückt man den Quetschhahn an der langen Kautschukröhre, so füllt sich die Bürette. Man lässt bis etwas über Null einlaufen und dann mittelst des Quetschhahns unter der Bürette concav bis an 0 auslaufen. Nun kommt der Versuch selbst, wobei man den unteren Quetschhahn gebraucht. Man muss sich überzeugen, dass alle Quetschhähne vollkommen schliessen,
und dass die Flüssigkeit bei fast ausgeleerter Bürette nicht von selbst steigt, oder der untere Hahn trüpfelt.

Die Vorrathssflasche kann man in einem verschlossenen Schranke aufstellen, wodurch neben der größeren Gleichmässigkeit der Temperatur auch die Sicherheit gegeben ist, dass die Titirflüssigkeit nicht verändert werden kann.

Eine andere sehr handliche Form der Nachfüllbürette ist in Fig. 26 abgebildet, welche zugleich den Vorzug hat, sich immer genau bis an den Nullstrich zu füllen. Die titirte Flüssigkeit, bei der die Kohlensäure des Athems ohne Nachtheil ist, befindet sich in einer daneben aufgestellten Flasche, deren höchster Punkt der Füllung noch etwas tiefer ist, als der Nullpunkt der Bürette. Ein Kautschukstopfen mit zwei Lüchern führt zwei Röhren; die eine geht bis auf den Boden der Flasche und steht auf der anderen Seite durch ein Kautschukrohr mit der Bürette in Verbindung, durch die zweite Öffnung geht eine Blasenröhre mit Kautschukschlauch und gläserner Spitze. Der Korkstopfen, welcher die Bürette schliesst, hat einen schmalen Schnitt der Länge nach, durch welchen die Luft der Bürette entweichen kann. Bläst man in diese Röhre, so steigt die Flüssigkeit in die Bürette über, rinnt an derselben seitlich herunter und füllt sie bis über die Marke. Lässt man nun den Blasenschlauch fahren, so wirkt die auf den Boden der Flasche gehende Röhre als Heber und zieht aus der Bürette diejenige Flüssigkeit weg, welche über 0 steht. Durch Verschieben der in dem Kork der Bürette steckenden umgebogenen Glasröhre kann man diesen Punkt ein- für allemal feststellen.
Das verbreiteteste Instrument, welches zu Titrioperationen gebraucht wurde und noch hier und dort gebraucht wird, ist Gay-Lussac's Bürette, in der ursprünglichen, von ihrem berühmten Erfinder herrührenden Gestalt. Sie ist in Fig. 27 in ihrer halben natürlichen Grösse abgebildet. Sie besteht aus einer weiteren graduirten Röhre und einer engeren am Boden damit vereinigten dünneren Ausgussröhre. Der Anfangspunkt der Zahlen liegt noch tiefer als die Ausgussöffnung der engen Röhre. Die Flüssigkeit stellt sich in dem engen Rohre immer höher als in dem weiten durch die Wirkung der Capillarität. Es wird darauf nicht geachtet und nur im weiten Rohre abgelesen, weil in demselben Sinne die Graduirung gemacht ist. Oben schiebt man vorsichtig zwischen die enge und weite Röhre ein passend ausgeschnittenes Stückchen Korkholz, um die Wirkung des Druckes der Hand auf die mit einem langen Hebelarme wirkende engere Röhre aufzuheben. Zweckmässig thut man das auch in der Mitte, wo der Daumen die engere Röhre drückt, wenn sie nicht auf der ganzen Länge dicht anliegt, was auch häufig geschieht. Die Bürette wird bis an den Nullstrich mit der Probeflüssigkeit gefüllt, was die erste Schwierigkeit ist. Man hält die Bürette in der linken Hand, und gießt aus der in der rechten Hand gehaltenen Flasche hinein. Durch mehrmaliges Ausgiessen und Wiedereingießen entfernt man das Zuviel und giebt das Zuwenig zu, bis das Einstehen stattfindet. Mit einer kleinen Hülsepipette kommt man schneller zum Ziele, hat aber noch ein zweites Gefäss beschmutzt. Vielleicht ist es das Kürzeste, die Flüssigkeit aus einer genügend weiten Pipette zu füllen. Da diese Büretten meist nur 22 bis 25 cbm fassen, und auch nicht wohl mehr fassen können, wenn sie nicht zu dick werden und die Striche zu dicht kommen sollen, oder wenn sie nicht zu lang Gay-Lussac's Bürette, und dadurch unhandlich werden sollen, so ist das mehrmalige Wiederholen des Vollfüllens bei derselben Operation eine Mühe, für welche man kein Aequivalent hat. Man fasst die strichvolle Bürette in die rechte Hand in der Mitte ihrer Länge und neigt sie gegen das Glas, worin die zu prüfende Substanz ist. Man sieht nun bald die Flüssigkeit in dem engen Rohre wegen der Capillarität der engen Röhre höher steigen, den Gipfel der Ausgussröhre übersteigen.
Gay-Lussac's Bürette.

und mit Beschleunigung in die Spitze eilen und ausfließen. Die ersten Tropfen fallen meist rasch hinter einander. Indem man mit der linken Hand das Glas schwenkt, fährt man fort, mit der rechten Hand die Bürette zu neigen und Tropfen einfließen zu lassen. Ein nicht zu vermeidender Übelstand ist es, dass man die Flüssigkeit und die Bürette

Fig. 28.

nicht gut zugleich beobachten kann. Während man die Flüssigkeit scharf beachtet, kann die Bürette zurückfließen oder ein Tropfen verschüttet werden. Fliessst die Bürette zurück und man ist bereits nahe an die Grenze der Zersetzung vorgeschritten, so erfordert das Anlaufenlassen die größte Vorsicht und Übung, dass nicht unvorgesehener Weise zwei oder drei Tropfen zugleich einlaufen, ehe man Zeit gehabt hat, die Wirkung zu beobachten. In diesem Stadium verunglückten Analysen oder lassen das Gefühl einer Unsicherheit zurück. Das Anlaufenlassen ist um so schwieriger, je weiter die Bürette ausgeleert ist. Nicht selten geschieht es, dass in der Spitze der Giessröhre ein Tropfen sitzen bleibt, welcher das Ausfließen ganz verhindert. Gewöhnlich sucht man ihn in die Röhre hineinzublasen, indem man die Bürette so hält, dass die Ausflussöffnung oben ist. Dabei gehen meistens Spritzen des Tropfens verloren.

Um diese Schwierigkeiten zu beseitigen und zugleich der Bürette, die sonst in Ecken und Glass cylindern gefährlich steht, einen festen Stand zu geben, habe ich das obere Ende mit einer Blaseröhre und das untere mit einem hölzernen Fuss versehen (Fig. 28). Es hat das Instrument dadurch bedeutend an Brauchbarkeit gewonnen.

Die in einem gebohrten Kork luftdicht steckende, leicht drehbare Blasröhre, welche mit der Ausgussröhrle in Bezug auf die Achse des Instruments gewöhnlich einen rechten Winkel bildet, hat eine Länge von 250 mm. Man kann sie während des Versuchs bequem im Munde halten, und das Auslaufen der Tropfen reguliren, auch durch Blasen einen vollen Strahl ausfließen lassen. Durch schwaches Ansaugen bringt man den in der Ausflusspitze hängenden Tropfen, welcher die Beweglichkeit der Säule in der engen Röhre hindert, zurück in diese Röhre, wodurch die Mündung frei wird,
und das Anlaufenlassen hat nicht mehr die geringste Schwierigkeit, selbst wenn die Bürette schon weit entleert ist. Nebenbei ist die in der Bürette befindliche Flüssigkeit gegen Verdunstung und Staub geschützt.

Das Verbinden der engen Röhre mit der weiten durch Kantschuk oder Kork ist ein Behülfniss, was nicht anzuhalten ist. In diesem Falle ist es zweckmässiger, die Quetschhahnbürette anzuwenden, da der Gebrauch von übermangansaurem Kali ebenfalls ausgeschlossen ist.

Fig. 29.

![Geissler's Bürette.](image1)

![Blasebürette.](image2)

Die Zerbrechlichkeit der äusseren dünnen Giessröhre hat Geissler in Bonn veranlasst, diese Röhre in die weite hineinzulegen (Fig. 32).

Die Hauptröhre ist verengert und seitlich in einen Hals aufgebogen. An dem Buge zwischen Hals und Röhre geht die Giessröhre durch. Das

Ohne Blaserohr ist auch diese Bürette unbequem im Gebrauch.

Die Gay-Lussacs’sche Bürette in ihrer ursprünglichen Gestalt hat mehrere Mängel. Die äussere Röhre ist sehr dem Zerbrechen ausgesetzt, und eine neue gleichweite Röhre anzusetzen ist geradezu unmöglich. Durch das Halten in der Hand erwärmt sich die Flüssigkeit. Vereinigt man die bereits einzeln erwähnten Verbesserungen des hölzernen Fusses, der inneren Röhre und des Blaserohrs, so entsteht daraus ein äusserst bequemes, handliches und sicheres Werkzeug, die Blasenbürette (Fig. 30).

Diese Bürette ist luftdicht mit einem Kork geschlossen, durch welchen das Ausflussrohr und das Blaserohr gehen. Das Ausflussrohr hat gleiche Weite und Dicke in seiner ganzen Länge und keine verengerte Ausflussspitze, welche sich immer durch einen Tropfen Flüssigkeit schliesst. Bei gleicher Weite läuft die Flüssigkeit vollkommen zurück, und beim nächsten Gebrauch ist die Ausflussröhre immer offen. Die Ausflussspitze ist 50 bis 60 mm lang und schwach mit der Spitze nach unten geneigt. Man kann ihr sogar eine horizontale Richtung geben, wodurch es ganz unmöglich wird, dass sich Flüssigkeit an der Spitze sammelt. Das Blaserohr hat die in der Zeichnung (Fig. 30) angegebene Form, damit es das rechte Auge im Beobachten der Ausflussspitze nicht hindere. Seine Länge entspricht der Schweiße des Arbeitenden. Beim Gebrauche fasst man die Bürette mit der rechten Hand an dem dämmten Theile des hölzernen Fusses an und nimmt die Spitze des Blaserohres in den Mund. In der linken Hand hält man die Kochflasche oder das Becherglas mit der zu prüfenden Substanz. Man neigt die Bürette und bläst zugleich, wodurch man die Flüssigkeit sowohl in einem vollen Strahle, als auch mit einzelnen Tropfen fließen lassen kann. Die Sicherheit der Handhabung ist so gross, dass man einen Theil eines Tropfens hervortreten und durch Abstreichen am Rande des Becherglases in die Flüssigkeit gelangen lassen kann. Der Kork wird niemals von der Flüssigkeit berührt; er wird von keiner Titirirflüssigkeit, als der Jodlösung angegriffen. In diesem besonderen Falle tränkt man ihn mit Paraffin, und drückt ihn noch warm und weich in die Bürette ein, wodurch er nach dem Erkalten
I. Die Instrumente.

rechten Hand in die etwas schiefgehaltene Bürette eindiessen, oder aus der Blaseflasche (Fig. 31) die Flüssigkeit einblasen. Eine Nachfüllvorrichtung lässt sich wegen ihrer Beweglichkeit damit nicht verbinden.

Endlich lässt sich das Ausblasen der Flüssigkeit statt mit dem Munde auch durch die Hand verrichten, und es entsteht so eine immer ruhig auf ihrem Platze verbleibende und deshalb eigentliche Stehbürette (Fig. 32). Das Ausflussrohr geht wie bei allen bis nahe auf den Boden der Bürette, jedoch nicht ganz, um etwas abgesetzte Stoffe, wie Manganoxyd in der Chamäleonflüssigkeit, nicht mit aufzutreiben. Der aus der Bürette hervorrangende Theil des Ausflussrohres steigt etwas in die Höhe und dann mit einem kleinen Bug senkrecht nach unten. Die zurückfließende Flüssigkeit gelangt deshalb immer in die Bürette und verstopft niemals die Ausflussöffnung. Das Blaserohr geht luftdicht, wie die Ausflussröhre, durch einen Kork und ist am Ende mit einer elastischen Kugel, je nach der Grösse der Bürette von 60 bis 80 mm Durchmesser, verbunden. Zu solchen Kugeln benutzt man die den Kindern als Spielzeug dienenden Kautschukbälle. Es gibt solche, welche ganz geschlossen sind, und andere, die eine Öffnung haben. Man wählt die ersteren. An der Stelle, wo der Kautschukball geschlossen ist, hat er im Innern einen dicken Knopf von Kautschuk. Diesen benutzt man, um das Loch für die Glaströhre durchzubohren. Die Herstellung dieses Loches gelingt nicht leicht und kann nicht wohl ohne Drehbank ausgeführt werden. Man bringt eine dünne Blehröhre von der Dicke der Glashülse auf der Drehbank zum centralen Umlaufen, und scharft ihren Rand mit der Feile wie einen Korkbohrer. Nun befeuchtet man die Röhre stark mit Speichel, lässt sie rasch umlaufen, und hält den dicken Kautschukknopf der Kugel central dagegen. Die Röhre schneidet so ein vollkommen rundes Loch in den Ballen und das ausgeschnittene Stück bleibt gewöhnlich in der Blehröhre sitzen. Nun bohrt man in gleicher Weise ein zweites Loch seitlich in den Ball,

Man kann eben sowohl einen vollen Strahl als einzelne Tropfen hervortreiben, ja man kann auch hier Theile eines Tropfens hervordrängen und an dem Becherglas abstreichen. Sobald man die Kugel loslässt, so sinkt die Flüssigkeit in dem Ausflussrohre zurück, die Kugel dehnt sich durch ihre Elasticität wieder aus, und saugt nun so viel Luft von aussen ein, als Flüssigkeit herausgetrieben wurde. Das seitliche Loch in der Kugel dient also eigentlich zum Luftschöpfen und um schliesslich alle Flüssigkeit aus der Bürette anzuziehen, und ferner damit keinerlei Druck auf die Flüssigkeit der Bürette beim Ablesen stattfindet. Diese Bürette ist ungemein bequem. Nicht selten trennt sich die Flüssigkeit in der Ausflussröhre beim Zurücksinken. Dies hat aber auf die Ablesung keinen Einfluss, weil die Summe der getrennten Theile nicht grösser ist, als wenn sie zusammenhängend wegen ihrer Capillarität 10 bis 15 mm höher stände, als in der Bürette selbst; denn unter diesem
Umstande ist die Bürette auch graduirt worden. Bei längerem Stehenlassen kann man die beiden Öffnungen auch verschliessen. Zu grossen Büretten ist diese Modification vorzuziehen, zu kleinen Büretten scheint die Blasenbürette bequemer. Alle Theile beider Büretten sind vollkommen zugänglich; man kann die Röhren mechanisch und chemisch reinigen, was bei der Chamäleonlösung durchaus nothwendig ist. Die Stehbürette hat den Vorzug, dass man gleich nach beendigtem Versuche ablesen kann, weil die Flüssigkeit an ihren Wänden immer abläuft, und nicht etwa nach dem Aufrichten der schiefgehaltenen Bürette die anfängliche Ablesung sich durch Zusammenlaufen um 0.1 bis 0.2 cbem vermindert.

Die sogenannte englische Bürette, Fig. 33, ist ganz schlecht und unbrauchbar, weil sie zum Ausfließen zuletzt horizontal gehalten werden muss und weil man sie am Kopfe mit der vollen Hand halten muss, um mit dem Daumen das weite Ende zu verschliessen.

Auch die Bürette von Kersting, Fig. 34, hat keinen Beifall gefunden. Sie kann weder mit der Blasenbürette noch Stehbürette entfernt verglichen werden.

Eine Pipette oder Bürette mit Quetschhahnschluss am oberen Ende ist Fig. 35 abgebildet. Sie hat den Zweck, die Berührung der Flüssigkeit mit dem Kantschuh zu vermeiden, was bei Chamäleon von Wichtigkeit ist. Durch leises Drücken des Quetschhahns geht Luft ein und Flüssigkeit fliesst aus. Ich habe diese Form nicht bequem finden können. Es ist schwer, so leise zu drücken, dass nur Tropfen ausfließen, und wider Willen kommt oft ein Strahl. Man kann diese Pipette nicht gefüllt stehen lassen, weil bei dem besten Schlusse durch Temperatur- und Luftdruckveränderungen Tropfen fallen. Bei Erschütterungen fliesen Tropfen aus und Luftblasen steigen auf. Je mehr Luft die Pipette enthält, also gerade gegen Ende der Operation,

Diese Bürette wird durch Ansangen gefällt, indem man die untere Spitze in die Flüssigkeit taucht.

Die Striche und Ziffern der Büretten sind gewöhnlich weiss, sowohl wenn sie von Diamant geritzt sind, als auch wenn sie mit Fluss säure geätzt sind. Um ein deutliches Erkennen der Striche und ein sicheres Ablesen zu erleichtern, habe ich mehrere Versuche gemacht, die Striche mit Zinnober oder Bleiweiß einzureiben. Meine letzte Erfahrung geht dahin, dass die Striche am besten zu erkennen sind, wenn sie schwarz eingerieben sind und gegen einen hellen Hintergrund abgelesen werden. Eine kleine Menge Buchdruckerschwärze wird mit etwas Terpentinöl auf die Bürette aufgetragen, leicht mit etwas Leinen abgewischt, und dann mit trocknem gepulverten Kienrus abgerieben, bis das Glas rein erscheint. Die Chamäleonbürette und die Joddürette reibt man gewöhnlich mit Bleiweiß ein, doch ziehe ich auch hier schwarz vor, weil man beim Ablesen die Striche oberhalb der Flüssigkeit gegen weisses Papier oder Tageslicht am besten erkennen kann.

Die Pipetten.

Unentbehrlich und sehr die Arbeit abkürzend sind die Pipetten oder Saugrhöhren. Die Flüssigkeit wird aus den Gefässen unmittelbar in die Pipetten gesaugt, und durch den Druck des Zeigefingers der rechten Hand festgehalten oder auslaufen gelassen. Die Pipetten müssen in einer bestimmten Beziehung zu den Standgefassen der titirten Flüssigkeit stehen, nämlich dass sie alle in dieselben bis nahe an den Boden eintauchen können. Nichts ist unbequemer, als wenn die Pipetten unten weite Gefässe haben. Man muss dann die Flüssigkeit jedesmal in ein weiteres Gefäss ausgießen, woraus Verdunstung und grössere Concentration, Absorption von Kohlensäure, Verlust von Ammoniak, in jedem Falle aber unnütze Mühe entsteht. Ich möchte also voraus annehmen, dass die Weite des Halses der zum Aufbewahren der titirten Flüssigkeiten bestimmten Flaschen 18 bis 20 mm betrage, und dass die Pipette höchstens 15 mm dick sei, oder eine untere Saugspitze habe, die bei einer Länge von 190 bis 200 mm 7 bis 100 mm dick ist. Man wird
alsdann die Flüssigkeiten aus allen Flaschen in der größten Reinheit herausziehen können. Dies bietet die größten Vorteile dar.

Beim Ausgiessen der Flüssigkeiten in weitere Gefäße werden Nieder- schläge aufgerührt, stehende Alkalien werden am Rande sitzende kohlen- saure im Vorbeilaufen abpülen, Salze krystallisiren und verstärken die vorbeirinnende Flüssigkeit. Alles dieses findet nicht statt, wenn man die ruhende Flüssigkeit aus der stillstehenden Flasche auffängt.

Die kleineren Pipetten bis zu 20 und 25 ccbm Inhalt gehen ohne Weiteres mit ihrem Körper in die Flaschen und bedürfen deshalb keiner dünneren Röhre unter dem Gefäße.

Man unterscheidet Vollpipetten und Messpipetten.

Die Vollpipetten haben nur eine einzige Marke, und sind bestimmt, ein bestimmtes Volum abzumessen. Man hat sie bis zu 150 ccbm.

Die Vollpipetten hat man von 1, 2, 5, 10, 20, 25, 50, 100 und 150 ccbm. Für jedes dieser Maasse finden sich besondere Anwendungen.

Die 1 ccbm Pipette ist in Fig. 36 (a. f. S.) in natürlicher Grösse mit Aussaussung eines Stückes des Stiels abgebildet. Die Marke ist im engen Theil der Röhre, wie bei allen Pipetten. Diese Pipette wird gebrucht, kleine Mengen concentrirter Flüssigkeiten, Eissessig, Essigäther, Säuren, Ammoniak, deren specifisches Gewicht man kennt, statt zu wägen, zu messen, und dann das absolute Gewicht daraus zu berechnen.

Die 5 ccbm Pipette, Fig. 37 (a. f. S.), hat dieselbe Form; sie wird zum selben Zwecke bei verdünnter Flüssigkeiten angewendet, wie bei gleichem Eissig.

Die 10 ccbm Pipette, Fig. 38 (a. f. S.), dient schon zum Richtigstellen von Probeflüssigkeiten. Man muss davon mindestens zwei Stück ganz gleiche haben.

Die 20 ccbm Pipette kann bei gleicher Dicke die doppelte Länge von Fig. 38 haben.

Eine schlechte Form, welche thüringische Glasbläser früher anfertigten, ist in Fig. 39 (a. f. S.) dargestellt. Das Gefäss ist schon zu dick, um in die meisten Flaschen hineinzukommen, und die Eintauchspitze zu kurz.

Eine ebenfalls fehlerhafte Form der 20 ccbm Pipette ist in Fig. 40 (a. f. S.) in 1/2 der natürlichen Grösse dargestellt. Das Gefäss ist schon 23 mm dick und kann in keine gewöhnliche Flasche mehr eingebraucht werden.

Von hier an müssen die Pipetten mit langer Eintauchspitze ver- fertigt werden.
I. Die Instrumente.

Die 25 cbcm Pipette, welche in Fig. 41 in \(\frac{1}{3} \) der natürlichen Größe abgebildet ist, hat ein 26 mm weites Gefäß und eine 190 mm lange Tauchspitze.

Die 50 cbcm Pipette hat dieselbe Form; sie wird bei verdünnteren Flüssigkeiten angewendet.

Die 100 cbcm Pipette hat das Gefäß entsprechend weiter und länger.

1 cbcm Pipette. 5 cbcm Pipette. 10 cbcm Pipette. 10 cbcm Pipette. 20 cbcm Pipette.
Die 150 ccmbm Pipette, welche man zur Bestimmung der Kohlen-
säure in Mineralwassern anwendet, hat eine 70 mm dicke Kugel aus
starkem Glase geblasen und mit Röhren an beiden Seiten verlängert
(Fig. 42).

Alle diese Pipetten dienen dazu, ein ganz bestimmtes Mass
von einer Flüssigkeit herauszunehmen. Dadurch ist in vielen Fällen
eine grosse Abkürzung der Arbeit erreicht. Gesetzt, man wolle in
einer Flüssigkeit mehrere Bestand-
theile in einzelnen Operationen be-
stimmen. Man bringt dann die Flüs-
sigkeit in eine Messflasche, welche
z. B. 500 ccmbm bis an eine Marke
fasst. Man ergänzt das Volum mit
destilliertem Wasser bis zur Marke;
sagt man nun mit einer Pipette
100 ccmbm heraus, so hat man darin
genau den fünften Theil der in der
ganzten Flüssigkeit enthaltenen Stoffe;
man kann darin den einen Bestand-
theil bestimmen, und behält noch ge-
naul $\frac{4}{3}$ der Flüssigkeit zu anderen
Versuchen übrig. Um dasselbe zu
erreichen, hätte man mindestens zwei
Wägungen mit schweren Glasefässen
machen müssen, und dann doch den
herausgenommenen Theil nur in einem
bekannten, aber nicht einfachen Ver-
hältniss erhalten. Regelmässige Ver-
dünnungen bei Prüfung von Reactions-
erscheinungen werden am sichersten
und leichtesten mit Pipetten bewirkt.

Die Leichtigkeit, womit man aus
einer Flasche Flüssigkeit, ohne sie zu
bewegen, herausnehmen kann, die
Schärfe, womit man diese Flüssigkeit
aus der Pipette tropfenweise rinnen
lassen kann, hat sie als Messpipette
schon lange zur Ausführung von Ana-
lysen empfohlen. In diesem Falle hat
die Pipette kein erweitertes Gefäss,
sondern sie ist eine möglichst cyllindrische, von oben nach unten getheilte
Röhre (s. S. 34).

Bei Handhabung der Vollpipetten sind drei verschiedene Methoden
des Auslaufenlassens im Gebrauch.
1) Freies Auslanfen,
2) Auslanfen mit Abstrich,
3) Ausblasen.

Die Pipette muss nach demselben Grundsatz gebraucht werden, wozu sie geeignet ist. Bei der ersten Methode hält man die Pipette senkrecht und lässt ruhig ablaufen. Die in der Pipette hängen bleibenden Tropfen werden mit ihr zurückgezogen und gehören nicht zur Arbeit. Diese Methode hat das Unangenehme, dass man einen dieser Tropfen leicht beim Entfernen der Pipette über den Tisch verschüttet, und dass das Ausfließen gegen Ende sehr langsam geht. Dieses Hinderniss wird durch die Cohäsion des an der Spitze sich bildenden Tropfens gebildet. Nimmt man diese Cohäsion dadurch weg, dass man die Spitze der Pipette an die nasse Wand anhält, oder dass man diese leicht in die Flüssigkeit eintaucht, so findet das letzte Ausrinnen viel schneller statt, und man kann die gut entleerte Pipette beliebig wegführen, ohne einen Tropfen zu verlieren. Fig. 43 zeigt die Spitze der 10 ccm Pipette, wie sie sich nach dem freien Abfließen gestaltet. Berührt man mit der Spitze eine nasse Glasfläche, so rinnt so viel Wasser aus, dass die Flüssigkeit wie in Fig. 44 erscheint. Bei einem Versuche zeigte sich, dass 0,080, ein andermal, dass 0,0825 g Wasser von 14° R. nachfließen. Wurde nun das letzte Wasser aus Fig. 44 ausgeblasen, so zeigte sich dies in drei Versuchen 0,0205, 0,0175 und 0,017 g schwer. Man würde demnach an einer Pipette für dieselbe Menge Flüssigkeit drei verschie-

dene Marken haben können; die oberste bei freiem Ausfluss (écoulement libre), die zweite bei Abstrich an eine nasse Wand, die unterste bei Ausblasen.

Ich habe mich in allen Fällen für den Abstrich entschieden. Das Ausblasen ist unbequem, weil man sich häufig bei grossen Gefässen stellen müsste, um mit dem Munde an die Pipetten zu kommen, und das freie
Ausfließen geht zu langsam vor sich. Man halte deshalb die Spitze der im Auslaufen beg riffenen Pipette in die Flüssigkeit hinein, und ziehe sie nachher langsam heraus; oder bei grösserer Eile blase man den Inhalt aus, und tupfe die Spitze noch einmal ein, wenn keine andere als die ausfließende Substanz in der Flasche vorhanden ist.

Es ist nun auch noch die Gestalt der Sangespitze näher zu betrachten. Man hat dafür drei verschiedene Formen angenommen: 1) erweitert, Fig. 45, 2) cylindrisch, Fig. 46 und 3) eingezogen, Fig. 47.

Die Pipette wird oben durch den Druck des Zeigefingers der rechten Hand geschlossen. Im Verhältnisse, als man Luft zwischen Zeigefinger und Glas eindringen lässt, rinnt unten die Flüssigkeit ab. Bei der grossen Dünnheit der Luft wird ausser in dem Falle, dass man voll ablaufen lässt, niemals der Finger ganz aufgehoben, sondern nur der Druck etwas vermindert. Es kommt deshalb darauf an, dass man den Druck so stark gebe, dass ungeachtet der senkrecht hängenden Wassersäule keine Luft eindringe. Ein gegebener Druck wird aber auf jedem einzelnen Punkte um so weniger lasten, je mehr Punkte es sind, worauf er sich verteilte. Verglichen wir die drei Figuren 45 bis 47, so sehen wir deutlich, dass man auf die Form 45 mehr drücken müsse als auf 46, und darauf wieder mehr als auf 47, wenn keine Luft eindringen soll. An jedem einzelnen Punkte ist der Druck, welcher das Eindringen der Luft verhindert, bei allen Figuren ganz gleich, allein bei Fig. 45 sind wegen des grösseren Umfanges mehr solcher Punkte zu belasten. Man hält die Pipette zwischen Daumen und Mittelfinger. Drückt man mit dem Zeigefinger auf die Spitze, so muss man auch mit Daumen und Mittelfinger stärker pressen, wenn man nicht die Pipette durch die Hand durchschieben will.

Es ist deshalb das Arbeiten mit weit geöffneten Pipetten sehr anstrengend, da man an zwei Stellen mehr Kraft anwenden muss. Ich habe in allen Fällen an meinen Pipetten die obere Spitze nach Fig. 47 verengert und finde, dass die Leichtigkeit der Handhabung damit wesentlich gewinnt. Selbst hohe Pipetten schliessen dadurch ganz luftdicht, und halten ohne Anstrengung der rechten Hand die Flüssigkeit vollkommen zurück. Wenn die Hand durch starkes Arbeiten rissig geworden ist, so gelingt es gar nicht, auf einer weitwändig Pipette einen Schluss zu gewinnen. Es sind alsdann so viele Risse über dem Glase, dass unvermeidlich immer Luft eindringt. Bei einem engeren Rande findet sich noch eine genügend grosse glatte Stelle der Oberhaut. Die eingeengte Spitze ist auch zum Ansaugen bequemer.

Die Spitze des Fingers, welche auf die Spitze der Pipette aufgelegt wird, muss einen gewissen Feuchtigkeitszustand haben. Ist sie ganz trocken, so schliess sie nur bei sehr starkem und anstrengendem Druck, ist sie sichtbar nass, so schliess sie bei der leisesten Berührung luftdicht und lässt auch ohne vollkommenes Lüften keine Luft ein, in welchem Falle aber die Flüssigkeit stossweise und im vollkommenen Strahle ausläuft. Am besten streicht man die Fingerspitze über die feuchte Lippe
und reibt sie einmal gegen den Daumen. Es bleibt alsdann gerade Feuchtigkeit genug zurück, um mit leichtem Drucke nach Willkür Flüssigkeit tropfenweise ausrinne zu lassen. Wenige Versuche zeigen dies augenblicklich.

Wenn man die Pipette füllen will, so taucht man in die Flüssigkeit ein und saugt sanft in die Höhe. Hält man die Pipette zu wenig in die Flüssigkeit, so steigen Luftblasen mit auf, welche nachher hinderlich sind. Saugt man zu rasch, so reißt sich Luft aus der Flüssigkeit los und bildet oben einen hinderlichen Schaum; auch kann Flüssigkeit bis in den Mund gelangen. Namentlich kann in der Kugelpipette (Fig. 42) der aufspritzende Strahl in das Mundrohr dringen. Ist das Gefäß zum Theil gefüllt, so ist diese Gefahr beseitigt. Man saugt nun bis über die Marke auf und fährt augenblicklich, während man den Mund abzieht, mit der Spitze des Zeigezehns auf die Pipette; man hält sie gerade vor sich und lässt die Flüssigkeit langsam bis an die Marke herabsinken. Die Art des Haltens ist in Fig. 48 versinnlicht. Was man dabei mit dem Zeigezehn machen muss, kann man nicht sagen, denn es ist gleichsam nur ein Wollen, ein Denken, so leise ist die Bewegung des Zehns. Soll nur ein Tropfen fallen, wie es immer bei Vollendung einer Analyse stattfindet, so braucht man es nur zu denken und er kommt schon. Allenfalls schiebt man den Finger leise vorwärts, gelüftet wird er aber dazu niemals. Die Übung, einzelne Tropfen ganz nach Willkür fallen lassen zu können, muss vorher vollkommen erlangt werden, und man macht Versuche mit Wasser, bis man sicher ist. Es ist nichts unangenehmer, als eine fast vollendete Arbeit durch einen unerwarteten Guss ganz zu verderben.

Die Messpipetten sind cylindrische Röhren, welche oben und unten in Spitzen auslaufen. Man hat sie von 25 cbcm und abwärts bis zu 1 cbcm.

Eine Pipette von 20 cbcm Inhalt ist etwa 330 mm lang, und 205 mm lang getheilt. Jeder Cubikcentimeter ist 10 mm lang und in fünf Theile getheilt. Die Theilung ist in natürlicher Größe in Fig. 49 abgebildet.

Eine Pipette von 10 cbcm Inhalt ist 320 bis 330 mm lang und
Die Pipetten.

255 mm lang getheilt. 1 ccem ist 24 mm lang, in 10 Theile getheilt, und lässt sehr gut noch halbe Zehntel schätzen. Zwei solcher Pipetten, welche einander ganz gleich sein müssen, dienen zu sehr vielen Arbeiten.

Fig. 49. Fig. 50. Fig. 51. Fig. 52. Fig. 53.

Pipettenröhrchen in natürlicher Erscheinung der Theilung.

Man vollendet damit alkalimetrische Operationen, man gebraucht sie zum Stellen der Normalflüssigkeiten.

Die Theilung ist aus Fig. 50 zu ersehen.

Pipetten, worin 1 ccem eine Länge von 27 mm einnimmt. Die Theilung ist aus Fig. 51 zu ersehen. Die Zehntel-Cubikcentimeter sind noch einmal in halbe getheilt. Unbequem.

Pipetten, worin 1 ccem eine Länge von 99 bis 100 mm einnimmt. Die Theilung ist aus Fig. 52 zu ersehen. Ist direct in Funfszigstel
I. Die Instrumente.

Cubikcentimeter getheilt, von denen die Hälften, also Hundertstel Cubikcentimeter, noch mit aller Schärfe abgelesen werden können.

Eine Pipette, worin 1 cm³ eine Länge von etwa 200 mm einnimmt, ist direct in $$\frac{1}{100}$$ cm³ getheilt, Fig. 53 (a. v. S.). Man liest Hundertstel direct ab und kann Tausendstel schätzen. Sie hat eine sehr feine Spitze, damit Theile von Tropfen abgestrichen werden können.

Alle diese Pipetten werden nach Bedürfniss angewendet.

Um sie gegen Bruch zu schützen, sie

Drehbares Pipettenstativ.

Aufbewahrung von Titirflüssigkeiten.

leicht greifen zu können und damit sie in der Ruhe abrinnen und trocknen, bewahre man die Pipetten auf einer Etagère, Fig. 54, worin dieselben theils stehen, theils hängen. Sie besteht ebenfalls aus zwei horizontalen Holzscheiben, welche durch eine hölzerne hohle Röhre verbunden sind. Die untere Scheibe ist undurchlöchert, die obere hat eine Anzahl ungleich weiter runder Löcher. Die innere Eisenstange sitzt in einem schweren, mit Blei ausgegossenen Fussse und die Tragevorrichtung dreht sich um diese Stange auf dem Fussse. Eine Hoch- und Tiefstellung ist nicht vorhanden, da sie keinen Zweck hat.

Um Messpipetten mechanisch reinigen zu können, lässt man das
obere Ende in natürlicher Weite und schliesst es durch einen Kork mit dünner Glashülse.

Alle Ausflussspitzen bestreiche man, nachdem sie trocken und etwas erwärmt sind, mit Schmalz oder Talg. Die ausfliessenden Tropfen werden kleiner und die Flüssigkeit steigt niemals an der äusseren Wand durch Kapillarität in die Höhe.

Zum Aufbewahren der Titirflüssigkeiten eignen sich sehr gut die gewöhnlichen Mineralwasserflaschen von etwas mehr als $\frac{1}{2}$ Liter Inhalt, cylindrischem Gefäß und sehr starkem grünem Glase; man muss sie jedoch mit einem Ausguss versehen, der immer darauf bleibt (s. Fig. 55). Die Weite des Halses beträgt 17 bis 20 mm. Diesen verschliesst man mit einem Kork, in welchen eine in ein stumpfes Knie gebogene Glashülse luftdicht eingefügt ist. Dieselbe muss mindestens 10 mm innere Weite haben, damit Luft und Wasser sich ausweichen können; sie ist oben durch einen dünnen Kork verschlossen. Die beiden Schenkel sind etwa 50 mm lang. Mit Hilfe dieses Ansatzes kann man in jede Bürette ohne Trichter eingenommen, was aus den breitrandigen Flaschen von weissem Glase nicht möglich ist. Hat man mehr als $\frac{1}{2}$ l Flüssigkeit, so verhellt man dieselbe in mehrere Flaschen, die mit einfachen Korken verschlossen sind, und die Ausflussspitze kommt immer auf die im Gebrauche stehende Flasche. Dadurch, dass die Flaschen kleiner sind, findet weni-

Maassflaschen.

Metrisches Maass- und Gewichtssystem.

Bekanntlich hat die Commission, welche die Bearbeitung dieses Gegenstandes übernommen hatte, die Grösse eines Erdmeridians als Urmaass vorgeschlagen. Es sollte nämlich ein natürliches Urmaass angenommen werden, an welches jederzeit wieder die davon abgeleiteten Maassstäbe (étalons) angelegt werden könnten. Ein solches uns zugängliches Urmaass ist aber auf unserer Erde nicht vorhanden, als gerade die Grösse der Erde selbst, und diese kann nur durch eine sehr schwierige, zeitraubende und kostspielige Operation, nämlich eine Gradmessung, gefunden werden. Eine andere, viel leichter zugängliche und leicht bestimmbare absolute Grösse war in der Länge des Secundenpendels gegeben. Es ist nämlich aus inneren mechanischen Gründen nicht anders möglich, als dass die Umwälzung der Erde um ihre ideale Achse, der Sterntag, absolut immer gleich lang sein müsse. Sobald diese Gleichheit der Zeit gegeben ist und die Attractionskraft der Erde unter einer bestimmten Breite ebenfalls constant ist, was sie bei ihrer gleichbleibenden Masse sein muss, so ist auch die Länge des Secundenpendels gegeben. Wenn man deshalb ein Secundenpendel so regulirt, dass es genau in einem Sternentag 86 400 Schwingungen macht, so ist die Länge dieses Pendels von seinem Aufhängungspunkte bis zu seinem Schwingungspunkte eine constante Grösse. Dies zu erreichen bietet aber das Kater'sche Reversionspendel ein sehr genaues Mittel, und es erscheint darin die Länge des Secundenpendels als die absolute Entfernung zweier sehr harter und scharfer Stahlschneiden. Man konnte also dabei eine wirklich messbare Grösse mit unseren Maassstäben vergleichen. Die Commission hat aber in der Ueberschwänglichkeit jener Zeit dieses Mittel verworfen, weil es noch einen Faktor, nämlich die Zeit, einschloss, und hat dafür ein Urmaass genommen, welches keinem einzelnen Menschen zugänglich ist und dessen Bestimmung unendlich vielen Veranlassungen zu Fehlern unterworfen ist. In der That hat auch Bessel 1) später nachgewiesen, dass das Meter nicht genau der zehnmillionste Theil eines Meridianquadranten ist. Es ist dabei Niemandem eingefallen, das abgeleitete Maass jetzt nach dem genauer festgestellten Urmaasse corrighiren zu wollen, und das Meter wird seine angenommene Länge behalten, selbst wenn sich herausstellen

Fig. 56.

Ein Zehntel Meter.

sollte, dass es um mehrere Zolle falsch wäre. Das Meter ist uns also ein absolutes Maass, dessen Urmomodel in den Staatsarchiven zu Paris niedergelegt ist. Von diesem Urmaass ist nun das Gewicht abgeleitet. Das Gewicht eines Würfels Wasser, dessen Seite \(1/10\) Meter ist, wie der schwarze Strich Fig. 56, bei seiner grössten Dichtigkeit, bei \(4^\circ\) C., im luftleeren

Raume, soll heissen Kilogramm und sein Volum Liter. Theilt man dieses Gewicht in 1000 gleiche Theile, so heisst ein solcher Theil ein Gramm. Dieses ist also das Gewicht eines Würfels Wasser, dessen Seite 1/10 von der obigen Länge, Fig. 56, ist, denn ein Würfel, dessen Seite 10 Längeneinheiten hat, hat einen Inhalt von 1000 Cubikeinheiten. Die Fläche eines solchen Würfels ist in Fig. 57 in natürlicher Größe abgebildet. Da Fig. 56 schon 1/10 Meter ist, so ist die Kante dieses kleinen Würfels 1/100 Meter oder ein Centimeter, und sein Würfel heisst Cubikcentimeter (Fig. 58). Das Gewicht eines Cubikcentimeters Wasser bei 4° C. ist nun das Gramm. Dies ist der einfache Zusammenhang zwischen Mass und Gewicht bei allen hier angewendeten Werkzeugen. Die Temperatur von 4° C. ist für uns von keiner Bedeutung und wir wählen constant eine andere Temperatur, bei welcher das Wasser eine eben so bestimmte Ausdehnung hat als bei dem Punkte seiner grössten Dichtigkeit. Die Temperatur von 4° C. könnte man nur eine kurze Zeit des Jahres haben und müsste alsdann in einer unbehaglichen Umgebung arbeiten. Im Werke ist überall die Temperatur von 14° Réumur = 17 1/2° Centesimal angenommen. Man kann sie im höchsten Sommer durch Einsetzen der Flaschen in frisches Brunnenwasser leicht herstellen; im Winter haben in einer wohlgeheizten Stube (15° R.) die meisten Gegenstände die Temperatur von 14° R., und im Frühjahr und Herbst stellt sich in geschlossenen Räumen ebenfalls die Temperatur nicht weit davon. Uebrigens ist auch eine Abweichung um einige Grade von der Normaltemperatur von geringer Bedeutung. Betrachten wir die Tabelle der wahren Volumina des Wassers von Despretz (Pouillet-Müller's Lehrbuch der Physik, 3. Aufl., 2. Bd., S. 313), so finden wir, dass das Volum des Wassers, welches bei 17° C. 1:0012, bei 20° C. 1:00179 ist. Die Differenz ist 0:00059 = 1/1700. Die Flüssigkeit wäre also für eine Vernachlässigung von 3 Gradern um 1/1700 zu viel ausgedehnt. Dies würde auf 1700 cbem einen ganzen Cubikcentimeter ausmachen. Da aber die meisten Ver suche unter 100 cbem bleiben, so würde der Fehler noch weniger betragen. Wollte man solche Wärmecorrectionen anbringen, so bietet uns die erwähnte Tafel von Despretz dazu die Grundlage, unter der Voraussetzung, dass sich alle die sehr verdünnten Salzlösungen wie reines Wasser verhielten. Wir haben nämlich hier:
<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Wahres Volum des Wassers, das bei 4°C als 1 gesetzt.</th>
<th>Wahres Volum, das bei 17°C als Einheit gesetzt.</th>
<th>Correction der Flüssigkeit für n cebcm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12°C</td>
<td>1·00047</td>
<td>0·99927</td>
<td>+ 0·00073 n</td>
</tr>
<tr>
<td>15°C</td>
<td>1·00068</td>
<td>0·99933</td>
<td>+ 0·00062 n</td>
</tr>
<tr>
<td>14°C</td>
<td>1·00071</td>
<td>0·99951</td>
<td>+ 0·00049 n</td>
</tr>
<tr>
<td>15°C</td>
<td>1·00087</td>
<td>0·99967</td>
<td>+ 0·00033 n</td>
</tr>
<tr>
<td>16°C</td>
<td>1·00102</td>
<td>0·99982</td>
<td>+ 0·00018 n</td>
</tr>
<tr>
<td>17°C</td>
<td>1·00120</td>
<td>1</td>
<td>— 0·00018 n</td>
</tr>
<tr>
<td>18°C</td>
<td>1·00139</td>
<td>1·00018</td>
<td>— 0·00037 n</td>
</tr>
<tr>
<td>19°C</td>
<td>1·00158</td>
<td>1·00037</td>
<td>— 0·00058 n</td>
</tr>
<tr>
<td>20°C</td>
<td>1·00179</td>
<td>1·00058</td>
<td>— 0·00080 n</td>
</tr>
<tr>
<td>21°C</td>
<td>1·00200</td>
<td>1·00080</td>
<td></td>
</tr>
</tbody>
</table>

Man ersieht aus dieser Tafel, wie klein die Correctionswerthe sind, und dass, wenn man die Normaltemperatur nicht in zu schreiender Weise überschreitet, man keinen grossen Fehler zu begehen in Gefahr ist. Auch müsste bei Anbringung der Correction die Reactionsersehnnung ungemein scharf und hervorspringend sein, indem ein Tropfen mehr oder weniger auf 100 cebcm schon die Grösse dieser Correction übersteigt. Es würde nun doch unbegründet sein, eine so scharfe Correction anzubringen, wenn man in der Beobachtung der Erscheinung nicht bis auf diese Grösse hin sicher wäre. Auf der anderen Seite kann man sich durch den Anblick der obigen Tafel beruhigen, wenn man bisher eine solche Correction noch nicht anzubringen für nöthig gefunden hat.

Bei Graduirung der Flaschen und Pipetten beobachtet man die Normaltemperatur ganz genau, weil dies nur eine einmalige Mühe von dauerndem Nutzen ist.

Die am meisten gebrachte Massflasche ist die Literflasche. Ihr Inhalt ist ein Würfel von 1/10 m Seite (Fig. 56 a. v. S.). Für uns ist ihr Inhalt das Volum von 1 Kg Wasser bei 14°C R.

Die Literflasche muss die Marke im engen Theile des Halses haben, damit eine Haarbreite höher oder tiefer wenig ausmacht. Es muss noch über der Marke ein ansehnlicher Lufterraum bleiben, damit man gut umschütteln kann.

Um eine Literflasche machen oder kontroliren zu können, muss man eine grosse und gute Wage und ein richtiges Kilogramm haben. Die Wage, welche ich zu diesen Arbeiten benutzte, ist stark genug, um auf jeder Seite 5 Kg zu tragen und doch noch einen Ausschlag bei 5 mg Uebergewicht zu geben.

Man kann jetzt leichter zu einem richtigen Kilogramm gelangen, da auch ein solches in Berlin vorhanden ist, welches als Urgewicht für das deutsche Reich gilt. Im Artikel 7 der Gesetzvorlage an das Zollparlament heisst es: „Als Urgewicht gilt das im Besitze der königl. preussischen Regierung befindliche Platinkilogramm, welches mit Nro. 1 bezeichnet im Jahre 1860 durch eine von der königl. preussischen und kaiserl. französischen Regierung niedergesetzte Commission mit dem in dem kaiserlichen Archive zu Paris aufbewahrten Kilogramm prototype verglichen und gleich 0.999999842 Kg gefunden worden ist.“

Es ist also um 0.000158 g, d. h. anderthalb Zehntel Milligramm, zu leicht. Diese Angabe ist das Resultat und Mittel vieler Wägungen, denn es giebt keine Wage in der Welt, welche bei Belastung von 1 Kg auf jeder Schale noch 1/3 mg mit Bestimmtheit anzeigt.

Man bringe zunächst eine vorläufig durch Wasser probirte und gut gefundene ganz trockene Flasche mit dem Kilogramm auf eine Schale der Wage und stelle das Gleichgewicht durch eine mit Wasser zu füllende Flasche her. Es wird dadurch der verschiedene Gewichtsverlust in der Luft durch ungleiche Temperatur und Barometerdruck ganz ausgeglichener. Wenn dies geschehen ist und die Wage scharf einsteht, so
I. Die Instrumente.

Sobald dies geschehen, wird ein dünnnes Thermometer, welches in einem die Flasche genau schliessenden Korke sitzt, Kork und Thermometer mit destillirtem Wasser benetzt, in die Flasche gesetzt, so dass die Kugel im Wasser hängt. Die Flasche ist nun geschlossen und wird geschüttelt, bis das Thermometer 14° R. zeigt, zu welchem Zweck man sie entweder in kaltes oder warmes Wasser setzt, bis dieser Erfolg eingetreten ist. Man kann sie dann nach Entfernung des Thermometers und sorgfältigem Abtrocknen noch einmal auf die Wage setzen, um zu sehen, ob sich nichts geändert habe.

Fig. 59.

Ablesung in der Literflasche.
Maassflaschen.

vermieden. Die Flüssigkeit erscheint alsdann wie in Fig. 60. Die 1 und 2 Literflasche ist in den Figuren 61 und 62 abgebildet.

Ausser diesen Flaschen gebraucht man noch kleinere Flaschen zu 100, 200, 300, 500 cbcm, welche man in ähnlicher Weise darstellt. Diese Flaschen dienen dazu, um kleine Mengen Substanz in beliebige aliquote Theile zu theilen. Es gibt keine andere so genaue Methode der Eintheilung als diese, oder um sehr kleine Mengen einer Substanz

Fig. 61.

Fig. 62.

allein herauszunehmen. Gesetzt, man wolle 1 mg Jodkalium allein haben, so nehme man 0,5 g Jodkalium, löse es in destillirtem Wasser und er-

1/4

gänze das Volum zu 500 cbcm. Ein mit der Pipette herausgezogenes

Cubiccentimeter Flüssigkeit enthält alsdann genau 0,001 g Jodkalium.

oder man wolle das kohlensaure Natron bestimmen, welches in einer ge-

gebenen Flüssigkeit, die man nicht ganz verwenden dürfte, enthalten ist,

so verdünne man die Flüssigkeit auf 300 oder 500 cbcm, sauge mit der

Pipette 100 cbcm heraus, titriere sie und multiplicire das Resultat mit 3

oder 5. Man hat alsdann noch Flüssigkeit genug übrig, um andere Be-

standtheile darin zu bestimmen.

Die Literflaschen dienen zur Herstellung titirter Flüssigkeiten mit

Literflaschen.
chemisch reinen gewogenen Substanzen, wie z. B. mit kohlensaurem Na-
tron, Oxalsäure, doppelt chromsaurem Kali, arseniger Säure und ähnlichen.
Um dagegen eine andere diesen Flüssigkeiten entgegenstehende und gleich-
werthige Flüssigkeit darzustellen, bedient man sich der Mischflaschen und
Mischzylinder (Figuren 63 u. 64). Die Mischflasche ist eine möglichst
cylindrische Flasche von 1000 bis 1200 cbcm Inhalt und in Theile von
10 zu 10 cbcm graduirt. Man kann daraus immer die Menge der vor-
handenen Flüssigkeit ablesen und die Zusätze berechnen. Einen ganz
gleichen Zweck hat der Mischcyliner, der sich nur durch eine länger
gestreckte Gestalt und grössere Abtheilungen auszeichnet. Er ist eben-
falls von 10 zu 10 cbcm graduirt und wird in gleicher Art wie die Misch-
flasche angewendet. Das Specielle seines Gebrauches wird in der Alkali-
metrie an bestimmten Fällen gezeigt werden.
Gegen diese Art der Aichung mit Wasser von 14° R. hat Fresenius in der 5. Aufl. seiner Anleitung zur quantitativen Analyse (S. 33) einige Einwendungen gemacht. Er sagt dort: „Literflaschen und überhaupt Messgefäße so anzufertigen, wie es F. Mohr vorschlägt, dass ein Literkolben nicht 1000 g Wasser von + 4° C., sondern 1000 g Wasser von + 17°5° C. fasst, kann ich nicht raten, indem dadurch der wissenschaftliche Begriff des Liter vernachlässigt und Nichtübereinstimmung der von verschiedenen Mechanikern angefertigten Messgefäße hervorgerufen wird. Ein Literkolben nach Mohr fasst 1001·2 wahre Cubikcentimeter. Ich halte es für unzweckmässig, wenn bei den zum Messen der Flüssigkeiten bestimmten Gefässen 1 cbcm eine andere Bedeutung hat, als bei den zum Messen der Gase dienenden, bei welchen man, da häufig Volumina auf Gewichte umzurechnen sind, vom wahren Cubikcentimeter nicht abgehen kann.“ Er räth deshalb bei einer Temperatur des Wassers von 16° C. für das Liter 999 (genau 998·981) g, für den Halbliterkolben 499·5 g u. s. w. anzuwenden, wodurch die Messkolben richtig würden.

Ich würde diese Einwände unbedenklich acceptiren, wenn dadurch der wissenschaftliche Begriff des Cubikcentimeters erhalten bliebe und nicht andere praktische Vortheile verloren gingen.

Es ist bekannt, dass das Kilogramm auf den luftleeren Raum bezogen ist. In dem Gesetze, welches im Zollparlament angenommen wurde, heisst es: Art. 5. „Das Gewicht eines Cubikcentimeters Wasser im luftleeren Raume bei + 4 Grad des hunderttheiligen Thermometers ist das Gramm.“

Dasselbe sagt Schumacher in seinem Jahrbuch für 1836 auf S. 237. Wenn also im luftleeren Raume ein Volum von 1000 cbcm destillierten Wassers von + 4° C. gegen Platin ausgeglichen ist, so ist eigentlich das Wasser das Urgewicht und das Platingewicht nur die Kopie desselben. Beide Massen enthalten unter diesen Umständen gleichviel ponderable Substanz. Kommt aber die Wage mit den gleichschwebenden Stoffen in die Luft, so verliert das Liter Wasser mehr an Gewicht als das Platinkilogramm, und das Gleichgewicht ist gestört. Das Liter trockne Luft von 0° C. und 760 mm Druck wiegt nach Regnault 1·293187 g.

Bei + 4° C. wiegt dasselbe \[\frac{1'293187}{1'01464} = 1'274\ g,\] und 1 cbcm Luft wiegt 0·001274 g.

Das Platinkilogramm der Archive zu Paris hat, wie wir gleich sehen werden, das specif. Gewicht 20·644, und es nimmt dadurch einen Raum ein von \[\frac{1000}{20'644} = 48'4\, cbcm,\] vermöge dieses Volums verliert es 48'4 \(\times 0'001274 = 0'0616\) g an Gewicht in der Luft. Das ganze Liter verliert aber das volle Gewicht eines Liters Luft bei dieser Temperatur oder 1·274 g. Die Störung des Gleichgewichts beträgt also in der Luft 1·274 — 0·0616 = 1·2124 g, um die das Liter Wasser zu leicht erscheint. Man müsste also dieses Gewicht an Wasser dem Liter in der Luft
zufügen, um das Gleichgewicht herzustellen, hätte aber dann nicht 1000 cbem, sondern 1001·2124 cbem. Es bewirken also 1001·2124 g Wasser von $+4^\circ$C. in der Luft ebenso das Gleichgewicht, wie 1000 g Wasser von $+4^\circ$C. im luftleeren Raume. Um also das richtige Volum von 1000 cbcm durch Wasser von $+4^\circ$C. in der Luft herzustellen, muss man nicht 1000 g, sondern 998·788 g Gewicht auflegen, oder einfacher, man muss den Gewichtsverlust des Liter Wasser in der Luft, nämlich 1·2124 g, neben die Literflasche legen und dann erst den Rest des Gewichtes von 1000 g Platin durch Wasser von $+4^\circ$C. ausgleichen.

Nach Fresenius' Verfahren würde es genügen, wenn man 1000 g Wasser von $+4^\circ$C. auswässe, dann aber würde die Literflasche um 1·2124 cbem zu gross ausfallen.

In der Wirklichkeit wird nun nicht mit Platinkilogrammen, deren Metallwerth schon tausend Francs oder 266$\frac{2}{3}$ Thaler = 800 Mark beträgt, abgewogen, sondern mit Gewichtsstücken von Messing von gewöhnlich unbekanntem specif. Gewicht. Nehmen wir dies zu 8·1 an, so nimmt ein Messingkilogramm ein Volum von $\frac{1000}{8·1} = 121$ cbem ein. Mit Erwärmung des Wassers über $+4^\circ$C. nimmt dessen Volum zu und seine Dichtheit ab; beide stehen im umgekehrten Verhältniss. Nimmt man bei irgend einer Temperatur diejenige Menge Wasser an Gewicht, welche seine Dichtheit oder specifisches Gewicht anzeigt, so bleibt das Volum ungeändert dasselbe wie bei $+4^\circ$C. Es werden also bei jeder Temperatur die Gewichtsmengen Wasser, welche bei dieser Temperatur sein specif. Gewicht anzeigt, immer das Volum des vollen Gewichtes (1000 g) bei $+4^\circ$C. besitzen. Die Dichtigkeit des Wassers gegen jene bei $+4^\circ$C. als Einheit ist bei 17°C. nach Hallstroem 0·998973; nach Stampfer 0·998763; nach Köpp 0·99887. Nehmen wir letztere Zahl als die zuverlässigere an, so haben 998·870 g Wasser bei $+17^\circ$C. dasselbe Volum, wie 1000 g bei $+4^\circ$C. Das Volum der Luft bei $+17^\circ$C. beträgt 1·06222, jenes bei 0° als Einheit genommen; das Gewicht eines Liters Luft bei 17°C. beträgt also $\frac{1·293187}{1·06222} = 1·217$ g, also 1 cbcm ist gleich 0·001217 g. Das Messingkilogramm verliert in der Luft $121 \times 0·001217 = 0·146257$ g an Gewicht, das Liter Luft aber 1·217 g, folglich verliert das Liter Luft 1·217 $- 0·1462 = 1·0708$ g mehr als das Messinggewicht. Beim Gleichgewicht in der Luft enthält also das Liter Wasser von 17°C. diese Menge zuviel, und man muss sie ihm noch wegnehmen, um die Bedingungen der Wägung im leeren Raume herzustellen. Es müssen also noch den

998·870 g, welche das Liter Wasser bei 17°C. wiegt, 1·0708 g abgezogen werden, und dies

lässt 997·7992 g,

oder 997·8 g als diejenige Menge Wasser von 17°C., welche in der Luft
gewogen, denselben Raum einnehmen, wie 1000 g Wasser von + 4°C im luftleeren Raum. Einfacher würde man die entsprechenden Gewichte neben die Literflasche und das volle Kilogramm von Messing auf die andere Schale legen und zwar

<table>
<thead>
<tr>
<th>für 1 Liter</th>
<th>2:2 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>" 0:5 "</td>
<td>1:2 "</td>
</tr>
<tr>
<td>" 0:1 "</td>
<td>0:22 "</td>
</tr>
<tr>
<td>" 0:01 "</td>
<td>0:022 "</td>
</tr>
</tbody>
</table>

Wenn man nach Borda auf derselben Schale wiegt, so hat man nach Wegnahme des tarirten Kilogramms 2:2 g an seine Stelle zu legen und dann den Rest mit Wasser von 17°C auszugleichen. Es entsteht diese Correction aus der Addition von zwei Grössen, nämlich 1) jener Gewichtsmenge, um welche bei gleichem Volum das wärmere Wasser leichter ist als das von + 4°C., und 2) aus dem Gewichtsverlust, welchen bei der angenommenen Temperatur das Liter Wasser mehr erleidet, als das messungene Gewichtsstück. Hat man die Bestimmung der Masse mit Wasser von 17°C ohne Correction und in der Luft gemacht, so enthält man etwas zu grosse Cubikcentimeter, die aber durch Multiplication mit 1:0022 oder durch Division mit 0:9978 in wahre verwandelt werden. Bei alledem sind diese wahren Cubikcentimeter für die Massenanalyse nicht bequem anzuwenden, und das von mir angenommene Verfahren, die Masse in der Luft mit dem vollen Gewichte Wasser von 17°C oder 17·5°C darzustellen, hat bestimmte praktische Vorzüge.

2) Man kann mit den Flaschen und Pipetten sehr scharf das specif. Gewicht von Flüssigkeiten bei der angenommenen mittleren Temperatur bestimmen, indem man das absolute Gewicht der Flüssigkeit mit 1000 oder mit 100 dividirt, d. h. 3 oder 2 Stellen nach links mit dem Komma abschneidet. Bei den reducirten Flaschen muss man mit 997·8 oder mit 997·8 dividiren, was jedenfalls unbequem ist, und es müssen auch diese Zahlen auf den Flaschen notirt sein.

3) Die von Fresenius befürchtete Verwechslung der verschiedenen Cubikcentimeter beim Messen von Flüssigkeiten und Gasen kann nicht vorkommen, denn die zur Massenanalyse bestimmten Flaschen, Pipetten und Büretten können gar nicht zum Messen von Gasen
I. Die Instrumente.

verwendet werden, weil sie oberhalb der Marke und die Büretten unterhalb der Theilung unbekannte und ungemessene Hohlräume enthalten, welche jede Verwendung zur Messung ausschliessen. Ebenso wenig können Detonationsröhren, Gascylinder und Glocken zum Messen von Flüssigkeiten verwendet werden, weil sie keine Abflussvorrichtung haben, oben geschlossen sind und beim Umkehren die Zahlen auf dem Kopfe stehend zeigen.

Detonationröhren und Gascylinder fertige ich mit der vollen Correction an, und diese können auch ihrer Form nach mit den Messapparaten für Flüssigkeiten nicht verglichen werden, sind mit Cubikcentimeter bezeichnet, während die masssanalytischen Apparate, um jeden Zweifel auszuschliessen, mit „1000 g Wasser bei 14° R.“ bezeichnet sind. Es ist mir noch kein Fall vorgekommen, wo eine Messung von Gasen mit einer masssanalytischen Operation zusammen hätte stattfinden müssen, und wenn ein solcher Fall vorkäme, so würden die Gase nicht in Büretten aus dem oben angeführten Grunde gesammelt und gemessen werden können. Überhaupt aber werden Gase nie bei normalen Constanten von 0° C. und 760 mm Druck gemessen und müssen immer durch Rechnung darauf reducirt werden, und da wäre dann selbst die Anbringung der obigen Correction noch immer sehr leicht, und nicht mit der Unbequemlichkeit zu vergleichen, dass an der Bürette keine einzige Zahl direct mit Gewicht verglichen werden könnte.

Es liesse sich noch darüber streiten, ob die französische Maass- und Gewichtscommission richtig gegriffen hätte, als sie die Reduction auf den luftleeren Raum und nicht auf eine Luft von bekannten und leicht herzustellenden Constanten angenommen hat. Wägen im luftleeren Raum ist absolut unmöglich. Auch konnte man damals einen vollkommen luftleeren Raum noch nicht herstellen, und kannte auch nicht das Gewicht eines Liters Luft, wie es jetzt aus den Versuchen von Regnault hervorgegangen ist; endlich ist es sehr fraglich, ob die Reduction auf den luftleeren Raum wirklich richtig ausgeführt worden ist, da das specif. Gewicht des Platinkilogramms der Archive gar nicht bestimmt worden war.

also nichts übrig, als das Volum desselben durch trockne Messungen zu bestimmen, wozu ein von Gambey angefertigter mikrometrischer Apparat benutzt wurde. Aus einer grossen Anzahl von Messungen an verschiedenen Stellen ergab sich der Cubikinhalt des Kilogramms des Archivs zu 48615'4 cbmm und jenes von Schumacher zu 47814'4 cbmm, und durch Division dieser mit 1000 dividirten Zahlen, um die Cubikmillimeter in Cabikcentimeter zu verwandeln, also von 48'6154 und 47'3144 in 1000 ergab sich das specifische Gewicht

des Kilogramms der Archive \[= 20'644\]

von Schumacher \[= 21'212\].

Jetzt erst war eine Vergleichung auf der Wage möglich. Es bestand nämlich das Kilogramm der Archive aus Jeannetty'schem mit Arsenik dargestelltem etwas porösem Platin, jenes von Schumacher aus geschweisstem Wollaston'schen Platin, und wahrscheinlich wurde ein solches aus geschmolzenem Deville'schen Platin eine noch höhere Zahl ergeben haben.

Das erste dargestellte Liter war kein Hohlmaass, sondern ein körperliches Liter, ein Cylinder von 0'1 m Höhe und 0'1 m Quadrat Grundfläche; diese wurde durch einen Kreis von 112'838 mm Durchmesser erhalten, dessen Messung durch einen mikrometrischen Apparat geschah. Dieses Liter ist unmittelbar von dem Urmaass des Meters abgenommen und hat noch keine bestimmte Beziehung zu Gewicht; dagegen hat umgekehrt das Gewicht eine bestimmte Beziehung zum Meter, und zwar gerade diejenige, welche man absichtlich hineingelegt hat. Es lag blosse an der Unmöglichkeit ein Hohlmaass von 0'1 m Würfel mit derselben Genauigkeit anzufertigen, als man ein massives Liter auf der Drehbank als Cylinder herstellen konnte, dass man den ersten Weg gewählt hat. Indem man dieses massive Liter in Wasser von + 4°C. eintauchte, bestimmte man seinen Gewichtsverlust, der dem absoluten Gewichte des verdrängten Wassers gleich war, durch das aufzulegende Gewicht von Platin und nannte dies Kilogramm. Hierbei wurde das massive Liter erst in der Luft, dann in Wasser von + 4°C. gewogen; das Platin gewicht schwankte in jedem Falle in der Luft und verlor dadurch die oben berechneten 0'0616 g an Gewicht. Diese musste man ihm zulegen, ohne sie damit zu einem Stücke zu vereinigen, wenn das blose Gewichtsstück für den leeren Raum gelten sollte. Das war jedoch unmöglich, denn man hatte noch kein Grammgewicht, welches erst aus dem fertigen und richtigen Kilogramm durch Unterabtheilung gewonnen werden konnte; da aber das specifische Gewicht des Platinkilogrammas gar nicht bestimmt worden ist, so war auch diese Korrektion unmöglich, weil man sein Volum nicht kannte, was erst später durch Schumacher festgestellt wurde. Man sieht also, in welche Schwierigkeiten man sich durch die Reduction auf den luftleeren Raum verstrickte und dass man zugleich jede spätere Verifikation auf diesem Wege ausschloss. Das wahre Kilogramm wäre viel zugänglicher geworden, wenn man den Gewichtsverlust

Mohr, Titrirbuch.
I. Die Instrumente.

des Liters in Wasser von + 4° C. in Messing von einer bestimmten Zusammensetzung und festgestelltem spezifischen Gewicht bei + 4° C. und 760 mm Druck festgestellt, und dann dieses Messingkilogramm bei derselben Konstanten der Dauerhaftigkeit wegen in Platin kopiert hätte. Da wir nur in der Luft wägen können, so wiegt das Platinkilogramm der Archive gar nicht 1000 g, sondern 1000 — 0'0616 = 999'9384 g, oder die Reduction auf den luftleeren Raum ist eine Täuschung. Will man nun das Platinkilogramm in Messing von dem spezifischen Gewicht 8'1 kopiren, so muss man auf die Schale, worauf das Messing liegt, erst ein Gewicht von 0'092554 g legen und dann das Messing dem Platin gleich machen. Es verliert nämlich das Kilogramm von Messing mit seinem 121 cm3 Volum 0'154154 g an Gewicht, das Platin aber 0'0616; also das Messing verliert durch die Gegenwart der Luft mehr an Gewicht 0'154154 — 0'0616 = 0'092554 g. Legen wir diese in besonderen Stücken neben das Messing, so ist die Wägung auf den luftleeren Raum gestellt und beide Gewichtsstücke enthalten absolut gleichviel wägbare Substanz, indem wir den Auftrieb der Luft durch das zugelegte Gewicht ausgeglichen hatten. Ob das aber jemals geschehen ist, bleibt sehr fraglich, und mit dem neuen Messinggewichte kann man doch immer nur in der Luft wägen. Ueberhaupt ist die Beziehung der ponderablen Substanz in 1 Liter Wasser von + 4° C. zu einem Stück Metall eine rein praktische und keine wissenschaftliche, wie etwa die Verhältnisse der Atomgewichte, die spezifische Wärme u. a., die sich natürlich nur auf den leeren Raum beziehen können. Ein so dargestelltes Messingkilogramm, welches ersichtlich 92'1/2 mg leichter wäre als das Platinkilogramm, würde kein Physiker oder Chemiker annehmen, denn damit wäre er verurtheilt, immer auf den luftleeren Raum zu reduciren. Es ist aber selbst bei wissenschaftlichen Arbeiten als eine Ausnahme anzusehen, dass man diese Reduction vornimmt, und häufig ist es nur Ostenstation und Scheingerbissigkeit. Im lufterfüllten Raume kann und muss man wägen, und alle diese Wägungen sind mit den kleinen Fehlern behaftet, welche aus dem ungleichen spezifischen Gewichte von dem zu wägenden Stoffe und den Gewichtsstücken und aus den wechselnden Konstanten der Luft entspringen; aber darüber kommen wir nicht hinaus, und müssen es als eine absolute Nothwendigkeit betrachten, wie das Athmen und Leben im lufterfüllten Raume.

Das titrimetrische System.

Ursprünglich stellte man die titirten Flüssigkeiten in solchen Stärken dar, dass sie bei Anwendung ganzer Gramme Substanz Procente eines

Ein specieller Fall wird dies deutlicher machen. Die krystallisirte Oxalsäure \((C_2O_3 + 3 \text{ Aq})\) hat das Atomgewicht 63. Löst man 63 g krystallisirte Oxalsäure zu einem Liter auf, so sättigt dieses Liter Flüssigkeit 1 Atom von jedem alkalischen Körper, und 100 cbcm normale Oxalsäurelösung sättigen \(\frac{1}{10} \) Atom eines solchen. Es werden also von 100 cbcm Normaloxalsäure 6'911 g kohlensaures Kali, 5'3 g kohlensaures Natron, 2'8 g Aetzkalk, 1'7 g reines Ammoniak gesättigt. Wägt man nun die zu prüfenden Körper zu \(\frac{1}{10} \) Atom ab, und bedient man sich einer 100 cbcm enthaltenden Bürette, so werden die zur Sättigung verbrauchten Cubikcentimeter, die im Verlaufe des Werkes immer mit cbcm bezeichnet werden, genau die Procente desjenigen Körpers angeben, dessen Atomgewicht man abgewogen hat. Wollte man bei kohlensaurem Kali die Procente dieses Salzes erfahren, so würde man 6'911 g abwägen; wollte man das reine Kali erfahren, so würde man 4'711 g abwägen und wollte man endlich die Procente Kohlensäure messen, so würde man 2'2 g abwägen, weil das Atomgewicht der Kohlensäure 22 ist.

Würde man andererseits eine alkalische Lösung von 53 g reinen kohlensauren Natrons zu 1 Liter verdünnt bereiten, so würden 100 cbcm dieser Lösung \(\frac{1}{10} \) Atom einer jeden Säure sättigen. Man müsste alsdann von den zu messenden Säuren die Schwefelsäure zu 4 g abwägen, wenn man Procente von wasserleerer Schwefelsäure erfahren wollte; zu 4'9 g, wenn man Procente des Monohydrats suchte. Ebenso müsste man von Salpetersäure 5'4 g, von Salzsäure 3'646 g abwägen, um die Procente dieser Körper zu erfahren. In dieser Art bestimmt man mit einer normalen Säure sämtliche Alkalien und Erden, und mit einem normalen Alkali sämtliche Säuren.

Es gilt deshalb die folgende Regel:

1) Bei normalen Flüssigkeiten wägt man \(\frac{1}{10} \) Atom des gesuchten Körpers ab, und die verbrauchten Cubikcentimeter zeigen unmittelbar Procente des Körpers an, mit dessen Atomgewicht man abgewogen hat.

2) Bei Zehntelflüssigkeiten wägt man \(\frac{1}{100} \) Atom des gesuchten Körpers ab, und die verbrauchten Cubikcen-
I. Die Instrumente.

timeter zeigen die Procente des Körpers an, mit dessen Atomgewicht man abgewogen hat.

Durch dieses System wird die Anzahl der Titirflüssigkeiten auf die kleinste Zahl beschränkt, und es entsteht eine Klarheit in der Beurtheilung des Zusammenhanges der Erscheinungen mit ihren Berechnungen, die nichts zu wünschen übrig lässt.

Für Fabrikanten und für solche Geschäfte, wo dieselbe Arbeit sich häufig wiederholt, ist es zweckmässig, die Atomgewichte in eigens zurechtgemachten Gewichtsstücken zu besitzen, die man ohne Weiteres auf die im Gleichgewichte stehende Wage zu legen hat. Man stellt sie am besten aus Argentanblech dar, welches sich durch seine Härte, Politur und Indifferenz gegen Feuchtigkeit besonders dazu eignet, weit besser als Silberblech. Diese Platten geben auch einen anschaulichen Begriff von der relativen Grösse der Atomgewichte (Fig. 65 und 66).

Fig. 65. Fig. 66.

Atomgewichte zum Abwägen.

Es gibt aber auch viele Fälle, wo man nicht gerade ein bestimmtes Gewicht nehmen kann, sondern den Gehalt an einem gegebenen Objecte finden will. In diesem Falle findet eine einfache Berechnung statt nach den ursprünglichen Zahlen der Atomgewichte. Gesetzt, man hätte zu einer unbestimmten Menge kohlensauren Kalis 45 cbcm normale Säure verbraucht, so hat man den Ansatz: 100 cbcm : 6'911 kohlensaurem Kali = 45 cbcm : x kohlensaurem Kali, woraus

\[
x = \frac{6'911 \cdot 45}{100} = 3'109 \text{ g}
\]

kohlensaurem Kali gefunden wird.

Um diese Proportionalrechnung in eine einfache Addition zu verwandeln, kann man im Voraus die Berechnung auf die neun Ziffern ausführen. Wir wissen, dass 1000 cbcm Probesäure 69'11 g kohlensaures Kali anzeigen: jeder cbcm zeigt also \(\frac{69'11}{1000} = 0'06911 \text{ g kohlensaures Kali} \), den Werth eines Cubikcentimeters Probetaßigkeit erhält man immer, wenn man bei normalen Flüssigkeiten das Atomgewicht mit den
Über die verschiedenen Arten der Maassanalyse.

Einern auf die dritte Decimalstelle, bei 1/10 normalen auf die vierte setzt. Wir erhalten also eine Tafel von folgender Gestalt für normal:

\[
\begin{array}{cccccccccc}
\text{Cubikcentimeter} & & & & & & & & & \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

| Kohlensäures Kali | \(0.06911\) | \(0.13822\) | \(0.20733\) | \(0.27644\) | \(0.34555\) | \(0.41466\) | \(0.48377\) | \(0.55288\) | \(0.62199\) |

Berechnen wir nach dieser Tafel die beispielsweise angenommenen 45 cbcm, so haben wir

\[
40 \text{ cbcm} = 2.7644 \quad (\text{nämlisch in der Kolumne 4 das Komma eine Stelle rechts})
\]

\[
5 \text{ cbcm} = 0.3455
\]

macht 3.1099 g, wie oben.

Es ist demnach in allen Fällen die Berechnung in eine einfache Addition verwandelt, welche eben so genau ist wie die Proportionalrechnung, wenn man die ganzen Atomgewichte in die Tafel aufnimmt. Die hierzu dienlichen Tafeln sind am Ende des Werkes beigefügt.

Über die verschiedenen Arten der Maassanalyse.

Im Verlaufe des Werkes wird man leicht die Beobachtung machen, dass nicht alle Bestimmungen in derselben Art ausgeführt werden.

Zunächst unterscheiden wir die
direkte Bestimmung und diejenige durch die Restmethode.

Die directe Bestimmung ermittelt die Menge des zu suchenden Körpers durch die Wirkung auf ihn selbst oder eine äquivalente Menge eines durch ihn ausgeschiedenen anderen Körpers. Die sichtbare Erscheinung tritt ein, wenn diese Wirkung vollendet ist. So tritt z. B. die rothe Farbe des Chamäleons auf, wenn das Eisenoxydul in Oxyd verwandelt ist; es tritt die rothe Farbe der Lackmustinctur ein, wenn das Alkali gesättigt und ein kleiner Ueberschuss von Säure vorhanden ist. Die directe Methode ist theoretisch die sicherste und man muss ihr a priori den Vorzug vor anderen Methoden geben. Bei der directen Methode steigt die Menge der zu verbrauchenden Massflüssigkeit in gleichem Verhältnisse mit dem zu bestimmenden Körper selbst. Der zweite Fall, dass man nicht auf den Körper selbst wirkt, sondern auf eine äquivalente Menge
I. Die Methoden.

eines anderen Körpers, tritt ein, wenn ein Körper wegen seiner Unlöslichkeit direct nicht gemessen werden kann. Alle Hyperoxyde, viele Säuren (Chromsäure, Chlorsäure, Jodsäure) entwickeln mit starker Salzsäure gekocht eine zu ihrem Sauerstoffgehalt in einem gewissen Verhältniss stehende Menge Chlorgas. Bestimmt man dieses Chlor durch eine directe Methode, so muss auch die Bestimmung des Körpers, von welchem das Chlor in Freiheit gesetzt worden, noch als direct angesehen werden, obgleich das Resultat auf einem Umwege erhalten wurde. Das Chlor lässt sich aber nicht so scharf bestimmen wie das Jod, und man kann im vorliegenden Falle das Chlor von Jodkalium absorbiren lassen, und dann das ausgeschiedene Jod durch unterschweifsgaures Natron bestimmen. Auch diese Bestimmung muss noch für direct in Bezug auf den ursprünglichen Körper angesehen werden, weil die Menge der Maasflüssigkeit mit der Menge des Körpers verhältnissmässig steigt und fällt.

Häufig nennt man auch den eben erwähnten zweiten Fall (Chlor) und dritten Fall (Jod) eine indirecte Bestimmung, was in Bezug auf den Körper sprachrichtig ist, während wir hier den Ausdruck direct nur im Gegensatz zur Restanalyse anwenden.

Bei der Restanalyse wird der Körper nicht selbst gemessen, sondern nur der Rest eines anderen Körpers, der in einer bestimmten Menge zugesetzt nicht ganz von dem zu messenden Körper verändert oder zerstört worden ist. Z. B. Braunstein kann nicht durch eine eben genügende Menge Oxalsäure oder Eisenoxydulsalz zersetzt werden, sondern nur durch einen Ueberschuss. Misst man diesen Ueberschuss zurück, so erhält man durch Abzug dieses Restes das Mass des zu bestimmenden Körpers.

Sehr häufig kann man eine Bestimmung sowohl auf dem einen als dem anderen Wege vornehmen. Kocht man Braunstein mit Salzsäure und bestimmt das ausgeschiedene Chlor oder Jod, so ist die Bestimmung
Ueber die verschiedenen Arten der Massanalyse.

55
eine directe; zersetzt man den Braunstein durch eine gemessene oder
gewogene Menge von Oxalsäure oder Eisenoxydulsalz und bestimmt den
Rest eines dieser Stoffe durch Chamäleon, so hat man eine Restanalyse.

Die schönsten massanalytischen Arbeiten werden durch eine Er-
scheinung geschlossen, welche in der Flüssigkeit selbst eintritt. Man hat
deshalb nach jedem Zusätze nur zu beobachten, aber keine besondere
Handlung auszuführen.

Sobald alles Eisenoxydul oder alle Oxalsäure oxydirt ist, bleibt die
rothe Farbe des Chamäleons sichtbar und die Operation ist beendet.

In den meisten Fällen muss man einen Körper zusetzen, der durch
seine sichtbare Veränderung das Ende der Operation anzeigt. Die Sätti-
tigung von Säuren und Alkalien bietet keine den Sinnen wahrnehmbare
Erscheinung dar. Setzt man aber Lackmuster zu, so gibt diese
durch ihre Farbe Anzeige über den Stand und das Ende der Operation.
Einen solchen Körper nennt man Indicator.

Jodlösung ist zwar gelblich gefärbt, allein bei sehr starker Verdünn-
ung kaum mehr sichtbar. Gibt man Stärkelösung hinzu, so erhält
man ein viel lebhafteres Farbenspiel als ohne dieselbe, und die Stärke ist
hier der Indicator.

Wenn Chlormetalle durch Silberlösung gefällt werden, ist einfach
chromsaures Kali der Indicator.

In der Regel soll die Erscheinung, welche das Ende anzeigt, in der
Flüssigkeit selbst eintreten. Es gibt aber viele Fälle, wo dies nicht
thunlich ist. In diesem Falle bringt man einen Tropfen der Flüssigkeit
auf einen Porzellanteller, und setzt nun von einem anderen Körper mit
einem Glasstabe etwas hinzu, um das Ende der Erscheinung zu beurtheilen.
Man nennt diese Reaction im Kleinen eine Tüpfelanalyse.

Chromsäure oxydirt Eisenoxydul in saurer Lösung, und man be-
stimmt mit einer Lösung von saurem chromsauren Kali das Eisenoxydul.
Das Ende der Erscheinung, dass nämlich kein Eisenoxydul mehr vor-
handen sei, kann man nicht mit den Augen wahrnehmen.

Nun gibt rothes Blutlaugensalz mit Eisenoxydulsalzen eine blaue
Fällung, allein man kann von vornherein zu dem Versuche kein rothes
Blutlaugensalz setzen, weil man ja nur den Zeitpunkt erkennen will, wo
die Flüssigkeit keine blaue Färbung mehr gibt, und sie im Beginne
auf jeden Fall eine sehr starke Reaction gibt.

Man muss also die Probe ausserhalb des Versuches auf einem Teller
vornehmen. Dieser Fall ist noch günstig. Es gibt aber Fälle, wo man
zu jedem Versuche eine Filtration vornehmen muss, wenn nämlich ein
in der Flüssigkeit befindlicher Niederschlag selbst von dem Indicator
verändert wird.

Man wolde Phosphorsäure durch essigsauere Eisenoxyd bestimmen,
Das Ende der Operation ist eingetreten, wenn alle Phosphorsäure gefällt
und etwas Eisenoxyd im Ueberschuss vorhanden ist. Das Eisenoxyd
cann durch gewöhnliches Blutlaugensalz angezeigt werden, allein man
I. Die Methoden.

kann dieses nicht in die Flüssigkeit selbst bringen, weil auch das phosphorsaure Eisenoxyd davon blau gefärbt wird. Man wendet die Betupfung mit Filtration an.

In Bezug auf die Natur der Massaflüssigkeiten unterscheidet man die Flüssigkeiten im System und die empirischen Flüssigkeiten. Die nach dem System dargestellten Massaflüssigkeiten enthalten 1 Atom oder $\frac{1}{10}$ Atom Substanz, in Grammen ausgedrückt, auf 1 Liter Raum. Jedes Cubikcentimeter enthält $\frac{1}{1000}$ oder $\frac{1}{10000}$ Atom Substanz und zeigt ebenfalls $\frac{1}{1000}$ oder $\frac{1}{10000}$ Atom, in Grammen ausgedrückt, von der zu bestimmenden Substanz an. Die systematischen Flüssigkeiten werden aus reinen Substanzen dem Gewichte nach bereitet und bedürfen keiner Prüfung, wenn die Substanz rein war. Im Allgemeinen kann man leichter bestimmen, ob eine Substanz rein ist, als ob sie eine äquivalente Menge einer anderen sättigt. Prüft man eine frisch bereitete Normal- oder Zehntennormalflüssigkeit, so stellt man die Reinheit der Substanz in Zweifel, die doch eigentlich ausser allem Zweifel stehen soll. Prüft man die Stärke einer frisch bereiteten Massaflüssigkeit mit gewogenen Mengen einer anderen Substanz und erhält man Resultate, die im System nicht möglich sind, so war eine Substanz unrein. Welche es war, kann man nicht durch die Maassanalyse bestimmen, sondern muss anderweitig durch chemische Versuche festgestellt werden. Hat eine systematische Flüssigkeit längere Zeit gestanden, so dass sie durch Verdunstung, Oxydation oder Entmischung verändert sein kann, so prüft man sie gegen gewogene chemisch reine Stoffe. Man nennt dieses Verfahren Urprüfung. Man verzichtet dann auf den Vortheil der ersten Darstellung aus reinen Stoffen und bestimmt in der weiter unten beschriebenen Weise den Factor, mit dem ihre Mengen multiplizirt werden müssen, um normal oder zehntennormal zu geben.

Empirische Flüssigkeiten nennt man solche, welche im Liter 10 g, also im Cubikcentimeter 10 mg Substanz enthalten, oder von denen 1 ebcm 10 mg eines anderen Stoffes anzeigt. Man bedient sich dieser Flüssigkeiten in technischen Etablissements, Fabriken, Hütten,
wo nur einerlei Stoffe oder nur wenige bestimmt werden. Man umgeht
durch die Anwendung der Tafeln, hat die Substanzen nicht nach dem
Atomgewicht, sondern in ganzen Grammen abzuwägen, und kann den-
noch Procente des zu bestimmenden Körpers ablesen. Hat man eine
Säure, von welcher 100 ccm genau 1 g reinen kohlensauren Natron
sättigen, und wägt man nun 1 g einer Soda von unbekanntem Gehalte
ab, so sind die verbrauchten Cubikcentimeter der Säure die Procente
an reinem kohlensauren Natron. Man kann diese Flüssigkeit aber nicht
für kohlensaures Kali gebrauchen, oder muss die abzuwägende Menge
desselben berechnen, wodurch man unbemerkt wieder in das System ein-
rückt. Das System erlaubt eine Säure für alle Basen und ein Alkali
für alle Säuren zu haben. Von empirischer Flüssigkeit gehört zu jedem
Alkali und zu jeder Säure eine besondere Flüssigkeit. Die empirische
Flüssigkeit ist also anwendbar, wo man nur mit einer Substanz zu ar-
beiten hat. In der Sodafabrik kommt kein Kali vor und deshalb kann
man sich der empirischen Lösung bedienen.

Ganz unbestimmte Flüssigkeiten sind solche, von deren Zusammenset-
zung das Gewichte nach man nichts weiss, oder die weder im System,
noch empirisch richtig sind. Man bestimmt ihren Werth mit abgewogenen
Mengen einer reinen Titersubstanz und berechnet den Factor, wofür
sie normal oder zehntelnormal werden. Hat man nur immer einen und
denselben Körper zu bestimmen, so berechnet man den Werth eines
Cubikcentimeters auf diesen Körper, und bemerkt ihn an der Flasche.
Man nennt dies den Titer nehmen. Ändert man den Werth der
Flüssigkeit durch Verdünnen oder Zusatz von Substanz, bis er einer be-
stimmten Bedingung entspricht, so nennt man dies den Titer stellen.

Analysen ohne Büretten.

Man kann alle Analysen ohne Büretten, Literflaschen und Pipetten
machen, wenn man die verbrauchten Mengen der Maassflüssigkeit abwägt
statt abmisst.

Die ganze Operation und Erscheinung bleibt dieselbe, nur wägt man
die Maassflüssigkeit ab. Man bedarf dazu eines Gefässes, aus dem man
die Maassflüssigkeit im Strahl und tropfenweise ausgießen kann, ohne
etwas zu verlieren.

Man bedient sich dazu am besten eines dünnwandigen Glases von
etwa 300 ccm Inhalt, welches mit einem Korken versehen ist, durch
welchen die Ausflussröhre und die Röhre mit der Blasekugel geht (Fig. 67). Drückt man auf die Kautschukkugel, so fließt Flüssigkeit aus, und zwar so genau nach dem Willen des Arbeitenden, dass man Theile eines Tropfens abstreichen kann. Titernehmung und Analyse geschehen nach derselben Art. Man bestimmt das Gewicht der Flasche mit Inhalt auf einer etwas grösseren empfindlichen Wage, ruft dann die Enderscheinung hervor und wägt wieder. Die Differenz beider Zahlen ist die verbrauchte Menge, und zwar sehr genau. Man ist dabei unabhängig von der Veränderung, welche die Flüssigkeit durch Erwärmung oder Abkühlung, aber nicht durch Verdunstung, Oxydation und Zersetzung erleidet. Bei Anwendung der Methode wird man sich bald überzeugen, dass man einen wesentlichen Vortheil der Maassanalyse, nämlich den Gewinn an Zeit, ganz aus der Hand gibt. So viel Zeit eine Wägung mehr als eine Ablesung an der Bürette in Anspruch nimmt, so viel verliert man bei jeder Operation, und dies addirt sich, wenn man viel arbeitet.

Es soll hier nur die Möglichkeit in einem besonderen Falle beschrieben, aber nicht empfohlen werden.

Analysen ohne Gewichte.

(Preismethode.)

Man lege auf die beiden Schalen einer gleicharmigen Wage auf die linke Seite eine beliebige Menge einer reinen Titersubstanz und auf die rechte Seite die gleiche Menge der zu prüfenden Substanz. Dann rufe man die Enderscheinungen mit einer beliebig starken Maassflüssigkeit hervor. Die Cubikcentimeter für die zu untersuchende Substanz dividirt durch die Cubikcentimeter der reinen Substanz stellen den Gehalt der zu untersuchenden Substanz an der reinen in Gestalt eines Bruches dar, den man leicht in Procente verwandeln kann.

Gesetzt, man habe gleichviel von chemisch reinem kohlensauren Natron und von einer käuflichen Soda abgewogen; die chemisch reine
Substanz habe 48 cbcm einer beliebigen Säure, die Soda 36 cbcm der selben Säure aus derselben Bürette verbraucht, so ist der Gehalt der Soda an reinem kohlensauren Natron \[\frac{36}{48} = 75\text{ Procent.} \]

Der Eisengehalt des Eisendoppelsalzes wäre demnach \[\frac{8'5}{59'4} \] oder 14'309 Procent; nach der Formel 14'286. Der Zusammenhang ist einleuchtend.

Die Menge der Massenflüssigkeit für die reine Substanz stellt 100 Procent vor; eine gleiche Menge unreiner Substanz muss so viel weniger Massenflüssigkeit gebrauchen, als sie weniger von der reinen Substanz enthält. Man ist von der Stärke der Massenflüssigkeit ganz unabhängig und vermeidet auch die Fehler der Eintheilung eines Gewichtssatzes. Es kommt nur darauf an, zwei ganz gleiche Mengen abzuwägen, was durch doppelte Wägung auf derselben Schale geschehen kann. In diesem Falle braucht die Wage nicht einmal gleicharmig, sondern nur empfindlich zu sein.

Wenn man so verfährt, wie eben beschrieben wurde, so setzt jeder Versuch eine besondere Titernahme voraus. Allein auch diese lässt sich vermeiden, wenn man die linke Seite der Wage mit einem beliebigen bleibenden Stücke, z. B. einem Knopf, belastet, und nun auf der rechten Schale einmal die reine Titorsubstanz, das andere Mal die zu prüfende Substanz ins Gleichgewicht bringt. Die für das Gewicht der reinen Substanz gemeldene Zahl Kubikzentimeter gilt für die ganze Menge der ihrer Stärke nach ganz unbekannten Massenflüssigkeit und für die Substanz, die als Titer gedient hat. Man hat also auf der Flasche nur zu bemerken, was für eine Flüssigkeit darin ist, dann die Natur der Titorsubstanz und die Anzahl der Kubikzentimeter, die den constanten Gewichte entsprechen. Diese Zahl ist immer der Divisor zu den Kubikzentimetern für ein gleiches Gewicht einer unreinen Substanz, worin man die Procente der reinen Titorsubstanz sucht.

Die Anwendung dieser Methode setzt bis hierher den Besitz reiner Titorsubstanzen voraus, die sich abwägen lassen. Kann man solche nicht darstellen, so kann man sich anderer reiner Stoffe bedienen, die zu den zu bestimmenden in einem bekannten Verhältniss stehen.

Wenn man reines wasserleeres Manganhypereoxyd besäße, so würde es die Titorsubstanz zu den Braunsteinanalysen sein, und man könnte
I. Die Methoden.

aus der Abmessung gleicher Mengen MnO_2 und Braunsteinpulvers den Gehalt des letzteren an ersterem finden. Es lässt sich aber MnO_2 im reinen Zustande und wasserfrei nicht darstellen. An dessen Stelle nehme man z. B. saures chromsaures Kali, weil sich dieser Körper durch eine gemeinschaftliche Substanz, EisenoxydulsaZe, zersetzen lässt, oder weil beide, mit Salzsäure erhitzt, Chlor entwickeln, welches durch Aufnahme in Jodkalium mit unterschwelligsaurem Natron gemessen werden kann. Es ist gleichgültig, welche Methode man anwende, nur für beide Stoffe dieselbe Methode. Die für das chromsaure Kali erhaltenen Cubikcentimeter bedürfen aber noch einer Korrektion, ehe man sie anwenden kann. Dazu leitet uns folgende Betrachtung. 1 At. doppelt chromsaures Kali ($147'59$) gibt bei der Zersetzung 3 At. = 24 Sauerstoff ab; dagegen 1 At. MnO_2 ($43'5$) gibt nur 1 At. Sauerstoff $= 8$ ab. Wir müssen aber wissen, wie viel Sauerstoff ein dem chromsauren Kali gleich grosses Gewicht Manganhperoxyd abgeben würde, weil wir das doppelt chromsaure Kali statt des nicht zu habenden reinen MnO_2 abgewogen haben. Die Proportion $43'5 : 8 = 147'56 : 27'13$ zeigt, dass $147'56$ Manganhperoxyd $27'13$ Sauerstoff abgeben würden, während ein gleiches Gewicht doppelt chromsaures Kali nur 24 abgibt. Die zur Reduction verwendeten Cubikcentimeter von Eisenoxydullösung oder unterschwelligsaurem Natron müssen in demselben Verhältniss stehen, wie die abzuwägenden Mengen Sauerstoff. Ein gleiches Gewicht reines MnO_2 würde $27'13$ cbcm erfordern, während das doppelt chromsaure Kali nur 24 cbcm; es ist also:

$$24 \cdot x = 27'13$$

$$x = \frac{27'13}{24} = 1'13.$$

Man hat demnach die für das doppelt chromsaure Kali gefundenen Cubikcentimeter mit $1'13$ zu multiplizieren und erhält dann dieselbe Zahl, als wenn man ein gleiches Gewicht reines MnO_2 abgewogen und in gleicher Art gemessen hätte. Hätte man Jod gegen Braunstein abgewogen, so würde man die Cubikcentimeter des unterschwelligsauren Natrons für das Jod mit $\frac{127}{43'5} = 2'919$ zu multiplizieren haben.

Wenn man kohlensaures Natron mit kohlensaurem Kalk mässse, so hatte man mit $\frac{50}{53}$ d. h. $\frac{1}{1}$ At. kohlens. Kalk zu multiplizieren.

Man wolle das gebundene Chlor in einer neutralen Verbindung bestimmen, so wäge man gleiche Mengen reines Kochsalz und der zu untersuchenden Substanz ab, und titriere beide mit salpetersaurem Silberoxyd und chromsaurem Kali als Indicator. Man erhält als dann den Procentgehalt der Substanz an Kochsalz, woraus man das Chlor berechnet. Es ist hierbei gleichgültig, ob das Chlor in der Substanz als Chlornatrium oder als sonstige Chlorverbindung enthalten war.
Analysen und Gewichte.

So hätten wir uns so weit des Irdischen entäussert, dass wir zur Anstellung einer jeden maassanalytischen Bestimmung nur
1. einer Wage,
2. reiner Titersubstanzen,
3. einer in gleiche Volumina (gleichgültig ob Cubikcentimeter oder nicht) getheilten Bürette und
4. eines Knopfes oder einer Münze bedürfen.

Die Anwendung dieser Preismethode ist in sehr vielen Fällen das einfachste und sicherste Mittel, eine zuverlässige Analyse zu machen, ganz besonders bei Schiedsanalysen. Denn statt ältere Titerflüssigkeiten zu prüfen oder richtigzustellen, hat man viel kürzer die ganze Analyse gemacht. Gesetzt, man habe nach langer Unterbrechung eine einzelne strittige Sodaanalyse auszuführen, und man trau ge der Normaläsure nicht mehr wegen langen Stehens oder habe gar keine vorrätig, so nimmt man ein Lößchen voll chemisch reines doppelt kohlensaures Natron, glätt es im Platintiegel, setzt diesen auf die linke Seite der Wage, sein Gegengewicht auf die rechte, und auf beide Schalen zwei gleich schwere Uhrgläser. Die Schale links ist nun um das Gewicht des reinen einfach kohlensauren Natrons schwerer und man gleicht es aus mit der Sodaprobe. Dann titriert man beide mit einer ex tempore und ad oculos gemengten Salzsäure mit Wasser und verfährt wie oben.

Wage und Gewichte.

Die gewöhnlichen analytischen Wagen mit langem durchbrochenen Balken und den kleinen (40 bis 45 mm breiten) Schalen, die höchstens bis 100 g belastet werden sollen, genügen nicht zu titrimetrischen Arbeiten.

Es ist unentbehrlich zwei verschiedene Wagen zu haben: 1) eine Substanzenwage und 2) eine grössere analytische Wage. Die Substanzenwage hat einen kleinen, sehr leichten Balken von 170 bis 180 mm Länge, auf beiden Seiten mit Theilung in 10 von Mitte zu Schneide. Sie gibt $\frac{1}{10}$ mg noch deutlich an. Sie dient dazu, die kleinen Mengen der Substanzen, welche der Arbeit unterworfen werden, mit der grössten Schärfe abzuwägen; dann auch für diejenigen Mengen reiner Stoffe (Eisendraht, Eisendoppelsalze etc.), mit welchen der Titer vorhandener Flüssigkeiten geprüft oder festgestellt werden soll. Es herrscht vielfach unter den Chemikern die Ansicht, dass man nicht bestimmte Gewichte von pulverigen Körpern ohne hygroskopischen Fehler abwägen könne. Das ist ganz richtig, wenn man mit den langarmigen Wagen der meisten Laboratorien arbeitet, welche sehr langsam Antwort geben. Dagegen ist es ein grosser Gewinn an Zeit, wenn man 1 oder 2 g Substanz in Arbeit genommen hat, indem sich dabei die Resultate ohne Weiteres als ganze oder halbe Procente ergeben.

Hat man aber eine unbestimmte auf 3 Decimalen ausgewogene Menge in Arbeit genommen, so müssen nachher alle Resultate durch vier- bis fünfstellige Zahlen dividirt werden, wobei auch wieder Fehler unterlaufen können. Um aber rasch auf einer kleinen, schnell arbeitenden Wage auswägen zu können, muss dieselbe zwei sehr gute Arretirungen haben, welche dicht neben einander liegen, so dass sie mit der linken Hand beide regiert werden können.
Fig. 68 zeigt diese Schalenarretierung ohne die Wage, die sich an jede gegebene Wage anbringen lässt. Die Wagschalen sind Kugelabschnitte von dem Mittelpunkte der Schneiden, woran die Schalen hängen.

Fig. 68.

Neue Schalenarretierung an der Wage.

Ein stählerner oder messingener Stab \(a \) liegt seitlich in zwei gleich hohen Lagern \(bb \). An diesem Stabe sind, abgewendet vom Arbeitenden, zwei flache Messingscheiben \(cc \) an Stielen befestigt. Nach vorn, d. h. der Seite des Arbeitenden zu, ist ein Arm \(d \) angelöht, welcher eine Schraube mit gewölbtem Kopfe trägt. Drückt man auf diesen Kopf, bis die Spitze der Schraube die Tischplatte berührt, so heben sich die sonst hängenden Scheiben \(cc \) in die horizontale Lage und berühren die Wagschalen im untersten Punkte. Lässt man los, so sinken die Scheiben \(cc \) herunter bis auf die Tischplatte in die punktirte Lage und die Schalen spielen frei. Will man arretirt halten, so schiebt man den Vorreiber \(c \), der auf einem daneben stehenden Säulchen \(f \) drehbar befestigt ist, über den Kopf der Schraube und die Schalen ruhen auf den Scheiben \(cc \). Die Schraube, welche in dem Arme \(d \) geht, hat den Zweck, durch Höher- oder Niedrigerstellen genau die Lage zu treffen, in welcher die Scheiben \(cc \) die Schalen eben berühren, aber nicht viel heben, damit beim Loslassen die Schalen nicht in Schwankung gerathen. Diese Vorrichtung arbeitet ungemein sicher. Die Wage gibt immer sogleich die richtige Antwort, weil beide Scheiben, an derselben Achse unbeweglich befestigt, ganz genau in derselben Zeit die Wagschalen verlassen müssen. Zu jeder Wegnahme oder Zulage eines Gewichtes mit der rechten Hand drückt man mit dem Zeigefinger der linken Hand die Scheiben in die Höhe, was gegen das frühere Herumdrehen der Griffscheibe bei schwingenden Wagen ein erheblicher Gewinn ist. Zugleich zeigt Fig. 68 die oben erwähnte Balkenarretierung.
in richtiger Form, wie sie unter der Schalenarretirung weg in den Fuss der Säule geht, welche die Wage trägt.

Ganz wesentlich ist es, die Balkenarretirung nicht mit einer Scheibe anfassen zu lassen, sondern mit einem excentrischen Griffe, der an einem senkrecht auf der Achse sitzenden Arme angebracht ist. Um die Bewegung sanft zu machen, gebe man diesem Arme eine Länge von 45 bis 50 mm. Ich nenne diese Wage die Substanzenwage, weil sie nicht bestimmt ist, Gefässe zu tragen. Sie ist stark genug für 30 g, wird aber mit Substanzen selten über 5 g in Anspruch genommen. Die Schnelligkeit, womit man auf einer solchen Wage wägen kann, hat neben dem Zeitgewinn den grossen Vorteil, dass man selbst ziemlich hygroskopische Substanzen im vollkommen trocknen Zustande abwägen kann. Ohne eine eigentliche Substanzenwage kann ein chemisches Laboratorium nicht für gut ausgestattet angesehen werden.

Eine grössere Wage tritt an die Stelle der gewöhnlichen analytischen Wage. Sie vereinigt eine grosse Leichtigkeit mit bedeutender Stärke. Das Princip der Strebedrähte habe ich schon in der ersten Auflage meiner pharmaceutischen Technik aus 1847 (S. 275) genau beschrieben, und darnach Wagen von ungemeiner Tragfähigkeit und Dauer ausgeführt.

Fig. 69 zeigt eine solche Wage in $\frac{1}{4}$ der natürlichen Grösse. Der Balken ist ein quadratisches Stück Stahl von 3 und 4 mm Seiten, an beiden

Enden zu Gehängen ausgeschmiedet und gehärtet. Die Montirungen der Mittelschneide und der Spitze sind aus Messing gemacht. Die Länge des Balkens von Schneide zu Schneide beträgt 325 mm und das Gewicht des
Instrumentes beträgt 55.5 g. Sie gibt sehr sicher 1 mg bei mittlerer Belastung an, verträgt aber auch 1 Pfd. auf jeder Schale, also im Ganzen 1 Kg Last, wobei sie noch 10 mg anzeigt, und nach Abheben dieser Last ist sie unverändert. Die Strebedrähte von Stahl sind 1 mm dick. Die Schalen haben 100 mm Durchmesser und gestatten einen anständigen Apparat darauf zu setzen. Die äußeren Gehänge sind mit der Fräse von einer Seite gebohrt, doch so, dass die Schneide an der inneren Seite und nicht in der Mitte ist. Dies bietet den Vorteil dar, dass man diese Schneide von beiden Seiten reinigen und schärfen kann; von der inneren mit einem flachen, mit Eisenoxyd bestreuten Holze, von der äußeren mit einem Konus von Holz.

Das auf der Mitte des Balkens sitzende Stück Messing, welches die Zunge und den senkrechten Strebedraht trägt, besteht aus zwei Stücken, die durch Schrauben vereinigt sind. In neuerer Zeit hat ein Hamburger Mechaniker dieses Princip auf analytische Wagen angewendet. Ich habe früher eine Wage dieser Art für größere Lasten konstruiren lassen, deren Balken 3 Pfd. wog, und welche 4 Ctnr. trug, da man eine grösse Last nicht auf die Schalen bringen konnte.

Auf der obigen Wage kann man die zum Titiriren nöthigen Mengen Substanzen, wie Oxalsäure, kohlensaures Kali und Natron etc., mit der grössten Schärfe auswägen; auch trägt sie einen ansehnlichen Kohlensäureapparat, und gibt dabei 1 mg an. Es ist ein ganz unberechtigtes Prunken, wenn man Brüche von Milligrammen auswägt, wo ein Platintiegel, eine Filterasche, ein nicht absolut unlöschiger Niederschlag, ein Gefäss mit grösserem Hohlraum und Aehnliches im Spiele ist. Da selbst viele Atomgewichte in der ersten Decimale unsicher sind, wie bei Kalium, Mangan, Baryum, Zink, Kupfer, Eisen u. a., so hat es keinen vernünftigen Sinn die vierte Decimale präcisiren zu wollen.

Was die Gewichte betrifft, so ist, ausser ihrer vollkommenen Richtigkeit, noch ihre Substanz und Form zu betrachten.

Das beste Metall dazu ist dicht gegossenes Argentan, und das schlechteste ist Silber, weil es immer schwarz anläuft. Die Gramme von Fig. 71. 1 bis zu 50 werden aus gedrehten Stücken mit einem kleinen Kopfe angefertigt. Ihre Form soll nach unten gerundet und mit einem kleinen Kreise des Aufsitzens versehen sein. Diese Form bedingt, dass die Gewichte nicht umfallen können und selbst umgestossen sich von selbst wieder aufrichten. Die cylindrischen Stücke sind unbequem, weil das Einsetzen in die cylindrische Höhlung zu viel
I. Die Methoden.

Aufmerksamkeit erfordert. Die konische Form ist schon besser, allein dazu sind die Höhlungen in dem hölzernen Kästchen schwer zu machen, weil man nur cylindrisch bohren kann.

Die runden Scheiben werden aus Argentanblech ausgeschlagen und in der Mitte mit einem Stift aus Argentandraht versehen. Dieser Drahtstift wird unter dem Gewichte etwas platt geschlagen und oben mit einem Körnchen reinen Zinns verloßeth. Vor dem Reguliren sind die Zahlen 0.5, 0.2 etc. eingeschlagen. Diese Gewichte fassen sich mit der Pinzette in jeder Lage richtig an, und man greift sie sicher, wenn man nur ihren Ort sieht, da der Stift immer in der Mitte ist. Es ist zweckmässig, bei Analysen die Milligramme als Einheit zu nehmen, in welchem Falle diese Gewichte mit 500, 200 und 100 bezeichnet werden. Es fällt dann der Punkt ganz weg und statt 1.5 g schreibt man 1500. Ist der Wagebelken in 100 statt in 10 Theile getheilt, so kann man mit einem Decigrammhäkchen (Fig. 73) die Milligramme auswägen oder, wenn der Balken nur in 10 Theile getheilt ist, so stellt man mit dem Decigrammhäkchen auf dem Strich die Centigramme, und mit dem Centigrammreiter die Milligramme fest. Zu diesem Zwecke ist das Decigrammhäkchen unten aufgebogen, damit man nöthigenfalls den kleinen Reiter daran hängen kann.

Schutz gegen Dämpfe.

Bei chemischen Arbeiten kommen sehr häufig unangenehme und die Gesundheit angreifende Dämpfe vor: so bei den Aufschliessungen mit Salzsäure, den Auflösungen der Metalle mit Salpetersäure, den Fällungen

Richtig trocknen.

Pulverige Körper können im Chlorkalciumtopf lufttrocken gemacht werden. Man verwendet dazu einen gusseisernen Topf mit engem Ansatz (zum Einsetzen in ein Herdloch) und gut schließendem Deckel, Chlorkalciumlösung wird darin bei lebhaftem Feuer eingekocht und gegen Ende aufgestochen, um mehr Oberfläche zu geben.

Auf der kreisförmigen Bank liegt ein Drahtnetz und auf diesem liegen die Gegenstände. Wenn das Chlorkalzium so verwässert ist, dass es beim Erhitzen schmilzt, so trocknet man es auf lebhaftem Herdfeuer wieder ein.

Feuerbeständige Körper, welche ganz entwässert werden sollen, können in einem Platintiegel leicht geglätet werden, wenn dabei kein Verlust oder Oxydation zu befürchten ist.

Abscheidung von Niederschlägen ohne Papierfiltrat.

Berechnungen.

Alle bei chemischen Arbeiten vorkommenden Berechnungen können durch die gewöhnlichen vier Species ausgeführt werden. Da dabei auch Fehler vorkommen können, so ist zu erwägen, welche Rechnungsart die grösste Sicherheit gegen Fehler bietet und den kleinsten Aufwand von Zeit erfordert. So wie nun die Berechnungen unvermeidlich und nothwendig sind, so sind sie andererseits auch verlorene Arbeit, und man ist berechtigt, dieselben auf dem kürzesten und sichersten Wege auszuführen. Bei Addition und Subtraction ist nichts zu ändern oder zu überlegen, dagegen hat man die Wahl zwischen Multiplication und Division. Ganz entschieden ist die Multiplication leichter und sicherer auszuführen als die Division, denn man hat dabei nur das kleine Einmaleins zu kennen, und nicht zu tasten oder zu versuchen wie bei der Division, wenn die erste Ziffer des Divisors klein und die zweite gross ist. Nun kann man jede Division in eine Multiplication verwandeln, wenn man den umgekehrten Werth davon als Factor nimmt. So ist z. B. eine Zahl durch 25 zu dividiren ebensoviel, als sie mit \[
\frac{1}{25} = 0.04
\]

Berechnungen.

Dies ist also das, was ich den konstanten Factor für diese Flüssigkeit nenne, womit alle Zahlen multiplicit werden müssen, um sie in normale zu verwandeln. Um diese Multiplication auch nicht auszuführen, schlägt man Seite 957 auf, wo alle Producte mit ein- bis dreistelligen Zahlen stehen, und da eine Bürettenablesung selten mehr als drei Ziffern hat, so ist jede Berechnung vermieden. Bei Divisionen mit dreistelligen Zahlen liest man die drei ersten Ziffern des Quotienten unmittelbar ab, und wenn man weiter gehen will, so bietet die Tafel auch die grössten Erleichterungen dar, indem man aus den einfachen Producten mit den ersten 9 Zahlen sogleich ersieht, welche nächste Ziffer zu nehmen ist. Der Gebrauch dieser Tafeln ist bei weitem jenem der Logarithmen, der Rechenstäbe und der Rechenmaschinen vorzuziehen. Die logarithmischen Rechenstäbe, auch kreisförmige, verwerfe ich zu diesen Zwecken vollständig, weil man dabei zu leicht grobe Fehler machen und Decimalen fast gar nicht ausrechnen kann. Die Producte mit obigen Tafeln sind absolut richtige, während bei Logarithmen immer Ziffern am Ende fehlen. Potenzen und Wurzeln bleiben der Logarithmentafel vorbehalten, kommen aber in der Chemie nicht vor 1).

Zweiter Abschnitt.

Alkalimetrie.

Allgemeines.

Die Alkalimetrie umfasst alle Aufgaben, welche sich auf die Operation des Sättigens von Alkalien und Säuren gründen. Es wird also die Acidimetrie ebenfalls dahin gerechnet, da man durch Uebersättigen mit einer bestimmten Menge Alkali jede acidimetriche Aufgabe in eine alkali-
metrische verwandeln kann.

Die alkaliimetriche Probe wird meistens nach der sichtbaren Farben-
veränderung beurtheilt, welche gewisse organische Farbstoffe durch Al-
kali oder Säuren erleiden. Als solche sind allgemein angewendet: Lackmus, Kochenille, Kurkuma und Kampechenholz. Lackmus und Koche-
nille verdienen in den meisten Fällen den Vorzug. Es gibt zwei ver-
schiedene Arten von Grundlagen der Alkalimetrie, nämlich 1. chemisch
reines, wasserleeres kohlensaures Natron und 2. krystallisirte Oxalsäure
mit 3 At. Wasser. Die erste Grundlage wurde von Gay-Lussac an-
genommen, die zweite von dem Verfasser in der ersten Auflage dieses
Lehrbuches. Beide Methoden geben dieselben Resultate.

Kohlensaures Natron als Grundlage der Alkalimetrie.

Da die Alkalimetrie zuerst zur Prüfung der Stärke der Soda an-
gewendet wurde, so war es natürlich, dass man sich des kohlensauren
Natrons als Grundlage bediente. Aber auch abgesehen von diesem Um-
stande besitzt das kohlensaure Natron vor dem kohlensauren Kali gewisse
Die Pflanzenpigmente und der Farbenwechsel.

Die Pflanzenpigmente und der Farbenwechsel.

Die Lackmuslösung wird weit empfindlicher und sicherer, wenn man die Kuchen zuerst mit Weingeist von 85 Proc. 3 bis 4 mal auskocht und diese Flüssigkeit abfiltrirt. Es löst sich ein eigenthümlicher Farbstoff von schmutzigem Ansehen und trüb violetter Nuance, der durch Säuren etwas röther, durch Alkalien aber nicht blau wird, sondern violett bleibt. Wenn dieser Stoff entfernt ist, so geben die Lackmuskuchen an destilliertes Wasser eine rein blaue Lösung, deren Farbenwechsel durch Säuren und Alkalien viel bestimmt ist, weil der unveränderliche violette Farbstoff fehlt. Das freie Alkali wird durch den Weingeist nicht ausgesogen und muss also nachher in der klaren blauen Lösung durch verdünnte Salzsäure weggemommen werden. Mit dieser Verbesserung ist Lackmus jedem anderen Pigmente vorzuziehen, und lässt sich auch

Die Pflanzenpigmente und der Farbenwechsel.

Tropfen Salzsäure zwiebelroth, und einen anderen mit fernerem Barytwasser deutlich blau, und es bleibt dann die allgemeine Regel, dass man bei Arbeiten, die mit Röthung endigen, auch die geröthete Lösung anwendet, und bei solchen, die mit Bläue enden, die bläue Lösung. Es ist dadurch der unvermeidliche kleine Ueberschuss der Titrirflüssigkeit korrigirt. Mit Salzsäure geröthete Lackmuslösung schimmelt nicht.

II. Alkalimetrie.

hinzu, so bemerkt man lange Zeit keine Veränderung der Farbe. Erst nachdem 60 bis 64 Procent des kohlensauren Alkalis gesättigt sind, gibt sich die violette Farbe zu erkennen. So lange nämlich die von der starken Säure verdrängte Kohlensäure noch einfach kohlensaures Alkali findet, um damit ein Bicarbonat zu bilden, findet keine Farbenveränderung statt. Man ersieht hieraus, dass die doppelt kohlensauren Alkalien vollkommen neutral auf blaues Lackmuspigment reagirein, was man auch durch einen directen Versuch beweisen kann. Ist die Hälfe des Alkalis von der starken Säure gesättigt, so bemerkt man auch jetzt noch keine Farbenveränderung und wie man aus den obigen Zahlen ersieht, muss die in Freiheit gesetzte Kohlensäure eine gewisse Menge erreicht haben, ehe sie sich durch Färbung zu erkennen gibt. Von nun an bleibt im Verlaufe der Sättigung die violette Färbung des Gemisches; bei einiger Konzentration oder Erwärmung entwickelt sich Kohlensäure unter Aufbrapsen, wenn die Normalsäure allmälig zugesetzt wird. An der Einfallstelle der Säure entsteht vorübergehend die zwiebelrothe Farbe, weil hier kurze Zeit die freie Säure stark vorwaltet. Durch Umschütteln verschwindet diese Farbe jedoch wieder, so lange doppelt kohlensaures Alkali vorhanden ist. Wenn man eine solche Flüssigkeit erwärmt und schüttelt, so reist sich die Kohlensäure los und es tritt nun die rein blauwe Farbe wieder auf. Man ersieht hieraus, dass, so lange sich die Flüssigkeit blau kochen lässt, noch nicht alles Alkali von der stärkeren Säure gesättigt ist. Bei fernerem tropfenweisen Zusatze von Säure werden die hellrothen Einfallstellen immer grösser, und wenn nun endlich die starke Säure in einem geringen Ueberschusse vorhanden ist, so nimmt die Flüssigkeit eine hell rothe Zwiebelrothe Farbe an, wird durch Kochen nicht mehr blau und beim fernerem Einfall von Säure kann man die Einfallstelle nicht mehr unterscheiden. Diese letztere Erscheinung, dass man die Einfallstelle der Säure nicht mehr unterscheiden kann, ist das eigentliche Kennzeichen, worach man das Ende der Operation beurtheilt.

Es kommt nun darauf an, die Bedingungen zu ermitteln, unter denen man dies am leichtesten und sichersten unterscheiden kann.

1. Da die Lackmustinctur um so dunkler gefärbt ist, je blauer sie ist, also je weniger Kohlensäure vorhanden ist, so ist es zweckmäsig, die Flüssigkeit zu erwärmen, wenn sie kein flüchtiges Alkali enthält. Es wird durch anhaltendes Kochen und Umschütteln alle Kohlensäure vertrieben, und der Uebergang aus Blau oder schwachem Violett in die helle Zwiebelrothe Farbe ist am sichtbarsten.

Oder man macht den Versuch in einer flachen Porzellan schale, worin sich die Erscheinung sehr deutlich wahrnehmen lässt.

3. Da die Normalsäure im ungefärbten Zustande sich schon von der rothen Flüssigkeit etwas unterscheidet, so färbt man erstere beim Bereiten sogleich mit Lackmustinctur. Dasselbe thut man auch bei der normal kohlensauren Natronlösung. Diese beiden Flüssigkeiten unterscheiden sich dann schon bei dem bloßen Anblick durch die blaue und rothe Farbe, und es hat dies den Nebenvortheil, dass man beim Eingießen in die Bürette sich nicht leicht irrt, indem es zu angenfällig ist, wenn man eine rothe Flüssigkeit in die blaue und umgekehrt giessen würde, was sonst leicht geschehen könnte. Durch diese unbedeutende Verbesserung wird das Unterscheiden der Einfallstelle ungemein erleichtert und die alkalimetrische Operation erhält die grösste auf diesem Wege überhaupt erreichbare Schärfe.

Die Karminsäure ist in alkalischer Lösung empfindlich gegen atmosphärischen Sauерstoff. Versetzt man sie mit kohlensaurem oder reinem Alkali und breitet die Flüssigkeit auf einem flachen Teller aus, so wird sie in kurzer Zeit missfarbig, dann ganz entfärbt. Es sollen also die mit der Tinctur versetzten alkalischen Flüssigkeiten nicht lange stehen, sondern sogleich aufgearbeitet werden.

Die Pflanzenpigmente und der Farbenwechsel.

 Unsichtbar werden der Einfallstelle als Ende annehmen, oder man arbeitet in Gläsern mit sehr verdünnten Flüssigkeiten und nimmt die gelbrote Färbung ohne Stich ins Violette gegen Tageslicht als Zeichen der Beendigung.

 Phosphorsaures Natron bringt die violette Farbe hervor, und diese kann mit $\frac{1}{10}$ Salzsäure weggenommen werden. Dabei wird so viel $\frac{1}{10}$ ClH verbraucht, als wenn 1 At. Natron frei wäre. $1'474$ g phosphorsaures Natron erforderten 41 cbem $\frac{1}{10}$ ClH $= 0'1276$ g NaO; berechnet $0'1271$ g.

 Der Werth eines cbem $\frac{1}{10}$ ClH ist also $\frac{1'474}{41} = 0'0359$. Im System wäre er $0'0358$. Ebenso erforderten $1'140$ g phosphorsaures Natron $31'8$ cbem $\frac{1}{10}$ ClH, und dies giebt für 1 cbem genau $\frac{1'140}{31'8} = 0'0358$. Das pyrophosphorsaure Natron erforderte eben so viel Säure als das ungeglühte Salz. Ein ähnliches Verhalten zeigte phosphorsaures Kali vor und nach dem Glühen.

II. Alkalimetrie.

Böttger hat einen weingeistigen Auszug der rothen Blätter von Coleus Verschaffelti zu alkalimetrischen Arbeiten empfohlen. Der Farbstoff löst sich nicht in Wasser, kann also nur im weingeistigen Auszug auf Papier übertragen werden. Das passt schon nicht für die Titrimethode. Vor Kochenille hat er keinen Vorzug.

Das Cyanin wird schon von Kohlensaure entfärbt, und ist deswegen in den meisten, man kann fast sagen in allen Fällen, nicht anwendbar.

Als alkalimetrisches Pigment ist auch die Rosolsäure empfohlen worden. Dieselbe wird dargestellt, wenn man gleich viel Karbonsäure, krystallisirte Oxalsäure und Schwefelsäurehydrat längere Zeit bis 150° C. erhitzt. Man verdünnt mit Wasser, sättigt die freie Schwefelsäure mit Kreide und dampft zur Trockniss ein. Die feste Masse zieht man mit Weingeist aus, wodurch eine tief rothviolettbläulich gefärbte Flüssigkeit entsteht, die durch ein Filtrum getrennt wird. Man prüft diese Flüssigkeit mit
Die Pflanzenpigmente und der Farbenwechsel. 81

Die Kurkumawurzel enthält zwei gelbe Farbstoffe, von denen der eine in Wasser, der andere in Weingeist löslich ist. Der wasserlösliche ist unempfindlich gegen Alkalien, der in Weingeist lösliche aber sehr

Mohr's Titrirbuch.

Um das Kurkumapapier herzustellen benutzt man ein vollkommen weisses Filtrirpapier von lockerer Konsistenz und nicht zu dünn. Man giesst die weingeistige Tinctur in einen flachen Teller und zieht schmale Streifen des Papiers durch die Flüssigkeit hindurch, lässt etwas abtropfen und das getränkte Papier in einem dunklen Raum trocknen. Man zerschneidet es in kleine Stücke, die in einer Blechdose mit Charnierdeckel oder Schachtel gegen Licht geschützt aufbewahrt werden.

Das Kurkumapapier ist nicht bei kohlensauresem Natron oder Kali zu gebrauchen, sondern nur bei ätzendem Alkali oder Erden, insbesondere bei Barythhydrat. Wenn man 10 cbcm normal kohlensaures Natron mit Normalsalzsäure auf Kurkumapapier prüft, so hört die Färbung schon bei 6'6 bis 7 cbcm der Säure auf, während 10 cbcm hätten sollen verbraucht werden. Setzt man Lackmustinctur zu, so tritt die Farbenveränderung erst bei Zusatz von 10 cbcm Normalsalzsäure ein. Lackmuspapier und Tinctur geben dieselbe Zahl, dagegen Kurkumatinctur und Papier nicht.

Die eigenthümliche Farbenwirkung der Säuren und Alkalien auf Pflanzenpigmente habe ich aus der mechanischen Theorie der Affinität erklärt. Die Säuren haben eine andere Molecularbewegung als die Oxyde; erstere haben wenige und breite Schwingungen, letztere viele und schmale. Ich nehme an, dass die Säure und das Alkali dem empfindlichen Pigment

1) Fresenius, Zeitschr. f. anal. Chem. 15, 324.
Bereitung der normalen kohlensauren Natronlösung.

Es muss nun dieses Salz ohne Verlust in die Literflasche gebracht werden, was bei dem unvermeidlichen Stauben nicht ganz leicht ist. Man wird deshalb besser thun, dasselbe in einem geräumigen Becherglase erst zu lösen und dann in die Literflasche mit Nachspülen einzugiessen. Man setzt etwa 150 bis 200 cbcm bereits richtig geröstete Lackmus- tinctur hinzu und füllt bei 14°R. bis an die Marke. Die Flüssigkeit wird durch Schütteln innig gemischt.

Bei dieser Arbeit liegt eine kleine Unsicherheit darin, dass das kohlensaure Natron, in einer Porzellan schale erhitzt, wohl noch kleine Mengen Feuchtigkeit enthalten, und dann, dass es beim Wägen in der offenen

Für den technischen Betrieb ist es zweckmässig, eine grössere vorräthige Menge reinen Salzes in verwittertem Zustande zu besitzen, aus welcher man sich in jedem Augenblick die normale Titirflüssigkeit herstellen kann. Es wird also vorausgesetzt, man habe krystallisiertes, chemisch reinen kohlensauren Natron. Man lasse dasselbe stark verwittern und siebe es durch ein eisernes Sieb auf einen reinen Bogen Papier und bringe es in diesem Zustande in eine weithalsige Flasche, in welcher man es durch Schütteln vollständig vermischen kann. In diesem Salze bestimmt man den Wassergehalt durch eine Glühung einer gewogenen Menge in einem Platintiegel. Da es in diesem Zustande nicht mehr in seinem Wasser schmilzt, so ist keine Gefahr für den Platintiegel vorhanden. Gesetzt, das Salz enthielt noch 10 Procent Wasser, so hätte man für wasserleeres Salz 1/10 mehr zu nehmen, also für 53 g wasserleeres Salz

\[53 + \frac{53}{9} = 53 + 5.888 = 58.888. \]

Zieht man davon 1/10 für Wasser ab, also

\[58.888 - 5.888 \]

so bleiben

53 g reines Salz, welche man haben wollte; oder allgemein, wenn \(m \) Gramm verwittertes Salz \(n \) wasserleeres geben, so hat man für 53 g, \(\frac{53m}{n} \) zu nehmen.

Alle Unsicherheiten der Grundlage des Systems folgen in jeden einzelnen Versuch nach. Es war dies einer der Gründe, weshalb in der ersten Auflage dieses Werkes die krystallisierte Oxalsäure als Ausgangspunkt der Alkalimetrie gewählt wurde.
Die alkalimetrische Operation nach der ersten Methode.

Das doppelt kohlensaures Natron kommt im Handel häufig chemisch rein vor. Man kann sich auch dieses Salzes bedienen, um durch Glühen ein reines, einfach kohlensaures Natron herzustellen. 84 g doppelt kohlensaures Natron geben durch Glühen 53 g einfach kohlensaures Natron. Wenn man also in einem gewogenen Platin- oder Silberiegel-84 1/2 g doppelt kohlensaures Natron einwägt und dasselbe durchglüht, dann neben Chlorcalcium erkalten lässt, so hat man nach dem Erkalten mit Hülfe der vorgerichteten Wage nur eine kleine Menge des Salzes herauszunehmen, um die richtige Menge von 53 g übrig zu behalten.

Für Pottaschefabriken würde sich eine normale Flüssigkeit aus 69,11 g reinen kohlensauren Kalis empfehlen, die man durch Erhitzen von Bicarbonat darstellen konnte. Gewöhnlich aber werden hier empirische Lösungen, also mit 10 g reinem kohlensauren Kali im Liter, angewendet.

Bereitung der Normalsäure.

Die reine Salzsäure ist jeder anderen Säure vorzuziehen, obgleich viele Sodafabriken noch nach dem Vorgange Gay-Lussac’s Schwefelsäure anwenden.

Bei Schwefelsäure würde man 50 g oder 27,5 cbcm konzentrierte Schwefelsäure zu 1 Liter verdünnen und dann dieselben Proben wie oben machen.

Die alkalimetrische Operation nach der ersten Methode.

Man bringt das zu prüfende Alkali, nachdem es gewogen, in Lösung, wobei nur im Falle eines unlöslichen Rückstandes eine Filtration und Auswaschung vorzunehmen ist. Die Flüssigkeit färbt man mit bereits...

Sehr deutlich nimmt man den Farbenwechsel in flachen cylindrischen Glasgefässen mit glattem Boden wahr, welche zum Krystallisiren von Salzen verwendet werden. Sie können 120 bis 130 mm Durchmesser und 70 bis 80 mm Höhe haben. Man fasst sie am Rande an und bewirkt das Vermischen der Flüssigkeit mit der Säure durch leichtes Schwenken. Die Flüssigkeitsschicht ist nicht hoch, etwa 10 bis 12 mm, und ein einfallender Tropfen Säure färbt bis auf den Boden. Man hält sie 30 bis 40 mm hoch über einem weissen Papier oder Porzellanteller. Die Klarheit der Erscheinung lässt nichts zu wünschen übrig.

Es ist jedoch auch hier gut, das Urtheil durch den Augenschein zu unterstützen. Um dies bei allen Versuchen durch denselben Körper zu thun, bereite man drei kleine Flaschen, welche in 100 ccm Wasser 2 ccm Lackmustinctur enthalten. Das eine Glas bleibt unverändert blau, das
Richtigstellung der Normalflüssigkeiten etc.

Die vorangehende richtige Färbung der Lackmustinctur, welche zu dem Normalnatron gesetzt wird, bedeutet, dass man nicht das Alkali der Lackmusslösung mit messen will; dagegen ist der Zusatz der Säure in der Lackmustinctur der Probeschüsse von geringerer Bedeutung, weil die gefärbte Säure auf das Normalnatron gestellt wird, und auch nachher die Farbe zwiebelroth bleibt.

Richtigstellung der Normalflüssigkeiten und Urprüfung derselben.

Die Urprüfung wird zuerst mit der Säure vorgenommen, und dann mit der richtig gestellten Säure auf das kohlensaure Natron übertragen. Man bedarf dazu absolut chemisch reiner Substanzen. Diese können in
jeder beliebigem, aber genau durch die Wage bestimmten Menge angewendet werden.

Am besten lassen wir hier einen bestimmten Fall vortreten.

Es ist eine mit Normalsalzsäure bezeichnete Säure vorhanden, deren Gehalt mit der grössten Schärfe festgestellt werden soll.

Chemisch reines doppelt kohlensaures Natron wurde in einen Platin- tiegel gebracht und gegläut. Es bedarf hier eigentlich nur der Wägung nach dem Glühen, allein der Belehrung wegen wurde es auch vor dem Glühen gewogen und 4'1015 g schwer gefunden. Nach dem Glühen wog es 2'590 g. Da 84 doppelt kohlensaures Natron 53 wasserleeres einfach kohlensaures Natron enthalten, so würden 4'1015 g doppelt kohlensaures Natron 2'588 g einfach kohlensaures geben müssen, während der Versuch 2'590 g ergeben hat. Das doppelt kohlensaures Natron hat also genau die Zusammensetzung, welche die Atomzahl 84 ergab. Die 2'59 g einfach kohlensaures Natron alkalimetrisch gesättigt, erforderten 49'1 cbcm der zu prüfenden Säure. Im System müssten 2'59 g kohlensaures Natron, nach der Proportion

\[53 : 1000 = 2'59 : x, \text{ woraus} \]

\[x = \frac{48'87}{48'87} \]

48'87 cbcm Normalsäure sättigen; in Wirklichkeit wurden aber 49'1 cbcm gebraucht. Wir suchen also, mit welcher Zahl man die gebrauchten 49'1 cbcm multipliciren müsse, damit die richtige Zahl 48'87 herauskomme, oder

\[x \cdot 49'1 = 48'87 \]

\[x = \frac{48'87}{49'1} = 0'9953. \]

In gleicher Art wurden zur Kontrolle und Beurtheilung der Schärfe der Bestimmung 4'6725 g doppelt kohlensaures Natron gegläut und 2'947 g Rest erhalten. Die Berechnung nach der Formel ergibt 2'948 g. Dazu wurden alkalimetrisch verbraucht 55'9 cbcm derselben Säure. Nach der Proportion

\[53 : 1000 = 2'947 : x \]

würden 55'6 cbcm haben verbraucht werden müssen. Der korrigirende Factor ist also

\[\frac{55'6}{55'9} = 0'9946. \]

Das Mittel beider Factoren ist 0'9949, oder abgerundet:

0'995.

Man hat also die verbrauchten Cubikcentimeter dieser Säure mit 0'995 zu multipliciren, um sie in normale zu verwandeln und ihre Angaben nach den systematischen Tafeln berechnen zu können. Die obige Säure war demnach um 1/2 Procent zu schwach und man würde alle alkalimetrischen Bestimmungen um 1/2 Procent zu hoch gefunden haben. Da es sehr schwer ist, einen so kleinen Fehler in Wirklichkeit zu ver-
Richtigstellung der Normalflüssigkeiten etc.

bessern, so bleibt es gerathener, den Fehler genau zu bestimmen und ihm Rechnung zu tragen, gerade wie man bei einer astronomischen Uhr nicht die Zeiger stellt, sondern nur den Fehler durch Berechnung beseitigt.

Man wird sich leicht überzeugen können, dass unter den Umständen, wo die Urprüfung gemacht worden ist, der Fehler der Temperatur ebenfalls beseitigt ist, wenn man bei gleichgebliebener Temperatur wirkliche Bestimmungen vornimmt. Endlich ist auch noch der absolute Fehler der Bürette korrigirt. Unter absolutem Fehler der Bürette versteht man die Abweichung der Zahlen der Bürette gegen die Literflasche. Es ist sehr leicht, die Theile der Bürette unter sich richtig und proportional zu machen, dagegen ist es sehr schwierig, den absoluten Inhalt der Bürette zu dem Liter richtig darzustellen. Dass der Inhalt einer Bürette, wo sie z. B. 50 ccm zeigt, gerade zwanzigmal in die Literflasche gehe, ist schwieriger zu erreichen, als dass die Abtheilungen von 0 bis 10, von 10 bis 20 u. s. w. einander ganz gleich seien. So wie man mit Gewichten, welche unter sich richtig sind, aber zum Kilogramm in keinem richtigen Verhältnisse stehen, genaue Analysen machen kann, ebenso kann man mit einer Bürette, deren Theile unter sich richtig, zum Liter aber in keinem richtigen Verhältnisse stehen, richtige Analysen machen. Man muss dazu die Urprüfung der Säure mit derselben Bürette vornehmen, womit man die Analysen machen will. Dies heisst den absoluten Fehler der Bürette korrigiren.

Mit der richtig gestellten Säure wird nun die kohlensaure Natronlösung festgestellt. Man füllt diese Lösung in eine Bürette und lässt 50 cccm in ein Becherglas einlaufen, oder man fasst 50 cccm in einer Vollpipette ab und bestimmt alkaliemtrisch mit der bereits festgestellten Säure.

Es war eine grössere Menge ursprünglich als normalkohlensaures Natron bereitete Flüssigkeit vorhanden, und es sollte nun der alkaliemtrische Werth genau ermittelt werden. 50 cccm dieser Flüssigkeit waren in zwei Versuchen = 48·5 cccm Salzsäure gefunden worden; da die Salzsäure erst mit 0·995 musste multiplizirt werden, so stellen die 48·5 cccm nur 48·26 cccm Normalsalzsäure vor.

Nach der Gleichung \(x \cdot 50 = 48·26 \) ist der Factor für die vorliegende Natronlösung

\[
\frac{48·26}{50} = 0·965.
\]

Diese Zahl gibt nun auch zugleich die Stärke der Flüssigkeit, die normale = 1 gesetzt, an. Wollte man die Flüssigkeit wirklich richtig stellen, so kann man dies nun leicht nach einer Berechnung. Es verhält sich die normale Stärke zur gefundenen, wie das in der normalen enthaltene kohlensaure Natron zu dem in der untersuchten enthaltenen, also:

\[
1 : 0·965 = 53 : 51·145.
\]
Es fehlen also noch (53 weniger 51.145 oder) 1.855 g wasserleeres kohlensaures Natron auf das Liter. Setzt man diese nachträglich zu, so findet sich, dass die Flüssigkeit normal oder doch sehr nahe daran ist. Im vorliegenden Falle geschah dies, und es zeigten sich 50 cbcm Natronlösung = 50.2 cbcm Salzsäure; korrigiert man diese mit ihrem Factor 0.995, so erhält man 49.949 cbcm normal, und diese durch 50 dividirt geben 0.99898 oder abgekürzt 0.999 als die wirkliche Stärke der in Rede stehenden kohlensauren Natronlösung, also richtig bis auf 1/10 Proc.

Den gefundenen Factor bemerkt man auf einem Schildchen an der Flasche selbst.

Es ist einleuchtend, dass man nach diesem Verfahren mit jeder beliebigen Flüssigkeit arbeiten kann, indem alle durch die Urprüfung auf normale zurückgeführt werden. Sicherlich kann man den Fehler leichter bestimmen und demselben Rechnung tragen, als ihn in Wirklichkeit wegschaffen. Dabei würde man zu beachten haben, dass man sich von den normalen Flüssigkeiten nicht zu weit entferne, weil alsdann die Färbungen ungleich auftreten können. In technischen Anstalten würde jedoch jede Art von Berechnung unangenehm sein, und der vorstehende Chemiker würde sich hier die Mühe geben müssen, die Flüssigkeiten möglichst normal zu stellen, damit die Resultate ohne Weiteres an der Bürette abgelesen werden können. Die kleine Mühe der Multiplication mit einer dreistelligen Zahl wird durch Anwendung der Crelle'schen Rechentafeln sehr erleichtert, die schon oben (S. 70) erwähnt wurden.

Zweite Methode, vom Verfasser.

Oxalsäure (Kleesäure) als Grundlage der Alkalimetrie.

Die krystallisierte Oxalsäure (C₂O₄ + 3 aq. = 63) stellt luftbeständige, farblose Krystalle von bedeutend saurem Geschmack und starker Wirkung auf Pflanzenfarben dar. Sie kommt in ziemlicher Reinheit im Handel vor und lässt sich durch Umkrystallisiren sehr leicht in noch grösserer Reinheit darstellen.

Wenn man die rohe Oxalsäure des Handels in Wasser auflöst, so bleibt ein weisses Pulver ungelöst zurück, welches oxalsaurer Kalk ist. Er wird, im verschlossenen Platintiegel geglüht grau, braust dann mit
Säuren und gibt die Reactionen von Kalk. Er rührt offenbar von Anwendung des Brunnenwassers zum Umkrystallisiren her.

Eine andere Verunreinigung besteht in einem kleinen Rückhalte von saurem oxalsaurem Kali. Wenn man die umkrystallisirte Säure in einem Platintiegel sublimirt und zuletzt zerstört, so bleibt eine kleine Menge eines weissen Körpers übrig, der sich als kohlensaures Kali herausgestellt hat. Er ist in Wasser löslich, reagirt dann stark alkalisch und gibt mit Chlorplatin den bekannten krystallinischen Niederschlag. Bei einem Versuche hinterliess eine zweimal krystallisirte Säure von 50 g Säure 0'118 g kohlensaures Kali, welches als saures oxalsaures Kali vorhanden war. Man hätte nun hieraus schon eine korrigirte Zahl für diese Oxalsäure berechnen können, allein es war vorzuziehen, dieselbe lieber ganz rein darszustellen.

Bei dem Lösen der Oxalsäure bemerkt man, dass gegen Ende ein sehr schwerlöslicher Salzrest bleibt, welcher nur mittelst Anwendung von Wärme in Lösung übergeht. Wenn man diesen Salzrest ganz zurücklässt, statt ihn durch Wärme zu lösen, so erhält man aus der Lösung fast ganz reine Krystalle.

Man führt die Reinigung der Säure in der Art aus, dass man die rohe Säure mit lauwarmem destillirten Wasser in einen Kolben übergießt und durch Umschwenken löst, so dass noch ein grosser Theil der Säure ungelöst bleibt.

II. Alkalimetrie.

1) Sie ist stark sauer und steht der Schwefelsäure in ihrer Wirkung auf Pflanzenpigmente kaum nach.

2) Sie ist im trocknen Zustande unveränderlich. Sie zerfließt nicht und verwittert nicht. Man kann sie deshalb mit der größten Ruhe und Sicherheit auf der Wage in beliebiger Menge auswägen. Hierin hat sie einen wesentlichen Vorzug vor der Schwefelsäure, welche als eine Flüssigkeit an sich nicht leicht in beliebiger Menge abgewogen werden kann, dann auch während des Abwägens rasch Wasser anzieht.

Die Reinheit der Schwefelsäure als wirkliches erstes Hydrat ist schwer festzustellen; wenn sie auch gleich nach der Bereitung dieser Bedingung entsprochen hätte, so wird sie doch durch öfters Oeffnen der Flasche und schlechten Verschluss allmählich wasserhaltiger und man kann den ganzen Inhalt einer Flasche nicht mit absoluter Sicherheit ausgebrauchen. Nach den Versuchen von Marignac ist aber selbst die durch Abdestillation concentrirte Schwefelsäure nicht das erste Hydrat, sondern hält meistens 1/12 Atom Wasser mehr. Die Oxalsäure ändert sich aber weder in der Flasche, noch an freier Luft.

3) Die Oxalsäure zersetzt sich nicht in Lösung, sie schimmelt nicht wie Weinessäure und Citronensäure, mit denen sie die Eigenschaft des festen Zustandes gemein hat.

4) Sie ist nicht flüchtig in heissen und kochenden Flüssigkeiten.

5) Einzelne verschüttete Tropfen trocknen ein, ohne eine Zerstörung von Kleidungsstücken nach sich zu ziehen. Schwefelsäuretropfen erscheinen auch anfänglich nur als Feuchtigkeit, durch Eintrocknen concentriren sie sich und zerstören das damit befeuchtete Gewebe. Beim Arbeiten im Sitzen ist dies nicht zu übersehen.

Um Zehntelsäure zu bereiten, löse man 6:3 g Oxalsäure zu 1 Liter. Erdmann empfiehlt die durch Verwitterung auf 1 At. Wasser gebrachte Oxalsäure. Dazu ist erfahrungsmässig gar keine Veranlassung, denn es gibt wenige krystallinische Körper, die sich in so glänzenden Krystallen erhalten und an der Luft so wenig verwittern, als gerade die Oxalsäure. Das höhere Atomgewicht der dreifach gewässerten Oxalsäure ist hierbei als sehr nützlich beim Abwägen mitzunehmen. Dagegen ist die Lösung der Oxalsäure nicht ganz unempfindlich gegen Licht, besonders die verdünnte Zehntellösung. Durch Oxydation zu Kohlensäure, ob unter Wasserstoffentwicklung oder nicht, steht dahin, wird sie allmählich schwächer. Es empfiehlt sich also, sie in Porzellankrügen, oder innerhalb undurchsichtiger Umbüllung aufzubewahren.
Darstellung der Normaloxalsäure.

Man wäge auf einer guten Wage 63 g = 1 Atom in Grammen ausgedrückt krystallisirte Oxalsäure ab, bringe sie auf Glanzpapier gelegen in eine Literflasche, fülle diese zwei Drittel mit destillirtem Wasser und bewirke die Lösung durch Umschwenken; dann fülle man die Flasche mit Wasser bis an die Marke, indem man dieselbe gerade schwebend an dem Rande des Halses gehalten vor die Augen bringt. Die Temperatur von 14° R. beachte man ebenfalls. Wenn man mit Lackmus arbeitet, so kann man diese Säure mit 150 bis 200 cbem rother Lackmustinctur roth färben. Man verschliessse die Literflasche und schüttle tätig durch. Wenn die Säure nicht gefärbt ist, so bezeichne man sie durch ein rothes Schildchen, um Missgriffe im Ein- und Ausgießen zu vermeiden.

Darstellung der alkalischen Normalflüssigkeit.

können vollkommen kohlensäurefrei sein. Sie dienen vereinigt und um-

schüttelt zur Darstellung der normalen Aetzkaliflüssigkeit. Nachdem
man sie auf 14° R. gebracht hat, ziehe man mit einer Pipette 10 ccm
Normaloxalsäure in ein Becherglas über und lasse aus einer geteilten
Pipette das Aetzkali hinzulaufen, bis die Farbe in Blau übergeht. Es ist
hierbei wesentlich, dass dieser Übergang plötzlich stattfindet, und nicht
erst durch Violet. Wenn dieses eintritt, so ist Kohlensäure vorhanden
und der Versuch ist undeutlich. In diesem Falle muss auch das Eintreten
der violetten Farbe als das Ende der Operation angesehen werden.
Wenn der Übergang durch Violet nur 1 bis 2 Tropfen Normalkaliflüssi-
gkeit erfordert, um in Blau überzugehen, so kann man die Flüssigkeit
als gut ansehen. Gesetzt nun man habe eine Aetzkaliflüssigkeit, die
etwas zu stark sei, und man brauche beispielsweise zu 10 ccm Normal-
oxalsäure 7,5 ccm Kalilösung, so müssen 7,5 ccm davon zu 10 ccm ver-
dünnt werden, oder 75 ccm zu 100 ccm, oder 750 ccm zu 1000 ccm.
Zu diesem Zwecke bedient man sich des Mischcylinders, der auf seiner
ganzen Länge von 10 zu 10 ccm graduirt ist. In dem oben beschriebe-
en Falle würde man mit dem Aetzkali den Mischcylinder bis an 750 ccm
füllen und dann mit kohlensäurefreiem destillierten Wasser bis zu 1000 ccm
verdünnen. Nachdem man gut umgeschüttelt hat, macht man mit dem
Gemenge eine Probe. Man hebt 10 ccm Normaloxalsäure mit der Pipette
aus der Flasche und lässt 10 ccm Aetzkaliflüssigkeit zufließen. Es muss
dabei der letzte Tropfen die blau e Farbe der bis dahin rothen Mischung
hervorbringen. Sollte dies nicht der Fall sein, so ist die Flüssigkeit
schon früher blau geworden, in welchem Falle die Aetzkaliflüssigkeit
noch zu stark ist. Man setzt alsdann etwas Wasser zu, schüttelt um
und wiederholt die Probe. Wenn sie damit stimmt, so macht man den
Versuch mit zwei ganz genauen und gleichen 50-ccm-Pipetten, oder noch
besser aus den Büretten selbst, die man zu den Versuchen gebracht.
Es ergibt sich dann vielleicht noch ein Fehler, welcher bei der kleineren
Pipette unbemerkbar war und den man durch kleine Zusätze von Wasser
oder starkem Aetzkali und nachherige Prüfung korrigirt. Zuletzt kommt
man mit Tasten schneller zum Ziele als mit Berechnung.

Der zweite Fall ist der, dass man von der Bereitung zwei verschie-
dene Aetzkaliflüssigkeiten habe, von denen die eine stärker, die andere
schwächer als normal ist. Durch Vermischung bestimmter Mengen be-
der Flüssigkeiten kann man eine normale Flüssigkeit herstellen.

Man misse zweimal 10 ccm Normaloxalsäure ab, versetze sie mit
Lackmus und titriere sie aus der geteilten Handpipette auf Blau.

Angenommen, man verbrauche von der stärkeren Flüssigkeit a ccm,
welche Zahl kleiner ist als 10, und von der schwächeren b ccm, welche
Zahl grösser ist als 10.

Nehme man nun von der stärkeren Flüssigkeit x Maasse, so sättigen
diese so oft 10 ccm Normalsäure als a in x enthalten ist, also im Ganzen
Darstellung der alkalischen Normalflüssigkeit.

\[
\frac{10x}{a}; \text{ von der schwächeren Flüssigkeit werden } y \text{ Maasse genommen, so}
\]

sättigen diese aus demselben Grunde \(\frac{10y}{b}\) cbcm der Normalsäure. Beide

sättigen also zusammen \(\frac{10x}{a} + \frac{10y}{b}\) und die Maasse der gesättigten

Normalsäure sollen gleich sein der Summe beider Flüssigkeiten, also

\[
\frac{10x}{a} + \frac{10y}{b} = x + y,
\]

woraus

\[
10bx + 10ay = abx + aby
\]

\[
bx (10 - a) = ay (b - 10)
\]

woraus zuletzt

\[
x = \frac{a(b - 10)}{b(10 - a)}.
\]

Wir erhalten also hier das Verhältniss, welches zwischen beiden

Flüssigkeiten stattfinden muss, und das genügt.

Ein concreter Fall war folgender:

10 cbcm Normaloxalsäure waren \(= 6\cdot2\) cbcm der stärkeren Flüssigkeit,

also \(a = 6\cdot2\);

und ebenso war \(b = 14\cdot3\).

Es sind also zu nehmen von der stärkeren Flüssigkeit

\[
6 (14\cdot3 - 10) = 26\cdot66 \text{ Maasse}
\]

und von der schwächeren

\[
14\cdot3 (10 - 6\cdot2) = 54\cdot34 \text{ Maasse.}
\]

Als 266\cdot6 cbcm der stärkeren und 543\cdot4 cbcm der schwächeren
gemischt wurden, zeigte sich die Normalstärke richtig, und wenn hier

noch eine kleine Differenz stattfindet, so gleicht man sie tastend aus,
indem man kleine Mengen Wasser oder der stärkeren Flüssigkeit zusetzt.

Auch hier kann man, ohne die Flüssigkeiten richtig zu stellen, den
Factor berechnen, mittelst dessen sie in normale Flüssigkeiten verwandt
wird. Für die stärkere Flüssigkeit war

\[
6\cdot2 x = 10, \text{ also } x = \frac{10}{6\cdot2} = 1\cdot62,
\]

und für die schwächere 14\cdot3 \(x = 10\),

also für diese \(x = \frac{10}{14\cdot3} = 0\cdot7\).

Sobald die Flüssigkeit richtig gestellt ist, kommt es darauf an, sie
ohne Veränderung zu bewahren. Das sitzende Kali zieht in allen noch
so gut verschlossenen Gefässen Kohlensäure an, indem der Wechsel des
Barometerstandes und der Wärme ein beständiges Ein- und Austreten
der Luft veranlasst. Da man nun durch den besten Verschluss diesen
Luftwechsel nicht verhindern kann, so erschien es besser, denselben ganz frei zu geben und nur der Luft auf dem einzig zugänglichen Wege alle Kohlensäure zu entziehen. Man bringt deshalb in den Kork eine sogenannte Chlorkalkiumröhr e an, die mit einem ausgetrockneten Gemenge von Glaubersalz und Aetzkalk angefüllt ist (Fig. 77) und oben durch eine Gläs röhre in die freie Luft offen ist. Dieses von Graham empfohlene Gemenge absorbiert die Kohlensäure mit grosser Begierde. Man stößt krystallisirtes Glaubersalz und gebrannten Kalk, etwa gleiche Volumina, in einem Mörser zusammen und lässt sie vollständig aufquellen, dann trocknet man das Gemenge auf freiem Feuer aus. Man füllt die kleinen Stücke ohne Pulver in die Gläs röhre auf einen eingeschobenen Baumwollenpausch, damit nichts durchfalle. Man prüft die Röhre, ob sie nach beiden Seiten Luft durchlässt. In gleicher Art bewahrt man im Keller seinen Vorrath von ätzenden Alkalien und Erden auf. Es findet sich niemals eine Zunahme der Kohlensäure in diesen Flaschen, so lange die Röhre noch wirksame Substanz enthält, was über ein Jahr dauert. Die ätzende normale Alkaliflüssigkeit greift in längerer Zeit die Substanz der Büretten an, welche oft rissig, fast immer aber blind werden. Eine solche Bürette ist zwar noch zu gebrauchen, da die Trübung nur bei leerem und trocknem Glase erscheint, nach dem Füllen aber verschwindet. Hier würde sich nun wieder das Ammoniak empfehlen, welches das Glas nicht angreift, dagegen wegen seiner Flüchtigkeit verworfen wurde. Diese ist besonders beim Eingießen in die Bürette wirksam, weil hier eine reichliche Berührung der fein vertheilten Flüssigkeit mit Luft unvermeidlich ist. Es gibt nun zwei Mittel, diesem Ubelstande entgegen zu treten: 1) eine etwas grössere Verdünnung, 2) eine Vorrichtung, welche das Öffnen der Flasche und das Eingießen vermeidet.

Die Verdünnung ist ganz passend nach dem Vorschlag von Emil Fleischer halb normal. Das käufliche Aetzammoniak von 0‘96 spezисchem Gewicht enthält 10 Proc. Ammoniak. Das Liter soll nun 1/2 At. Ammō-
niak = 8.5 g enthalten. Diese sind in \(\frac{100 \times 8.5}{10} \) oder 85 g desselben enthalten und diese nehmen ein Volum von \(\frac{85}{0.96} \) oder 86 bis 87 ccm ein. Man verdünne also 87 ccm Ammoniak zu 1 Liter in dem Misch-
cyliner, steche 10 ccm Normaloxalsäure mit der Pipette heraus, verse
setze mit etwas Lackmus und lasse das Ammoniak aus einer 25 ccm fas-
senden Messpipette hinzulaufen, bis die Farbe in Blau übergeht. Die

Fig. 78.

Ab- und Zuflussbürette mit Kalilösung.

hahn b lässt man bis an 0 ablaufen. a bleibt jetzt geschlossen und an b wird die Analyse vorgenommen. Diese Einrichtung ist sehr bequem, und das Ammoniak hält sich sehr lange in gleicher Stärke und kohlensäure-
frei. An der Stativstange lässt sich das Ganze wegragen.
Als alkalimetrische Substanzen sind ausser den kohlensauren und reinen Alkalien noch Borax und Wasserglas versucht worden, jedoch bietet keiner dieser Körper einen besonderen Vorzug. Die freie Bor­säure reagirt ungefähr wie Kohlensäure auf Lackmus; da man sie aber nicht durch Kochen entfernen kann, so verzichtet man für immer auf den Übergang aus Roth in Blau und muss sich mit Violett begnügen. Auch ist der Borax so schwerlöslich, dass man weder normale, selbst nicht einmal viertel normale Lösungen darstellen kann, ohne dass sie Krystalle absetzen. Das Wasserglas gelatinirt in den Ausfluss spitzen der Bürrettten und verstopft sie. Zudem nehmen beide Lösungen fast eben so leicht Kohlensäure auf, als Kali und Natron, was der eigentliche Grund zu ihrer Einführung wäre, wenn sie es nicht thätten. Statt des Ammoniaks, welches noch immer die Flächigkeit gegen sich hat, wende ich meistens ein verdünntes Barytwasser in demselben Apparate (Fig. 78) an. Die Stärke ist \(\frac{1}{3} \) oder \(\frac{1}{4} \) Normal, in jedem Fall mit dem wirklichen Factor, der gegen reine gewogene Oxalsäure festgestellt und an der Flasche angeschrieben ist. Ein Zutritt von Kohlensäure findet nicht statt oder gibt sich durch einen Niederschlag zu erkennen. Es ist deswegen der Farbenübergang sehr scharf und bestimmt. Auch ist das Arbeiten mit heissen Flüssigkeiten nicht ausgeschlossen, wie bei Ammoniak.

Nach der richtig gestellten normalen Kaliliösung kann nun eine andere Säure ebenfalls als normal hergestellt werden. Es gibt viele Ar­beiten, bei denen man die Oxalsäure nicht anwenden kann, weil sie mit den alkalischen Erden, Kalk, Baryt, Strontian, unlösliche Verbindungen erzeugt. Dies allein würde jedoch der Anwendbarkeit nicht schaden; dagegen verhindert die Bildung eines unlöschlichen Körpers auf der Ober­fläche unlöschlicher Stoffe den fernen Angriff der Säure und die voll­ständige Aufschliessung. Aus diesem Grunde muss man eine andere Säure wählen. Da eignet sich nun keine besser als die Salzsäure, weil sie gar keine unlöschliche neutrale Salze hat. Man stellt sich eine der Oxalsäure gleich starke Salzsäure mit Hülfe des richtig gestellten Normalätzkalis nach den oben gegebenen Anweisungen dar. In den früheren Ausgaben dieses Werkes war Normalsalpetersäure empfohlen. Ich gebe jedoch der Salzsäure jetzt den Vorzug wegen ihrer Haltbarkeit, weil sie vom Lichte nicht verändert wird und keine störende Stoffe, wie die unteren Oxide des Stickstoffs, enthält; ebenso ist die Gegen­wart von leicht oxydirbaren organischen Stoffen oder Eisenoxydul, nicht nothwendig ausgeschlossen. Für den einzigen Fall, dass zugleich eine Chlorbestimmung in derselben Flüssigkeit vorgenommen werden soll, würde eine normale oder \(\frac{1}{10} \) normale Salpetersäure aus farbloser und ausgekokter Salpetersäure herzustellen sein. Hat man Substanz genug, um die Chlorbestimmung in einer frischen Menge vorzunehmen, so ist auch hier die Salpetersäure entbehrlich.
Die alkalimetrische Operation nach der zweiten Methode.

Die Substanz wird gewogen, in Wasser gebracht und Lackmustinctur zugesetzt; als dann lässt man aus der Bürette Normaläure zufließen, bis nach Entwicklung aller Kohlensäure die Farbe der Lackmustinctur durch einen kleinen Überschuss der Säure entschieden ins Zwiebelrothe übergegangen ist. Man vertreibt nun die absorbierte Kohlensäure durch Kochen, und lässt dann aus einer anderen Bürette Normalkalci oder ½ Normalammoniak nach Abkühlung zufließen, bis die Farbe aus Roth in Blau übergeht. Sollte hier nicht alle Kohlensäure vertrieben gewesen sein, so tritt dazwischen die violette Farbe ein. Es muss alsdann diese als das Ende der Operation angesehen werden, was freilich nicht so deutlich ist als die blaue Farbe. Die letzten Spuren von Kohlensäure können nur durch ein lebhaftes Kochen ganz vertrieben werden.

Bei Kochenille ist die Empfindlichkeit für Thonerde und Eisengehalt störend, so dass sie Sodaframikanten nicht empfohlen werden kann.

Die beiden Normalsäuren nach der ersten und zweiten Methode dürfen nicht promiscue gebräucht werden. Die Methode Gay-Lussac endigt immer mit Roth, und die Säure ist in Betracht der zwiebelrothen Farbe etwas stärker, nämlich 65 g Oxalsäure gegen 63 g der zweiten Methode. Man bezeichnet die Flaschen in diesem Sinne, um nicht einen Fehler zu begehen.

Natron.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Säure = 1 Prc. Substanz.</th>
<th>1 cbcm Normalsäure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Natrium</td>
<td>Na</td>
<td>23</td>
<td>2·3 g</td>
<td>0·023 g</td>
</tr>
<tr>
<td>2. Natron, wasserleer</td>
<td>NaO</td>
<td>31</td>
<td>3·1</td>
<td>0·031</td>
</tr>
<tr>
<td>3. Natronhydrat</td>
<td>NaO + HO</td>
<td>40</td>
<td>4·0</td>
<td>0·040</td>
</tr>
<tr>
<td>4. Trocknes kohlens. Natron.</td>
<td>NaO + CO₂</td>
<td>53</td>
<td>5·8</td>
<td>0·053</td>
</tr>
<tr>
<td>5. Krystallisirtes kohlens. Natron</td>
<td>NaO + CO₂ + 10aq.</td>
<td>143</td>
<td>14·3</td>
<td>0·143</td>
</tr>
<tr>
<td>6. Doppelt kohlensaures Natron</td>
<td>NaO + 2CO₂ + HO</td>
<td>84</td>
<td>8·4</td>
<td>0·084</td>
</tr>
</tbody>
</table>

Vergleiche Sodaanalyse im angewandten Theil.
<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 bcm Norm.-Säure = 1 Prc. Substanz</th>
<th>1 bcm Normalsäure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Kalium</td>
<td>K</td>
<td>39·11</td>
<td>3'911 g</td>
<td>0'03911 g</td>
</tr>
<tr>
<td>8. Kali</td>
<td>KO</td>
<td>47·11</td>
<td>4'711</td>
<td>0'04711</td>
</tr>
<tr>
<td>9. Kalihydrat</td>
<td>KO + H₂O</td>
<td>56·11</td>
<td>5'611</td>
<td>0'05611</td>
</tr>
<tr>
<td>10. Kohlensa. Kali</td>
<td>KO + CO₂</td>
<td>69·11</td>
<td>6'911</td>
<td>0'06911</td>
</tr>
<tr>
<td>11. Doppelt kohlens. Kali</td>
<td>KO + 2CO₂ + H₂O</td>
<td>100·11</td>
<td>10'011</td>
<td>0'10011</td>
</tr>
</tbody>
</table>

Bei der Prüfung der Bestimmung des Kalis handelt es sich darum, ob man mit einer auf kohlensaures Natron titrierten Säure richtige Resultate in Kali erhält.

Es wurde ein reines, aus doppelt kohlensaurem Kali durch Glühen bereitetes einfach kohlensaures Kali angewendet, und dasselbe jedes Mal frisch geglüht und nach dem Erkalten gewogen.

2'92 g kohlensaures Kali erhielten von einer Schwefelsäure 44'5 bcm. Diese mit ihrem Factor 0'953 multiplicirt geben 42'41 bcm normal, und diese nach der Tabelle auf kohlensaures Kali berechnet, geben 2'930 g statt 2'92 g, welche genommen wurden.

4'744 g kohlensaures Kali erhielten 72 bcm Säure. Diese mit 0'953 multiplicirt geben 68'616 bcm normal, und diese nach der Tabelle berechnet geben 4'742 g statt 4'744, welche genommen wurden.

Es ist hier der complicirte Fall genommen worden, dass eine nicht normale Säure angewendet wurde. Wäre die Säure normal gewesen, so hätten wir direct an der Bürette 42'4 und 68'6 bcm abgelesen und sehr nahe dieselben Resultate erhalten.

1. 2'2035 g chemisch reines kohlensaures Kali aus Weinstein durch mehrmaliges Umkrystallisiren und Eindampfen in einer silbernen Schale dargestellt. Die Menge war willkürlich und wurde nach dem Glühen im Platintiegel bestimmt. Das Abwägen bestimmter Mengen hat bei diesem Körper wegen seiner grossen wasseranziehenden Kraft weniger Sicherheit. Es wurden 35 bcm Normalsalzsäure zugelassen und nach-
her durch 3·1 cbcm Normalkalilösung die blaue Farbe wieder hergestellt. Es waren also 35 — 3·1 = 31·9 cbcm Säure verbraucht worden. Diese berechnen sich nach der Tabelle:

\[
\begin{align*}
30 \text{ cbcm} & = 2\cdot0733 \\
1 \text{ cbcm} & = 0\cdot06911 \\
0\cdot9 \text{ cbcm} & = 0\cdot062199 \\
\hline
\text{Summa} & = 2\cdot204609 \text{ g statt 2\cdot2035 g.}
\end{align*}
\]

2. 3·129 g chemisch reines kohlensaures Kali wurden gelöst, mit Lackmus versetzt und aus zwei nebeneinander stehenden Büretten, die eine mit Normalsäure, die andere mit Normalkali gefüllt, abtitriert. Da beide Büretten immer die ausgelaufene Quantität Flüssigkeit zeigen, so kann man jede verdorbene Analyse sogleich wieder in Ordnung bringen, wenn man von Neuem mit Säure übersättigt und dann mit Alkali nachfolgt, so dass der letzte Tropfen violett macht. Es wurden deshalb die Ablesungen immer gleich nach der Sättigung gemacht. Das erste Mal wurden 50 cbcm Säure gegeben und dagegen 4·9 cbcm Kali gebraucht. Nun wurde die Säure in beliebigem Guss hinzugefügt und nach der Sättigung abgelesen. Jede Ablesung ist eine Analyse. Es zeigten sich die folgenden Zahlen:

<table>
<thead>
<tr>
<th>Stand der Säurebürette</th>
<th>Stand der Alkalibürette</th>
<th>Verbrauchte cbcm Säure</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4·9</td>
<td>45·1</td>
</tr>
<tr>
<td>52·4</td>
<td>7·3</td>
<td>45·1</td>
</tr>
<tr>
<td>53·3</td>
<td>8·2</td>
<td>45·1</td>
</tr>
<tr>
<td>53·9</td>
<td>8·3</td>
<td>45·1</td>
</tr>
<tr>
<td>55·6</td>
<td>10·45</td>
<td>45·15</td>
</tr>
<tr>
<td>56·2</td>
<td>11·1</td>
<td>45·1</td>
</tr>
</tbody>
</table>

Die überwiegende Zahl der Ablesungen gab 45·1 cbcm Säure und diese berechnen sich nach der Tafel:

\[
\begin{align*}
40 \text{ cbcm} & = 2\cdot7644 \\
5 \text{ cbcm} & = 0\cdot34555 \\
0\cdot1 \text{ cbcm} & = 0\cdot006911 \\
\hline
\text{Summa} & = 3\cdot116861 \text{ g statt 3\cdot129 g.}
\end{align*}
\]

Alle diese Proben waren Kontrolproben, indem die Menge der Substanz bekannt war. Das kohlensaure Kali war aufs schärfste auf Chlor, Schwefelsäure und Salpetersäure geprüft und frei gefunden worden. Man ersieht aus diesen Beispielen, dass sich die Methode in der vorliegenden Form weit über die Anforderungen des technischen Bedürfnisses hinaus-
Aetzendes Natron und Kali mit kohlensauren Alkalien. 103
bewegt und vollkommen den analytischen Methoden anschliesst, ja bei
diesen Körpern, den Alkalien, welche zufällig keine guten analytischen
Methoden darbieten, dieselben bei Weitem übertrifft. Wie wollte man
kohlensaures Natron analytisch bestimmen, wenn es noch mit Chlornatrium
gemischt wäre? Es erreicht demnach in diesem Falle die analytische
Methode nicht das Titrirverfahren an Genauigkeit, geschweige an Er-
sparung von Zeit und Mühe.
Ein ganz wesentlicher Vorzug des Titrirverfahrens besteht darin,
that man von dem unsicheren Gewichte grosser Gefässe, der Platintiegel,
der Entwicklungsapparate, der Filteraschen, ganz befreit ist.

Aetzendes Natron und Kali mit kohlensauren
Alkalien.

Dieselben Konstanten wie bei Kali und Natron.

Die reinen ätzenden Alkalien werden mit rother Lackmustinctur
oder Kochenillenauszug versetzt und mit titrirter Säure roth gemacht.
Die Mengen berechnen sich nach den in den Rubriken der beiden vor-
hergehenden Kapitel befindlichen Zahlen. Wenn die Lösungen nicht voll-
kommen ätzend waren, sondern auch etwas Kohlensäure enthielten, so
stellt sich bei Lackmus die violette Farbe vor dem Ende ein, selbst
wenn man ein Aufbrausen nicht bemerkt. In diesem Falle, oder wenn
reine und kohlensaure Alkalien gemischt vorkommen, wie bei vielen Sorten
Pottasche und Soda, muss man eine besondere Bestimmung für beide
vornehmen.

Man löst die gewogene Substanz, etwa 3 bis 5 g, in einer 300-cbcm-
Flasche in viel Wasser auf, setzt einen kleinen Überschuss, je nach der
testehenden Trübung, von Chlorbaryum hinzu und fällt bis an die
Marke an. Durch dieses Salz geht das kohlensaure Alkali in einen äqui-
valenten Niederschlag von kohlensaurem Baryt über, und das ätzende
Alkali bleibt als ein Aequivalent von gelöstem Baryhydrat möglicher
Weise auch als Alkalihydrat übrig. Man kann beide Körper durch ein
Filtrum trennen, heiss auswaschen und dann jeden einzeln alkaliometrisch
bestimmen. Bei der Fällung ist zu beachten, dass die Menge des zu-
gesetzten Chlorbaryums mindestens dem kohlensauren Alkali äquivalent
oder überschüssig sein müsse, indem es gleichgültig ist, ob das ätzende
Alkali als solches, oder als Baryhydrat in die Lösung übergehe. Man
kann demnach zwei Wege in Anwendung bringen:
1. Man bestimmt die Alkalität im Ganzen und dann das ätzende Alkali nach dem eben beschriebenen Verfahren im Filtrat besonders; man erhält das kohlensaure Alkali durch Abzug.

2. Man trennt beide Formen durch Chlorbaryum und bestimmt das kohlensaure Alkali aus dem Niederschlag, der kohlensauren Baryt enthält, und das ätzende aus der klaren Flüssigkeit.

Es ist die Befürchtung geäussert worden, dass durch die Filtration Baryhydrat im Filtrum festgehalten werde. Dies ist nicht der Fall. Ich habe mich überzeugt, dass klares Barytwasser vor und nach dem Filtriren eine ganz gleiche Stärke gezeigt hat. Man kann nicht wohl eine grosse Portion Barytwasser filtriren und auswaschen, dagegen kann man von einer gegebenen Menge Barytwasser einen aliquoten Theil genau abfiltriren ohne etwas zu verlieren. Das folgende Beispiel zeigt das korrekte Verfahren statt allgemeiner Beschreibung.

3 cbcm kaulicher Aetzkaliflüssigkeit wurden in eine tarirte 300-cbcm-Flasche gelassen. Sie wogen 3'953 g, welches ein specifisches Gewicht von
\[
\frac{3'953}{3} = 1'317 \text{ g}
\]
In der Flasche wurden sie mit etwas Wasser verdünnt, dann Chlorbaryum zugesetzt, wodurch ein Niederschlag entstand; es wurde angefüllt bis an die Marke. Nun wurden 100 cbcm abfiltrirt und mit Normalsalzsäure gemessen und = 7'2 cbcm gefunden. Dies 3mal gibt 21'6 cbcm Normalsalzsäure.

3 cbcm derselben Kalilange wurden mit Normalsalzsäure gemessen und = 23'4 cbcm gefunden. Ziehe man davon die 21'6 cbcm ab, so bleiben 1'8 cbcm Normalsalzsäure für das kohlensaure Kali; nach den Tabellen (Nro. 10) = 0'124392 g kohlensaures Kali. Die 21'6 cbcm berechnen sich nach den Tabellen (Nro. 9) zu 1'191976 g Kalihydrat, und berechnet man beides auf die 3'953 g, so ergibt sich

Kalihydrat 30'153 Proc.
Kohlensaures Kali 3'149 "
Wasser und andere Salze . . 66'698 "
100'000 Proc.

Der ausgewaschene kohlensaure Baryt wurde auf Kohlensaure in einem Verlustapparate geprüft und die Kohlensaure gewogen = 0'039 g.

Obige 1'8 cbcm entsprechen aber nach dem System einem Gehalt von
\[
1'8 \times 0'022 = 0'0396 \text{ g CO}_2
\]
also die titrimetrische Bestimmung richtig.
Gebundenes Kali und Natron in neutralen und sauren Salzen.

Dieselben Konstanten wie bei Kali und Natron.

Jedes Alkalisalz, welches eine flüchtige Säure enthält (also Salzsäure, Salpetersäure, Essigsäure etc., aber nicht Phosphorsäure, Borsäure, Chromsäure etc.), lässt sich durch Abdampfen mit Schwefelsäure bis zur Trockne in ein schwefelsaures Salz verwandeln, neutral oder sauer. Zersetzt man dasselbe durch Barythydrat, und fällt den überschüssigen Baryt durch Kohlensäure und Erhitzen, so enthält das Filtrat das Alkali als kohlensaures, welches mit Normalsalzsäure gemessen werden kann.

Die nicht flüchtigen Säuren, wie ausser den oben genannten Arsenäsäre, Wolframsäure, Molybdänsäure, Weinsäure etc., lassen sich durch essigsauren Bleioxyn fällen, und nach der Filtration durch Behandeln mit Schwefelsäure der Überschuss von Blei und die Essigsäure entfernen.

Ob Kali oder Natron vorhanden sei, kann auf diesem Wege nicht entschieden werden, und muss aus anderen Thatsachen, Reactionen, Krystallsform etc., hervorgehen. Sind beide Alkalien vorhanden, so kann die Methode überhaupt nicht zum Ziele führen.

Alkalien und Erden in organischsauren Salzen.

II. Alkalimetrie.

2 g essigsäures Natron (mit 6 At. Wasser = 136) erforderten 14·6 cbcm Normalsalzsäure. 14·6 × 0·031 gibt 0·4526 g Natron; berechnet 0·456 g.

Ammoniak.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägend Menge für 1 cbcm Norm.-Säure = 1 Prc. Substanz.</th>
<th>1 cbcm Norm.-Säure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Ammoniak . .</td>
<td>NH₃</td>
<td>17</td>
<td>1·7 g</td>
<td>0·0017 g</td>
</tr>
<tr>
<td>13. Salmiak . .</td>
<td>NH₃ + ClH</td>
<td>53·46</td>
<td>5·346 g</td>
<td>0·005346</td>
</tr>
</tbody>
</table>

Das reine, in Wasser gelöste Ammoniak sowie das kohlensaure titriren sich mit der größten Leichtigkeit nach der ersten Methode (Gay-Lussac) durch normale oder richtig reduzierte Säure bis zum Verschwinden der Einfallstelle. Selbst bei Gegenwart von doppelt kohlensaurem Ammoniak bleibt die Farbe des Lackmus viel länger blau, als bei doppelt kohlensaurem Kali oder Natron. Bedient man sich der normalen Oxalsäure nach der zweiten Methode, mit 63 g Oxalsäure im Liter, so geht man nur bis zur violetten Farbe und nicht bis zum vollständigen Blau, weil man die freie Kohlensäure durch Kochen nicht austreiben kann.

Um jedoch nicht das zu prüfende Ammoniak zu wägen, was zeitraubend ist, so bestimmt man das spezifische Gewicht in beliebiger Weise und zieht mit der Pipette eine Anzahl Cubikcentimeter heraus, welche mit dem spezifischen Gewichte multipliziert das absolute Gewicht des Ammoniaks in Grammen geben. Gesetzt man habe das spezifische Gewicht = 0·96 gefunden, so wiegen 10 cbcm genau zehnmal 0·96 oder 9·6 g. Wenn nun auch die Bestimmung des spezifischen Gewichtes ungefähr eben so viele Arbeit macht, als eine einmalige Abwägung von Ammoniak, so kann man diese Bestimmung zu Wiederholungen der Analyse benutzen, indem man nun mit der Pipette immer ganz gleich genau gewogene Mengen Flüssigkeit mit einem Griff herausnehmen kann. Man kann sich deshalb dieser Methode sehr bequem zur Bestimmung des spezifischen und absoluten Gewichtes einer Flüssigkeit bedienen.

Man nehme dazu die Pipette Fig. 79, welche bis an den Strich gefüllt genau 10 cbcm destillirtes Wasser von 14° R. ausfließt, und zwar, wie immer, mit Abstrich. Man bringe auf einer empfindlichen Wage
ein leichtes Gläschchen, welches 15 bis 20 cbcm fassen kann, ins Gleichgewicht, fülle die Pipette bis an den Strich mit der zu prüfenden Flüssigkeit und lasse den Inhalt in das Gläschchen laufen, indem man zuletzt an den nassen Hals des Gläschen's anstreicht. Nun wäge man die eingegossene Menge der Flüssigkeit aus. Man erhält so direct das absolute Gewicht der Flüssigkeit in Grammen ausgedrückt, und wenn man den Punkt um eine Stelle zur Linken setzt, das spezifische Gewicht gegen destillirtes Wasser bei 14° R. Denn da das Volum des Wassers genau 10 cbcm ist, so ist das absolute Gewicht eines gleich grossen Volums einer anderen Flüssigkeit das spezifische Gewicht derselben gegen Wasser als 10 angenommen und durch Versetzung des Punktes um eine Stelle zur Linken gegen Wasser als 1 angenommen.

Eine Astazammoniakflüssigkeit von 14° R. wurde auf einer Wage (Pharmaceutische Technik, 2. Aufl., S. 349, Fig. 297, 3. Aufl., S. 377, Fig. 298) gewogen und das spezifische Gewicht zu 0°9618 gefunden.

Die Zehn-Cubikzentimeter-Pipette wurde von Neuem geprüft und genau zu 10 g destillirtem Wasser von 14° R. richtig gefunden. Es wurde diese Pipette mit dem Astazammoniak gefüllt und in das vorher genau tarirte Gläschchen auslaufen gelassen und das Gewicht mit Grammen ausgewogen; es fanden sich das erste Mal 9°6175 g und bei einer Wiederholung das zweite Mal 9°618 g. Nach der letzten Angabe war das spezifische Gewicht 0°9618, welches vollkommen mit dem auf anderem Wege gefundenen spezifischen Gewichte stimmt, und zwar vollkommener, als ich es erwarten konnte. Man hat also in dieser Pipette immer 9°618 g derselben Flüssigkeit gefasst.

Fasst man eine Fünf-Cubikcentimeter-Pipette voll Ammoniak, so hat man fünfmal 0°9618 = 4°800 g Ammoniak. Eine solche Menge forderte 26°9 cbcm Normaloxalsäure zur Hervorbringung der violetten Farbe. 26°9 cbcm Säure entsprechen nach der oben gesetzten Tabelle 0°4573 g wasserleerem Ammoniak, enthalten in 4°809 g flüssigem Ammoniak = 9°509 Proc.

10 cbcm = 9°618 g Ammoniak forderten 54°2 cbcm Probesäure = 0°9214 g Ammoniak in 9°618 g enthalten = 9°552 Proc.

20 cbcm Normalsäure wurden in ein Gläschchen gebracht und aus einer in 10tel cbcm geteilten Pipette das Ammoniak bis zum Farbenwechsel hinzugefügt. Es waren 37 cbcm Ammoniak verbraucht worden. Diese wiegen 37mal 0°9618 oder 35°58 g. 20 cbcm Normalsäure entsprechen
nach den Tabellen 0,34 g Ammoniak, folglich sind in 3,558 g flüssigem Ammoniak 0,34 g wasserfreies enthalten. Dies berechnet sich zu 9,555 Proc.

Wir haben also in drei mit ganz verschiedenen Instrumenten und Methoden gemachten Versuchen die Zahlen 9,509, 9,552 und 9,555 Proc. gefunden. Diese stimmen in den Zehntelprozenten vollständig und variieren erst in den Hundertstelprozenten.

Man sieht die Anwendbarkeit und Schärfe der Methode zur Genüge. Dagegen ist es umgekehrt schwierig; mit Natron eine mit Säure übersättigte Lösung eines Ammoniaksalzes blau zu titrieren. Dies liegt an der Eigenschaft der Ammoniaksalze, selbst im neutralen Zustande die Lackmustinctur violett zu machen.

Es wurden zu zwei gleichen Mengen destillirten Wassers mit einer Pipette gleiche Mengen Lackmustinctur gegeben. Beide Flüssigkeiten wurden tief violett. Zu der einen wurde eine kleine Menge sublimirten Salmiakis gesetzt, und beide wurden zum Kochen erhitzt. Die reine Flüssigkeit kochte sich ein wenig blauer, indem die Kohlensäure des destillirten Wassers entwich; die mit Salmiak versetzte Flüssigkeit kochte sich hellroth, indem das freie Alkali des Lackmus sich mit der Säure des Salmiakis verband und das Ammoniak entwich.

Bei sehr starkem ätzenden Ammoniak und bei dem Dzondi'schen Spiritus hat man Ursache, einen Verlust von Ammoniak in offenen Gefässen zu befürchten.

Man kann sich dagegen sicherstellen, dass man einmal in gewöhnlicher Weise die 10 cbcm Ammoniak mit der Säure abstumpft. Zu dem genaueren Versuche lässt man aus der Bürette die oben gebrauchte Menge Säure weniger 1 cbcm in das Proeglas fließen, gibt nun die 10 cbcm Ammoniak in die Säure unmittelbar hinein, wodurch der größte Theil des Ammoniaks sogleich gebunden wird, und vollendet dann die Operation aus der Säurebürrette bis zum Verschwinden der Einfallstelle. In dieser Weise ist jeder Verlust von Ammoniak vollkommen vermieden.

Die verschiedenen Arten des kohlensauren Ammoniaks werden auf ihren Ammoniakgehalt ohne Weiteres nach der ersten Methode ausgemessen, dagegen lassen sich dieselben nicht durch Übersättigen mit Säuren und Rückwärtsgehen mit Alkali aus dem angeführten Grunde bestimmen.

3,02 g des lufttrocknen Salzes erhielten 40 cbcm Normaloxalsaure und bis zur violetten Farbe 2,2 cbcm Normalkali. Es waren also 37,8 cbcm Normaloxalsaure gesättigt. Diese Zahl mit 0,017 multiplizirt (nach
Ammoniak.

Nr. 12 der Tabellen) gibt 0‘6426 g Ammoniak oder 21·27 Proc. Ammoniak.

Von demselben noch vorhandenen Salze wurden später (nach 8 Jahren) 3‘653 g durch 46 cbcm einer Salpetersäure eben übersättigt, welche mit geglühtem kohlensaurem Natron geprüft, den Factor 0‘992 erhalten hatte. Obige 46 cbcm Säure sind also reducirt gleich 45‘632 cbcm Normal, und diese mit 0‘017 multiplicirt geben 0‘775744 g Ammoniak in 3‘653 g Salz oder 21·23 Proc. Ammoniak, sehr nahe mit der ersten Bestimmung übereinkommend.

3‘088 g desselben Salzes mit reinem Ammoniak versetzt und dann mit Chlorbaryum im Ueberschuss gefällt und gekocht, gaben einen reichlichen Niederschlag von kohlensaurem Baryt, welcher mit heissem Wasser ausgewaschen und nach der unter „Baryt“ (S. 119) näher zu beschreibenden Methode mit Normalsalzsäure und Normalalkalilösung bestimmt wurde. Der Niederschlag hatte 88·9 cbcm Normalsalzsäure und 12·2 cbcm Normalkali erhalten, als die Lackmustinctur die Abstumpfung der freien Säure anzeigte. Es waren also 76·7 cbcm Normalsalzsäure gesättigt worden. Diese mit 0‘022 (dem tausendsten Theile des Atomgewichtes der CO₂) multiplicirt, geben 1‘6874 g CO₂ Diese auf 3‘088 berechnet geben 54‘64 Proc. CO₂.

Unter den von Heinrich Rose¹) untersuchten Arten des kohlensauren Ammoniaks findet sich das doppelt kohlensaure Ammoniak von der Zusammensetzung:

<table>
<thead>
<tr>
<th></th>
<th>1 At. Ammoniak</th>
<th>2 " Kohlensaure</th>
<th>2 " Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>das vorliegende Salz</td>
<td>21·6</td>
<td>55·72</td>
<td>22·68</td>
</tr>
<tr>
<td></td>
<td>21·27</td>
<td>54·64</td>
<td>23·09</td>
</tr>
</tbody>
</table>

Es ist demnach das in den Gasreinigungsapparaten sich absetzende feste Salz reines doppelt kohlensaures Ammoniak mit 2 At. Wasser. Im vorliegenden Falle kommt der kleine Gehalt an brenzlchem Oel unter die Kolumne Wasser, und es erscheinen demnach die beiden anderen Bestandtheile in gleichförmig vermindelter Menge. Es erklärt sich durch diese Zusammensetzung die Geruchlosigkeit des Salzes.

Boussingault²) hat in einer Reihe von Versuchen den Ammoniakgehalt von Regen-, Schnee-, Fluss-, Quell- und Brunnenwasser durch Massanalysen bestimmt. Seine Methode gründet sich darauf, dass bei der Destillation von Wasser, welches nur wenig Ammoniak enthält, dies in den ersten Portionen des Destillats vollständig enthalten sei. Er destillirt von 1 Liter Wasser, welchem zur Zersetzung der Ammoniaksalze und Bindung der Kohlensäure etwas Aetzkali oder Kalkmilch zu-

¹) Liebig’s Annal. der Pharmacie, Bd. 30, S. 82.

gesetzt ist, 400 cbcm ab, bei guter Abkühlung und der Vorsicht, dass nichts mechanisch überspritze. Die Menge des Ammoniaks bestimmmt er mit einer titrirten Schwefelsäure, welche $\frac{1}{10}$ Atom der grossen Berzelius'schen Atomgewichte, also 61.250 g Schwefelsäurehydrat im Liter enthält. Da unsere Normalsäure nur 49 g Schwefelsäurehydrat enthalten würde, so ist sie noch schwächer, also gänzlich, und kann unbedenklich statt dieser Säure genommen werden. Bei sehr geringem Ammoniakgehalt nimmt er die Säure noch schwächer, was uns auch bei unserer Säure freisteht.

Ferner bedient er sich eines verdünnten Aetzkalis, welches vorher auf die Schwefelsäure titrirt oder ihr gleichgestellt ist. Hierbei bemerkt er auch, dass die bereits blau gewordene Flüssigkeit später wieder in Roth übergehe; es sei also abzulesen, wenn die Flüssigkeit zuerst in ihrer ganzen Masse eine bläuliche Farbe zeige. Er übersättigt also das ammoniakalische Destillat mit einer gemessenen Menge seiner Normalschwefelsäure und geht dann mit dem Aetzkali rückwärts. Es ist dies das Verfahren, welchem ich wegen der Wirkung der neutralen Ammoniaksalze auf Lackmustinctur eine geringere Schärfe zugeschrieben habe.

Es will mir scheinen, als seien Mengen von 1 Liter von so schwach ammoniakalischen Flüssigkeiten, als die natürlichen Wasser der Erde zu klein, um zuverlässige Resultate zu erhalten, und auch, dass man Brüche von Milligrammen weder mit der Masse noch mit der Gewichtsanalyse genau bestimmen könne. Bei etwas grösseren Mengen geht dies ganz gut.

Sehr verdünntes Ammoniak, wie bei dem Destillat von Regenwasser, wird sehr scharf mit Kochenilletinctur und Zehntelsäure gemessen, wenn kein kohlensaurer Kalk vorhanden ist, wie in jedem Zisternenwasser.

Gebundenes Ammoniak in neutralen Salzen.

Zur Bestimmung des Ammoniaks in Salzen kann man sich einer indirecten oder Restmethode bedienen, oder einer directen, indem man das Ammoniak ausscheidet und misst. Die erstere Methode ist am leichtesten auszuführen und macht keine besondere Apparate nothwendig. Wenn ein neutrales Ammoniaksalz mit überschüssigem ätzendem oder kohlensaurem Kali oder Natron anhaltend gekocht wird, so verflüchtigt sich das Ammoniak vollständig und die Säure bleibt an das Alkali gebunden zurück. Dieses hat dann einen dem Ammoniak äquivalenten Theil seiner Alkalität verloren, und wenn man nun den Rest des Alkalis mit titrirter Säure abmisst, so erhält man durch Abzug denjenigen Antheil, welcher

Ueber die Genauigkeit der Bestimmung gibt der folgende Versuch Anhaltspunkte.

1. Mit normalen Flüssigkeiten.

Zu 25 ccm normalem kohlensaurem Natron wurde ein 1 g sublimierter Salmiak gesetzt und das Ammoniak weggekocht. Es wurden nach dem Vertreiben des Ammoniaks noch 6.25 ccm normale Salpersäure gebraucht. Es waren also 18.75 ccm normale kohlensaure Natronlösung gesättigt worden. Diese mit 0.05346 multiplizirt (nach Nr. 13 der Tabellen), geben 1.002375 g Salmiak statt 1 g, das genommen war.

In allen Fällen, wo der Verlust an Alkalität rückwärts bestimmt wird, muss das Ammoniaksalz neutral sein. Nach Pettenkofer’s Me-

1) Pogg. 149, 379.
thode, die sogleich unter Acidimetrie genauer beschrieben wird, wird das gewogene Ammoniaksalz mit Barytwasser zersetzt, bis die entwei-
chenden Dämpfe rothes Lackmuspapier nicht mehr bläuen, und dann mit Zehntel-Oxalsäure der Ueberschuss zurückgemessen. Es wird also eigent-
lieh nur die Säure bestimmt, und daraus wegen der Neutralität das Ammoniak berechnet.

0.5 g Salmiak wurde mit 30 cbm Barytwasser, welche gleich 105.3 cbm 1/10 Oxalsäure waren, abgekocht, und rückwärts 11.8 cbm 1/10 Oxalsäure verbraucht. Es entspricht also der mit dem Ammoniak ver-
bundenen Salzsäure und insofern dem Ammoniak 105.3 — 11.8 = 93.8 cbm 1/10 Oxalsäure. Diese nach Nr. 13 mit 0.005346 multiplizirt geben
0.499851 g Salmiak statt 0.5 g. Selbstverständlich steckt auch eine Salzsäurebestimmung darin. 93.8 cbm 1/10 Säure geben mit 0.003646
(Nr. 44) multiplizirt 0.3419 g Salzsäure, berechnet 0.341 g.

3. Directe Bestimmung.

Die directe Bestimmung des Ammoniaks geschieht durch Aus-
treiben desselben mittelst ätzenden Alkalis und Messen desselben mittelst
titirirter Säure. Man bedient sich dazu des Apparates Fig. 80.

Die kleine Kochflasche enthält die ammoniakhaltige Substanz. Die
Röhre d ist mit starker Kali- oder Natronflüssigkeit gefüllt. Die Röhre c
ist mit Glassplittern gefüllt und wird mit einer gemessenen Menge der
titirirten Säure benetzt, von der auch ein Theil in die grössere Flasche
abfließt. Diese letztere enthält ebenfalls gemessene titirirte Säure. Es
ist nicht thunlich, das Ammoniak in Wasser allein aufzunehmen und
direct zu messen, wegen seiner grossen Flüchtigkeit. Man bringt nun
die gewogene Substanz mit etwas Wasser in die kleine Flasche, fügt den
Apparat zusammen und lässt aus d durch Offnen des Quetschhahns Al-
kali hinzufüllen, während man an der Röhre c mittelst einer Kantschuk-
röhre saugt, damit keine Blasen in der Röhre d aufsteigen, und entzündet
zugleich die Lampe unter der Entwicklungsflasche. Durch lebhaftes
Kochen treibt man alles Ammoniak aus. Die Gasleitungsröhre ist von
der Entwicklungsflasche abwärts gebogen, damit die Flüssigkeit sich in
der Kochflasche concentrire, wodurch die vollständige Zersetzung beför-
derd wird. Das Uebersteigen der kochenden Flüssigkeit ist sorgfältig zu
verhindern, was durch Reguliren der Flamme und Blasen auf den Hals
der Kochflasche oder durch vorherigen Zusatz von Weingeist oder etwas
Paraffin geschehen kann. Man sieht unter der Gasleitungsröhre die
geröthete Säure stellenweise blau und durch Umschütteln wieder roth
werden. Fehlt es an Säure, so wird die Flüssigkeit ganz blau. In den
oberen Theil der Röhre c legt man ein befuchtetes Stückchen rothes
Lackmuspapier. So lange dies nicht blau wird, ist kein Ammoniak ver-
loren gegangen. Bei einigermaassen vorsichtigem Arbeiten geschieht
Gebundenes Ammoniak in neutralen Salzen.

dies niemals. Es ist durchaus nothwendig, dass man bei gelindem Kochen längere Zeit einen schwachen Strom Luft durch den Apparat durchsaugt.

Fig. 80.

Ammoniakbestimmungsapparat.

Um dies thun zu können, verbindet man die Öffnung der Röhre c mit einem Aspirator und nimmt den Quetschhahn von der Röhre d ganz weg. Zugleich ist dadurch jedes Zurücksteigen der Flüssigkeit aus dem Absorptionsgesäß in das Entwicklungsgesäß unmöglich.

Die Vorlegeflasche enthält eine geröthete Flüssigkeit mit freier Säure. Man öffnet den Apparat erst nach einer Stunde, nachdem man die Röhre c mit destillirtem Wasser in die große Flasche ausgespült hat, und bestimmt die freie Säure durch titirtes Alkali oder Barytwasser bis zum Farbenwechsel. Man zieht dann den Werth des Alkalis von jenem der Säure ab, und berechnet den Rest auf Ammoniak nach Nr. 12 der Tabellen.

Ein noch sicherer wirkender Apparat ist in Fig. 81 (a. f. S.) abgebildet. Das Apsorptionsgesäß besteht aus zwei gleichweiten (16 bis 18 mm) Röhren, die unten zwei gleich grosse Kugeln (von ungefähr 40 mm Durch-

Mohr's Titrirbuch.
messern haben, und in deren Verbindungsrohre eine dritte kleinere Kugel (30 mm) angeblasen ist. Die Füllung geht bis in die Hälfte der beiden Fig. 81.

Absorption von Ammoniak.

Hierhin gehört auch die Stickstoffbestimmung organischer Körper nach der Varréntapp-Will’schen Methode, wo der Stickstoff durch
Erhitzen des Körpers mit Natronkalkhydrat in Verbrennungsröhren als Ammoniak entwickelt wird, und nach seiner Absorption durch gemessene normale Salzsäure durch Restmethode bestimmt wird.

Sehr kleine Mengen Ammoniak können nicht mit Sicherheit durch Restanalyse bestimmt werden, da die normalen Flüssigkeiten zu concentrirt sind. Man bedient sich dazu der Bestimmung durch Silber, welche später beschrieben werden wird.

Alkalische Erden.

Die alkalischen Erden im reinen und kohlensauren Zustande werden am besten mit normaler Salzsäure bestimmt, weil diese Säure mit ihnen lösliche Salze bildet. Die reinen alkalischen Erden in wässriger Lösung, wie Kalkwasser, Barytwasser, werden mit rothe Lackmustinctur versetzt und normaler Salzsäure gemessen, bis der einfallende Tropfen nicht mehr sichtbar ist. Man beendigt den Versuch in einer Operation. Dagegen können die kohlensauren Verbindungen derselben Erden nicht mit einer eben genügenden Menge Säure gelöst werden, sondern sie bedürfen eines merkbaren Ueberschusses, besonders bei krystallisirten und zerrieben Substanzen, und man muss mit einer Restanalyse endigen. Wenn die Salzsäure auf reines kohlensaures Natron richtig gestellt ist, so ist sie auch zu diesen Versuchen anwendbar, und die Resultate sind so richtig, als die Atomgewichte zu einander richtig bestimmt sind.

stärker als normal waren. Mit der so gestellten Salzsäure kann man aber nicht kohlensaure Alkalien direct durch Titrieren auf Roth messen, sondern man muss immer mit Blau endigen. Zehntel-Salzsäure greift Kalkspathkristalle sehr schwach an, und die letzten grössten Körnchen der Probe verschwinden oft in einer halben Stunde nicht trotz Erwärmens.

K a l k.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht</th>
<th>Abzuwägend Menge für 1 cbcm Norm.-Säure = 1 Prc. Substanz</th>
<th>1 cbcm Normalsäure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Kalzium</td>
<td>Ca</td>
<td>20</td>
<td>2 g</td>
<td>0.020 g</td>
</tr>
<tr>
<td>15. Kalk</td>
<td>CaO</td>
<td>28</td>
<td>2.8</td>
<td>0.028</td>
</tr>
<tr>
<td>16. Kohlensaures Kalk</td>
<td>Ca+CO₂</td>
<td>50</td>
<td>5</td>
<td>0.050</td>
</tr>
<tr>
<td>17. Chlorcalcium</td>
<td>CaCl</td>
<td>55.46</td>
<td>5.546</td>
<td>0.05546</td>
</tr>
<tr>
<td>18. Krystallisirtes Chlorcalcium</td>
<td>CaCl+6H₂O</td>
<td>109.46</td>
<td>10.946</td>
<td>0.10946</td>
</tr>
<tr>
<td>19. Schwefelsaurer Kalk</td>
<td>CaO+SO₂</td>
<td>68</td>
<td>6.8</td>
<td>0.068</td>
</tr>
<tr>
<td>20. Gyps</td>
<td>CaO+SO₃+2H₂O</td>
<td>86</td>
<td>8.6</td>
<td>0.066</td>
</tr>
<tr>
<td>21. Salpetersaurer Kalk</td>
<td>CaO+NO₃</td>
<td>82</td>
<td>8.2</td>
<td>0.082</td>
</tr>
</tbody>
</table>

Die Anwendbarkeit einer nach kohlensaurem Kalk gestellten Salzsäure zur Bestimmung von reinem und kohlensaurem Kalk ist von selbst einleuchtend. Es dürfte hier nur die Gleichheit verschiedener Bestimmungen derselben Menge und ihre Richtigkeit im System nachgewiesen werden, die sich vollkommen herausgestellt hat.
Kohlensaurer Kalk in natürlichen Wässern.

Es ist schon oben bei den Pigmenten angedeutet worden, dass die Kochenilletinctur zur Messung kohlensaurer Erden in Lösung verwendet werden könne. Es ist dies die kürzeste und einfachste Methode zu dieser Bestimmung. Die Tinctur ist durch Eintauchen eines mit schwacher Salzsäure benetzten Glasstabes eben gelbroth gefärbt, weil man mit dieser Farbe auch die Messung beendigt.

Man pipettire oder mese in Flaschen 100 oder 200 bis 300 cbcm Wasser ab, bringe sie in ein Becherglas und giese die Kochenilletinctur hinzu, etwa 1 cbem, wodurch eine schöne violette Farbe entsteht. Nun mese man mit Zehntel-Salzsäure aus, bis im durchscheinenden Lichte keine Spur von Violett mehr zu erkennen ist und auch nach einiger Zeit nicht wiederkehrt. Man sieht das Ende am besten, wenn man das Glas gegen das Tagelicht oder den blauen Himmel hält; weniger gut auf dem Tische über Porzellan. Die Anzeigen sind ungemein scharf. 100 cbem gewöhnliches Brunnenwasser erforderten dreimal hintereinander gemessen genau 7 cbcm $\frac{1}{10}$ Salzsäure. Dies macht $7 \times 0.005 = 0.035$ g kohlensauren Kalk, oder 0.350 g im Liter.

100 cbem Zisternenwasser aus einer mit Kalkcement ausgemauerten Zisterne zeigten den Gehalt an gelöstem kohlensauren Kalk sogleich durch die Farbe an. Dreimal gemessen, wurden jedesmal 0.6 cbem $\frac{1}{10}$ ClH verbraucht = 0.003 g kohlensauren Kalks oder 0.030 g im Liter.

Gefällter kohlensaurer Kalk wurde mit Wasser aufgeschlammert und dann mit Kohlensaure durch Schütteln gesättigt, bis keine Absorption mehr stattfand. Nach dem Absetzen wurden 50 cbcm herausgezogen und mit Kochenilletinctur und $\frac{1}{10}$ ClH gemessen. Es wurden 11.1 cbem davon verbraucht. Diese geben 0.0555 g kohlensauren Kalk oder 1.11 g im Liter. Die Gleichheit dieser Zahl mit den verbrauchten Cubikcentimeter Säure beruht darauf, dass in den zufällig angewandten 50 cbem das Atomgewicht des kohlensauren Kalkes enthalten ist.

50 cbem desselben Wassers wurden in einer Platinschale eingedampft und der Rest gewogen; er wog 0.058 g und dies gibt 1.16 g kohlensauren Kalk auf das Liter, was mit der titrimetrischen Bestimmung genügend übereinkommt, und wegen Mitwägung einer grossen Platinschale nicht ganz so sicher ist.

Es dürfen bei dieser Bestimmung weder Ammoniak noch kohlensaures Alkali vorhanden sein, weil diese mit gemessen werden. Gegen das Ammoniak schützt man sich durch einen Destillationsversuch. Wenn dieser kein alkalisches Destillat (Kochenille) liefert, so ist die Abwesenheit von Ammoniak bewiesen.
Kohlensaure Bittererde in Lösung.

1 cbcm $\frac{1}{10}$ Salzsäure $= 0'002 g \text{ MgO} = 0'0042 g \text{ CO}_2, \text{ MgO}.$

In gleicher Art wie kohlensaurer Kalk wird die kohlensaure Bittererde in natürlichen und künstlichen Wässern bestimmt. Die Kochenille wird davon lebhaft violett gefärbt.

Kohlensaure Bittererde wurde mit destilliertem Wasser und Kohlensäure längere Zeit geschüttelt und dann klar abgesetzt gelassen.

50 cbcm dieser Flüssigkeit mit $\frac{1}{10}$ Salzsäure gemessen erforderten 23 cbcm, und diese auf das Atomgewicht der reinen Bittererde $= 20$ bezogen, geben $23 \times 0'002 = 0'046 g \text{ MgO}.$

50 cbcm derselben Flüssigkeit in einer kleinen Platinschale eingedampft und geglühnt hinterliessen 0'0455 g MgO; und 50 cbcm mit Sal micronesium und Ammoniak gefällt gaben 0'126 g pyrophosphorsaure Bittererde $= 0'04536 g \text{ MgO}.$ Die Uebereinstimmung ist also sehr gut.

Leider macht das mit kohlensaurer Bittererde vielfach zugleich vorkommende Eisenoxydul die Probe etwas unsicher. Es tritt dann nicht die gelbe Farbe der Kochenille ein, sondern eine violette bleibt trotz überschüssiger Säure stehen.

B a r y t.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Baryum . . .</td>
<td>Ba</td>
<td>68'5</td>
<td>6'85 g</td>
<td>0'0685 g</td>
</tr>
<tr>
<td>23. Baryt . . .</td>
<td>BaO</td>
<td>76'5</td>
<td>7'65</td>
<td>0'0765</td>
</tr>
<tr>
<td>24. Barythydrat . .</td>
<td>BaO + H O</td>
<td>85'5</td>
<td>8'55</td>
<td>0'0855</td>
</tr>
<tr>
<td>25. Barytkrystalle</td>
<td>BaO + 9 H O</td>
<td>157'5</td>
<td>15'75</td>
<td>0'1575</td>
</tr>
<tr>
<td>26. Kohlens. Baryt</td>
<td>BaO + CO₂</td>
<td>98'5</td>
<td>9'85</td>
<td>0'0985</td>
</tr>
<tr>
<td>27. Chlorbaryum</td>
<td>BaCl</td>
<td>104'0</td>
<td>10'40</td>
<td>0'1040</td>
</tr>
<tr>
<td>28. Salpeters. Baryt</td>
<td>BaO + N O₅</td>
<td>130'5</td>
<td>13'05</td>
<td>0'1305</td>
</tr>
</tbody>
</table>

S r o n t i a n.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Säure = 1 Prc. Substanz.</th>
<th>1 cbcm Normalsäure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. Strontium</td>
<td>Sr</td>
<td>43-67</td>
<td>4-367 g</td>
<td>0-04367 g</td>
</tr>
<tr>
<td>30. Strontian</td>
<td>SrO</td>
<td>51-67</td>
<td>5-167</td>
<td>0-05167</td>
</tr>
<tr>
<td>31. Kohlensaurer Strontian</td>
<td>SrO + CO₂</td>
<td>73-67</td>
<td>7-367</td>
<td>0-07367</td>
</tr>
<tr>
<td>31. Chlorstrontium</td>
<td>SrCl</td>
<td>79-13</td>
<td>7-913</td>
<td>0-07913</td>
</tr>
<tr>
<td>33. Salpetersaurer Strontian</td>
<td>SrO + NO₅</td>
<td>105-67</td>
<td>10-567</td>
<td>0-10567</td>
</tr>
</tbody>
</table>

Wird wie Kalk und Baryt bestimmt nach Anleitung der beiden vorangehenden Paragraphen.

R o h r z u c k e r.

Salpetersäure.

Die folgende Bestimmung der Salpetersäure ist wesentlich eine alkalimetrische, da eine der Salpetersäure äquivalente Menge Ammoniak bestimmt wird.

Martin 1) hat eine Bestimmung der Salpetersäure auf ihre Umwandlung in ein Äquivalent Ammoniak gegründet. Die Thatsache, dass Salpetersäure, mit Schwefel- oder Salzsäure gemischt, durch metallisches Zink in Ammoniak übergehe, war schon früher bekannt (s. Gmelin, I. 828). Wird Zink in ein Gemenge beider Säuren gebracht, so findet keine Gasentwicklung statt, und die Umwandlung der Salpetersäure in Ammoniak geht vor sich. Der im Zustande des Entstehens auftretende Wasserstoff verbindet sich mit dem Sauerstoff der Stickstoffverbindung, die von Salpetersäure allein erzeugt werden würde.

Es ist bekannt, dass metallisches Zink mit verdünnter Salpetersäure Stickoxydulgas entwickelt, und lässt man 1 At. Stickoxydulgas mit 4 At. Wasserstoff in Wechselwirkung treten, so kann sich Wasser und Ammoniak bilden:

\[\text{NO} + 4 \text{H} = \text{NH}_3 + \text{HO}. \]

Diese Methode ist mit einer Anzahl Modificationen bedacht worden, ohne dass sie im Wesentlichen gewonnen hat.

Vernon Harcourt 1) benutzt eine Beobachtung Griffin's, dass Zink und Eisen in alkalischer Lösung Wasserstoff (am Eisen) entwickeln, um die Salpetersäure auf diesem Wege in Ammoniak zu verwandeln. Er behandelte die alkalisch gemachte Flüssigkeit mit einem Gemenge von granuliertem Zink und Eisenspäne und destillierte das gebildete Ammoniak in einem etwas complicirtem Apparate 2) sogleich ab, fing es in einer gemessenen Menge titrirter Schwefelsäure auf und maass den Ueberschuss der Schwefelsäure mit ebenfalls titrirtem Alkali zurück. Schulze 3) nahm platinirtes Zink an Stelle von Zink und Eisen. Beide haben insofern eine wirkliche Verbesserung angebracht, als sie ein galvanisches Element construirten. Bekanntlich gehen in der geschlossenen Kette eine Menge Zersetzungswärme in sich, welche ohne dieselbe ganz ausbleiben. So löst sich amalgamirtes Zink in verdünnter Schwefelsäure, wenn es mit einem gegen Sauerstoff unthätigen Metalle verbunden ist, aber nicht für sich allein.

Es ist bei dieser Analyse möglich, dass man kein bestimmtes Zeichen oder eine Probe hat, wann die Umwandlung der Salpetersäure in Ammoniak vollständig vor sich gegangen ist. Bei Versuchen mit bekannten Körpern und Mengen ersieht man aus dem zu kleinen Resultat, dass die Verwandlung noch nicht vollendet war. Bei wirklichen Analysen mit unbekannten Stoffen kann man das nicht wissen und bleibt in der Unsicherheit. Zu-

1) Fresenius, Zeitschr. f. analyt. Chem. 2, 14 und 400.
2) Ebrnd. 2, 16.
3) Chem. Centralblatt 1861, Nr. 53.
dem ist der ganze Apparat mit dem Aspirator ziemlich complicirt, und seine Handhabung erfordert zu viel Umsicht, als dass diese Bestimmung eine technische werden könnte, als welche sie doch nur allein Werth hätte. Da bleibt der Gewichtsverlust mit doppelt chromsaurem Kali oder geglühter Kieselerde doch viel einfacher.

Kohlensäure.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägenden Menge für 1 cbcm Norm.-Säure = 1 Prc. Substanz</th>
<th>1 cbcm Normalsäure ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>34. Kohlenstoff</td>
<td>C</td>
<td>6</td>
<td>0.6 g</td>
<td>0.006 g</td>
</tr>
<tr>
<td>35. Kohlensäure</td>
<td>CO₂</td>
<td>22</td>
<td>2.2</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Die Kohlensäure wird nicht direct, sondern die mit ihr verbundenen Mengen von Basen alkalimetrisch gemessen. Am besten eignen sich zu diesen Basen Kalk oder Baryterde, da sie mit ihnen im festen Zustande nur die eine neutrale Verbindung eingehen.

Es kommt also darauf an, die vorhandene Kohlensäure in kohlensauren Kalk oder Baryt überzuführen. Dies geschieht in den einzelnen Fällen verschieden, immer aber leicht und sicher. Ist die Kohlensäure in löslicher Verbindung mit Alkalien, so werden diese durch eine Lösung von Chlorbaryum oder Chlorkalzium zersetzt, und sind die Alkalien doppelt kohlensaure, oder nur zum Theil, so setzt man beiden Ammoniak zu. Da das Ammoniak selbst leicht etwas Kohlensäure enthält, so lässt man ein Gemenge aus Chlorbaryum oder Chlorkalzium und Ammoniak warm werden und absetzen oder filtrirt es in eine Flasche, die mit einer offenen Kalkröhre verschlossen ist (siehe Fig. 77, S. 96).

Wenn die Alkalien einfach kohlensaure sind, so ist die alkalimetrische Bestimmung auch direct eine Kohlensäurebestimmung, gerade so, wie in der Fresenius-Will'schen Methode die Bestimmung der Kohlensäure auch eine Bestimmung des damit verbundenen Alkalis ist.

Durch das Fällen des kohlensauren Alkalis mit Chlorbaryum oder Chlorkalzium ist die Alkalität ganz auf den Baryt oder Kalk übergegangen. Die filtrirte Flüssigkeit, welche Chlornatrium und Chlorbaryum enthält,

Wenn die zu untersuchende Substanz Alkalihydrat enthält, so darf man nur Chlorbaryum und nicht Chlorkalcium anwenden, weil Kalkhydrat sehr schwer löslich ist.

Es ist wesentlich aus dem kohlensauren Baryt oder Kalk durch die überschüssige Normalsalzsäure sämtliche Kohlensäure durch Erhitzen und Aussaugen zu entfernen, da in einem mit kohlensaurem Gase gefüllten Glase die schon blaue Flüssigkeit des Gemenges durch Umschütteln wieder in Violett übergeht. Es werden dann mehrere Tropfen Normalkali zu viel gebraucht.

Als Beispiel folge hier die vollständige Analyse des doppelt kohlensauren Natrons.

2 g schön krystallisirtes doppelt kohlensaures Natron wurden, nachdem sie mit Lackmustinctur versetzt waren, mit 26 cbcm Normalsalzsäure versetzt, erhitzt und die Kohlensäure ausgeblasen. Es wurden 23 cbcm Normalkali zum Hervortreten der violettten Farbe erfordert = 23.7 cbcm Normalsalzsäure. Eine Repetition gab 26.5 cbcm Säure und 28 cbcm Natron, also ebenfalls 23.7 cbcm. Diese mit dem tausendsten Theile des Atomgewichts des doppelt kohlensauren Natrons = 0.004 multiplizirt, geben 1.9908 g doppelt kohlensaures Natron statt 2 g.

2 g desselben Salzes mit Ammoniak gelöst und mit Chlorkalkium statt des Chlorbaryums versetzt, erhitzt und heisse filtrirt, dann der Niederschlag samt dem Filtrum mit Normalsäure titrir, erhielten 50 cbcm Salzsäure, und nach dem Erhitzen und Vertreiben der Kohlensäure 32 cbcm Normalnatron. Es sind also 46.8 Normalsalzsäure gesättigt worden. Diese mit 0.023 (dem tausendsten Theil von 22, dem Atomgewicht der Kohlensäure) multiplizirt, geben 1.0296 g Kohlensäure in 2 g Salz = 51.48 Proc.
Die Titirung des Natrons erforderte 23.7 cbcm Normalflüssigkeit, die des kohlensauren Kalks, der aus der Kohlensäure des Kalks entstanden war, forderte 46.8 cbcm. Aus dem bloßen Anblick dieser Zahlen ergibt sich deutlich, dass die Kohlensäure zu zwei Atomen vorhanden ist, weil die Normalflüssigkeiten gleich stark sind und ein Atom im Liter enthalten. Das doppelt kohlensaure Natron sättigt nur ein Äquivalent Säls- oder Oxalsäure, der daraus entstandene kohlensaure Kalk sättigt aber so oft sein Äquivalent derselben Säure, als Atome Kohlensäure vorhanden waren, um ihn zu fällen. Die Analyse hat uns demnach gegeben:

<table>
<thead>
<tr>
<th>gefunden</th>
<th>berechnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natron</td>
<td>36.73</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>51.48</td>
</tr>
<tr>
<td>Wasser</td>
<td>11.79</td>
</tr>
</tbody>
</table>

Die Entfernung des Ammoniaks wird durch dieselben Erscheinungen erkannt, wodurch auch nachher die alkalische Beschaffenheit des kohlensauren Erdsalzes gemessen wird, nämlich durch die Wirkung auf das Pflanzenpigment, und deshalb kann man mit Auswaschen aufhören; sobald die alkalische Reaction des ablaufenden Wassers verschwunden ist. Die Chlorreaction des auszuwaschenden Kochsalzes danert aber noch viel länger, wodurch bei der gewöhnlichen Gewichtsanalyse das Auswaschen eine andere Bedeutung hat.

Der kohlensaure Baryt, welcher beim Wägen durch sein hohes Atomgewicht sehr willkommen ist, hat vor dem kohlensauren Kalk beim Titriren keinen Vorzug. Die Wirkung äquivalenter Mengen, und wären sie im Gewichte noch so verschieden, ist absolut gleich, und das kleine Volum ist uns hier ebenso willkommen, wie dem wägenden Chemiker das hohe Atomgewicht.
Jede Bestimmung der Kohlensäure ohne Entwicklung derselben ist solchen Operationen vorzuziehen, worin die Kohlensäure erst frei gemacht und in einem anderen Gefäss wieder gebunden werden muss. Es sind dabei nämlich leicht Verluste möglich, die man nirgendwo wahrnehmen kann und die sich demnach in dem Resultat als Fehler finden. Gleichwohl gibt es Fälle, worin man zur Entwicklung seine Zuflucht nimmt, wenn nämlich kleine Mengen kohlensaurer Verbindungen mit grösseren Mengen fremder Stoffe vermischt vorkommen, und wenn es wahrscheinlich ist, dass alkalische Stoffe nur theilweise im kohlensauren Zustande vorhanden sind.

Ein solcher Apparat, dessen man sich mit gutem Erfolge bedient und welcher bei einer vollständigen Absorption des kohlensauren Gases demselben gar keinen Druck darbietet, ist in Fig. 82 (a. f. S.) abgebildet. Das Gas wird in der Flasche b zur rechten Seite durch hinzutropfendes Salzsäure entwickelt und geht durch die Glasröhre in die grössere Flasche a, welche zur linken Hand gezeichnet ist, über. Diese enthält Chlorkalzium-Ammoniak, und die mit groben Glassplittern oder dicken Glasperlen gefüllte Röhre c ist mit reinem kohlensaurefreien Ammoniak befeuchtet. Diese Glassplitter verschlucken die Reste von kohlensaurem Gase, welches nicht in der Flasche a selbst verschluckt worden ist.

reichlicher Entwicklung von Kohlensäure sieht man das kohlensaurer Ammoniak in Gestalt leichter Nebel in dem Glase a entstehen. Diese Fig. 82.

können nicht entweichen, weil sie die mit wässerigem Ammoniak benetzten Glassplitter passieren müssen.

Alle diese Operationen sind zwar ausführbar und können zu guten Resultaten führen, und dennoch ist kein Grund vorhanden, sie besonders zu empfehlen. Mit viel grösserer Sicherheit bestimmt man die Kohlensäure nach Gewicht durch sehr einfache compendiöse Apparate, die im angewandten Theil näher beschrieben werden. Ist die Kohlensäure in einer Flüssigkeit vorhanden, so kann man sie immer durch Fällen mit Chlor-
Zinkoxyd

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36. Zink</td>
<td>Zn</td>
<td>32.53</td>
<td>3.253</td>
<td>0.03253</td>
</tr>
<tr>
<td>37. Zinkoxyd</td>
<td>ZnO</td>
<td>40.53</td>
<td>4.053</td>
<td>0.04053</td>
</tr>
</tbody>
</table>

Bei der bekannten Stärke der normalen Flüssigkeit ist es zweckmässig, nicht mit zu kleinen Mengen Substanz zu arbeiten.

1 g frisch geglühtes reines Zinkoxyd wurde in 30 cbcm Normal- salzsäure gelöst und es mussten 5.3 cbcm normale Kuperoxid-Ammoniak-Flüssigkeit zugesetzt werden, bis eine bleibende Trübung entstand. Es sind demnach 24.7 cbcm Normalsalzsäure gesättigt worden. Diese mit 0.04053 multiplizirt geben 1'001 g Zinkoxyd.

Die Bestimmung des freien Zinkoxydes hat keinen Werth, denn wenn es rein ist, so kann man es wägen, und wenn es nicht rein ist, kann man es nicht titrieren.
Bittererde.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38. Bittererde . . .</td>
<td>Mg O</td>
<td>20</td>
<td>2 0.02</td>
<td></td>
</tr>
</tbody>
</table>

Die reine und kohlensaure Bittererde lassen sich mit Normalsalzsäure und Lackmus bestimmen, besonders wenn man die Flüssigkeit erwärmt. Der Umschlag der Farbe ist bei der kohlensauren Bittererde nicht im ersten Augenblick, sondern nach einigen Sekunden zu erwarten, tritt dann aber ein. Wenn man zuletzt tropfenweise mit Pausen vorgeht, kann man die Messung mit einer Flüssigkeit machen.

0.5 g kohlensaure Bittererde erforderten 9.7 cbem Normalsalzsäure \(= \) 0.194 g MgO; 0.5 g derselben kohlensauren Bittererde hinterliessen geglüht 0.195 g reine Bittererde, und diese in Wasser vertheilt zeigte den Farbenübergang sehr deutlich und erfordernte 9.6 cbem Normalsalzsäure \(= \) 0.192 g MgO. Die gebrannte reine Bittererde (Magnesia usta) titriert sich sehr leicht und sicher.

Gebundene Schwefelsäure.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39. Schwefelsaures Natron . . .</td>
<td>(\text{SO}_3 + \text{NaO})</td>
<td>71</td>
<td>7.1 g</td>
<td>0.071 g</td>
</tr>
<tr>
<td>40. Glaubersalz . . .</td>
<td>(\text{SO}_3 + \text{NaO} + 10 \text{HO})</td>
<td>161</td>
<td>16.1</td>
<td>0.161</td>
</tr>
<tr>
<td>41. Schwefelsaures Kali</td>
<td>(\text{SO}_3 + \text{K})</td>
<td>87.11</td>
<td>8.711</td>
<td>0.08711</td>
</tr>
<tr>
<td>42. Wasserleere Schwefelsäure .</td>
<td>(\text{SO}_3)</td>
<td>40</td>
<td>4</td>
<td>0.040</td>
</tr>
</tbody>
</table>
a) Direct als kohlensaures Alkali.

1 g schwefelsaures Kali in dieser Weise behandelt erforderte 11.5 ccm Normalsalzsäure, welche mit 0.08711 multiplizirt 1.001765 g schwefelsaures Kali geben.

Es ist diese von allen die directeste und einfachste Methode der Bestimmung gebundener Schwefelsäure.

b) Als Rest von kohlensaurem Baryt.

Die Methode wurde von Karl Mohr 1) gefunden.

Wenn ein löschliches Barytsalz mit reinem kohlensauren Ammoniak oder Natron gefällt wird, so ist der ausgewaschene kohlensaure Baryt das Maass für den Gehalt an Baryt oder an Kohlensäure. Derselbe wird durch Normalsalzsäure gelöst und durch ein gleichwertiges Aetzkali rückwärts zur blauen Farbe des Lackmus geführt. Man ersieht daraus die cbcm der gesättigten Salzsäure. War aber der bekannten Menge des Barytsalzes vorher durch Schwefelsäure eine unbekannte Menge Baryt entzogen worden, so kann man durch Ausfällung des überschüssigen Baryts, welcher in jedem Falle vorhanden sein muss, im kohlensauren Zustande und Titrirung desselben diese Menge finden, und aus der bekannten ganzen Menge des Barytsalzes diejenige Menge, welche durch die Schwefelsäure gefällt war, und somit auch die Schwefelsäure selbst.

Man sollte also vermuten, dass bei dieser Operation zwei Filtrationen nöthig wären. Es hat sich jedoch ausgewiesen, dass man mit einer Filtration ausreicht und dass man nach der Fällung durch das schwefelsaure Salz in derselben Flüssigkeit die Fällung des überschüssigen Baryts durch kohlensaures Ammoniak vornehmen kann, indem bei dem kleinen Überschusse des Fällungsmittels und auch überhaupt der schwefelsaure Baryt nicht durch das kohlensaure Ammoniak zersetzt wird.

1) Liebig's Annal. d. Chem. u. Pharm. 90, 185.
Mohr, Titrirbuch.
Um die Brauchbarkeit der Methode zu begründen, wurden die Versuche mit reinen Salzen in bekannter Menge vorgenommen, und als sehr zutreffend gefunden.

c. Directe Methode, als kohlensaures Bleioxyd.

Man spritzt wieder vom Filtrum herunter in ein Becherglas und setzt gemessene Normalsalpetersäure, nicht Salzsäure, zu, bis unter Erwärmen das kohlensaure Bleioxyd gelöst ist. Man filtrirt wieder durch dasselbe Filtrum, wäscht aus, erhitzt bis nahe zum Kochen und misst die freie Salpetersäure rückwärts mit normalkohlensaurem Natron. Sobald die erste Trübung stehen bleibt, ist der Versuch beendet.

0.4355 g neutrales schwefelsaures Kali, als kohlensaures Bleioxyd gemessen, erhielt 7 ccm Normalsalpetersäure, dagegen 2 ccm Normalkali = 5 ccm Normalsalpetersäure = 0.43555 g schwefelsaures Kali. 0.8711 g schwefelsaures Kali gab 0.862389 g schwefelsaures Kali.

d. Directe Methode, als kohlensaurer Strontian.

In ganz ähnlicher Art kann man die Schwefelsäure direct durch Strontiansalze bestimmen. Es ist bekannt, dass der schwefelsaure Baryt schwerer löslich ist als der schwefelsaure Strontian. Gerade aus diesem Grunde lässt sich der gefällte schwefelsaure Baryt nicht durch Digeriren mit kohlensaurem Natron vollständig zersetzten, wohl aber der schwefelsaure Strontian, wie Rose 1) nachgewiesen hat. Dagegen ist der schwefelsaure Strontian nicht so empfindlich gegen freie Salpetersäure wie das schwefelsaure Bleioxyd. Auf diese Eigenschaften gründet sich die folgende massanalytische Bestimmung der Schwefelsäure.

Man fällt die Schwefelsäure aus einer angesäuerten Flüssigkeit durch Chlorstrontium, setzt die Hälfte des Volums an Alkohol zu und lässt jedenfalls den Niederschlag mit der Flüssigkeit längere Zeit stehen. Man bringt auf ein Filtrum, lässt ablaufen, und süsst dann mit möglichst wenig warmem destillierten Wasser aus, welches mit schwefelsaurem Strontian gesättigt ist, bis die ablaufenden Tropfen mit kohlensaurem Natron keine Trübung mehr erzeugen. Den Niederschlag spritzt man

von dem Filtrum in ein Becherglas, was sehr leicht vollständig geschieht, da dieser Niederschlag gar nicht haftet. Man digerirt mit kohlensaurem Natron, bringt auf dasselbe Filtrum zurück und fässt mit heissem destillirten Wasser so lange aus, bis die ablaufende Flüssigkeit auf violettes Lackmuspapier nicht mehr reagirt. Das Filtrum bringt man mit dem Niederschlag in dasselbe Becherglas, worin die Zersetzung des schwefelsauren Strontians stattgefunden hat, setzt Lackmustinctur hinzu und zersetzt mit einer überschüssigen und gemessenen Menge normaler Salzsäure, erhitzt, um die Kohlensäure zu vertreiben, und misst die freie Säure rückwärts mit Normalkali. Man erkennt die vollkommene Zersetzung des schwefelsauren Strontians daran, dass die Flüssigkeit nach der Zersetzung mit Normalsalzsäure ganz klar wird, indem ein Rest von unzersetztem schwefelsauren Strontian die Klärung desselben verhindern würde. Der schwefelsaure Strontian zersetzt sich übrigens sehr leicht vollständig und die Bestimmung der freien Salzsäure geschieht mit der grössten Schärfe. Man geht so weit, bis die zwibelrote Farbe der Lackmustinctur in Violett übergegangen ist.

Zur Prüfung wurden zweimal 100 cbcm zehntel-schwefelsaure Kali-lösung = 0,8711 g schwefelsaurem Kali in der angeführten Art behandelt. Es wurden gebraucht:

1) 9,9 cbcm Normalsalzsäure,
2) 9,95 cbcm Normalsalzsäure

Bei absoluter Richtigkeit hätten dem Systeme nach 10 cbcm Normal = 100 cbcm Zehntel gebraucht werden. Dies war jedoch nicht zu erwarten, da die, wenngleich geringe, Löslichkeit des schwefelsauren Strontians einen kleinen Verlust bewirken musste. So gab der Versuch

1) 0,862389 g schwefelsaures Kali,
2) 0866744 cbcm

statt des angewendeten 0,8711 g. Das Resultat ist befriedigend, und in allen Fällen, wo nicht eine analytische Schärfe erforderlich ist, genügend.

Acidimetrie.

1. Allgemeine Methode.

Die Acidimetrie oder Säuremessung ist die umgekehrte Operation der Alkalimetrie. Es wird dabei die alkalische Lösung als gegeben vor- ausgesetzt, und die Wirkung der sauren Substanz gefunden. Man kann dies in einer Operation ausführen oder in zweien. Im ersten Falle bedient man sich einer normalen kohlensaurefreien Aetzkaliflüssigkeit oder der oben (S. 96) empfohlenen halbnormalen Ammoniakflüssigkeit und geht so weit, bis die rothe Farbe der Lackmustinctur in Blau übergeht. Es ist übrigens schwer, diese Bedingung vollkommen zu erfüllen, und bei dem kleinsten Gehalte an Kohlensäure, sei es der zu messenden Substanz oder der Massflüssigkeit, ist eine kurze Zeit die Flüssigkeit violett. Tritt dies ein, so ist auch die violette Farbe das Ende der Operation, weil nun schon doppelt kohlensaures Alkali und freie Kohlensäure vorhanden ist.

Es ist deshalb wesentlich, das normale Kali gegen Absorption von Kohlensäure zu schützen. Dies geschieht in der Bürette, indem man sie oben mit einer Kalkglaubersalzröhre verschliesst (Fig. 83). Es kann nun allein die kleine Menge Flüssigkeit in der Ausflussröhre Kohlensäure anziehen; diese Flüssigkeit lässt man vor jeder Arbeit durch einen kräftigen Druck auf den Quetschhahn vollkommen abfließen. Um aber auch beim Füllen der Bürette gegen Kohlensäure geschützt zu sein, bedient man sich des in Fig. 84 abgebildeten Apparates.

kohlensäurefreie Luft in die Bürette ein. Es ist dadurch eine grössere Dauer der Bürette bedingt, da sie ohne Mühe leicht jedesmal in die Fig. 83.

Fig. 84.

Kalibürette mit Kalkröhre.

Aetzkalibürette mit Aufbewahrung.

Flasche zurück entleert werden kann. Sie hängt in einer beliebigen Befestigung, die in der Zeichnung nur angedeutet ist.

Stattdes Aetzkalis und Ammoniaks bediene ich mich jetzt ausschliesslich des Barytwassers, und zwar weil das Aetzkali die Büretten angreift und blind macht, das Ammoniak selbst in der Verdünnung der Verdunstung unterworfen ist, und weil es die Anwendung heisser Flüssigkeiten nicht zulässt. Das Barytwasser ist von selbst kohlensäurefrei. Eine kalt gesättigte Lösung von Barytkrystallen wird noch etwas mit Wasser verdünnt, damit sie keine Krystalle mehr absetzt und in dem
II. Alkalimetrie.

Apparat (Fig. 84) verwendet. Sie greift die Glashöhlen nicht im Geringsten an. Ihre Stärke ist von \(\frac{1}{3} \) bis zu \(\frac{1}{4} \) Normal. Ich ziehe es vor, den Factor derselben mit Oxalsäure zu bestimmen und dann die verbrauchten Cubikcentimeter mittelst dieses Factors immer auf Normal zu rechnen, was durch die Rechentafeln nur ein Abschreiben einer Zahl ist. Wenn die Kantenschukkugel einen Durchmesser von 90 bis 95 mm hat, so kann man 2 bis 3 Liter Flüssigkeit auf 700 bis 800 mm Höhe über das untere Niveau heben. Der Titer hält constant bis zum Verbrauch der ganzen Menge, wenn die Kalkröhrchen gross genug und in der Ordnung sind.

Schön krystallisirter Tartarz natronatus zeigte eine deutliche alkalische Reaction, ebenso weinsaures und zitronensaures Kali. Dagegen zeigte sich oxalsaures Kali vollkommen indifferent.

Außer diesen allgemeinen, mit den alkalimetrischen zusammenfallenden Methoden haben wir noch zwei speciell acidimetrische, nämlich jene von Kieffer und von Pettenkofer.

Ein neues Prinzip der Acidimetrie ist von Ludwig Kieffer\(^1\) mitgetheilt worden. Es liegt darin, dass zur Abstumpfung der Säure nicht ein basischer Körper, sondern zwei derselben angewendet werden, von denen der eine in Wasser löslich, der andere aber in Wasser unlöslich ist; dagegen muss der in Wasser unlösliche Bestandtheil in dem in Wasser löslichen selbst löslich sein. Eine Säure messen kann man überhaupt mit jedem Körper, der sie abstumpft, wenn man die Grenze erkennen kann, wo die letzte Spur Säure verschwunden, und die erste Spur des basischen Körpers noch nicht im Ueberschuss vorhanden ist, statt welchen Momentes man jedoch gewöhnlich den schon begonnenen Ueber-

\(^1\) Liebig's Annalen der Chem. u. Pharm. Bd. 93, S. 386.
Acidimetrie.

schuss als bereits überschrittene Grenze wahrzunehmen pflegt. Basische Körper sind aber nicht allein einfache Oxyde, wie Kali, Natron, Ammoniak, sondern auch Verbindungen zweier basischer Körper mit einander, die zwar unter sich wie Base und Säure stehen, einer freien und ausgesprochenen Säure gegenüber aber zusammen als Basen wirken. Diese gemeinschaftliche basische Wirkung geht so lange fort, als noch eine Spur freier Säure gegenüber steht. Ist der letzte Punkt erreicht, so tritt ein neues Spiel der Verwandtschaften ein; die stärkere der beiden Basen macht sich geltend, sie tritt nach Maßgabe ihres Zusatzes an das entsprechende Äquivalent Säure über, welches durch den früheren Zusatz der schwächeren Base gebunden war, scheidet diese Menge der schwächeren Basis ab und lässt gleichzeitig das mit ihr verbunden gewesene Äquivalent der schwächeren Base fallen. Es entsteht also eine Ausscheidung von 2 Äquivalenten der schwächeren Base, und die leiseste Spur des Ueberschusses des Fällungsmittels gibt sich durch eine deutliche Fällung zu erkennen.

Es wird am leichtesten sein, das Spiel dieser Verwandtschaften an einem bestimmten Falle deutlich zu machen.

Nehmen wir an, es wäre die letzte Spur Schwefelsäure durch Kupferoxyd und Ammoniak eben gebunden worden, so ist noch alles im selben Zustande. Fällt aber nun ein Tropfen der Kupferoxyd-Ammoniaklösung darüber hinein, so bemächtigt sich das Ammoniak der Schwefelsäure, welche im bereits gebildeten schwefelsauren Kupferoxyd schon gebunden war, schlägt das mit der Schwefelsäure verbundene Kupferoxyd als blaues Hydrat nieder, und lässt, da es nun selbst gesättigt ist, auch das mit ihm verbunden gewesene Kupferoxyd ebenfalls als Hydrat fallen. Es muss also bei dem kleinsten Ueberschusse ein deutlicher Niederschlag entstehen, der in den neutralen Salzen der Flüssigkeit unlöslich ist. Diese Trübung ist das eigentliche Zeichen der Beendigung der Operation, und nicht das Verschwinden der azurblauen Farbe des Kupferoxyd-Ammoniaks.

Statt des Kupferoxyd-Ammoniaks kann man in gleicher Art Zink-
oxyd in Natron, Kali oder Ammoniak gelöst, Thonerde in Natron oder Kali gelöst anwenden.

Wenn die Flüssigkeit den normalen Titre hat, so wird sie genau wie das Natron und Ammoniak angewendet, nur dass keine Lackmustinctur gebräucht wird, sondern das Entstehen des Niederschlages als Ende der Operation angesehen wird.

Hat man eine ältere Flüssigkeit, deren Titre zweifelhaft ist, so bestimmt man seinen constanten Factor auf normale Salzsäure, oder auf eine Salzsäure, deren constanter Factor auf kohlensaures Natron oder kohlensauren Kalk festgestellt ist. Wir wollen den complicirtesten Fall annehmen.

Es ist eine Salzsäure vorhanden, deren Factor 0'996 ist. In drei Proben waren:

10 cbcm Salzsäure = 11'3 cbcm schwefelsaures Kupferoxyl-Ammoniak,
20
30

Nehmen wir die letzte Zahl als die genauere, weil mit der grössten Menge Substanz erhalten, so stellen 30 cbcm der Salpetersäure 30 × 0'996 oder 29'88 cbcm Normalsalzsäure vor.
Acidimetrie.

Es ist nun \[33.8 \cdot x = 29.88, \]
also \[x = \frac{29.88}{33.8} = 0.883 \]
und diese Zahl ist der constante Factor für das in Rede stehende schwefelsaure Kupferoxysd-Ammoniak.

Wenn man statt des schwefelsauren Kupferoxysdes zur Bereitung der Flüssigkeit salpetersaures Kupferoxysd nimmt, so ist auch die Gegenwart von Baryt, Strontian, Blei, Silber in den sauren Flüssigkeiten nicht ausgeschlossen.

1. Die neutralen Salze aller Basen, die von Ammoniak nicht gefällt werden, geben mit dem Kupferoxysd-Ammoniak keinen Niederschlag; dahin gehören Kali, Natron, Kalk, Baryt, Strontian.

3. Die neutralen Salze der Thonerdereihe \(R_2O_3 \) werden anfänglich durch das Kupferoxysd-Ammoniak nicht getrübt; später aber folgt eine Fällung der Base \(R_2O_3 \) allein, und erst zuletzt wird Kuperoxysdhydrat gefällt. Dieses Verhalten hängt innig mit der sauren Natur der Oxyde \(R_2O_3 \) zusammen. Diese Oxyde können nicht mit dem Kuperoxysd-Ammoniak gemessen werden, selbst nicht der Ueberschuss der Säure, da sie im neutralen Zustande keine Trübung veranlassen. Es gehören hierhin Thonerde, Eisenoxyd, Manganoxyd, Chromoxyd.

Das Princip der Kieffer'schen Methode ist nicht frei von dem Einwurf, dass der die Endreaction bedingende Niederschlag von basischem Kupfersalz in dem entstehenden Ammoniaksalz nicht unlöslich ist, also erst entstehen kann, wenn dies damit gesättigt ist, und da dieser Zustand der Sättigung abhängig ist von dem Grade der Konzentration, sowie davon, ob noch andere und welche, namentlich Ammoniaksalze, vorhanden sind, so entbehrt die Methode der strengen wissenschaftlichen Schärfe,
bleibt aber für gewisse technische Untersuchungen vollkommen brauchbar. Dagegen hat die Veränderlichkeit des Gehaltes der ammoniakalischen Kupferlösung dieser Methode bei den Praktikern am meisten geschadet.

Diese Methode war ursprünglich bloss zur Bestimmung von freier Kohlensäure erfunden, sie ist aber brauchbar für alle Säuren. Das Prinzip derselben besteht darin, dass die gewogenen Säuremengen mit einem Barytwasser von bekannter Starke und Menge im Ueberschuss versetzt werden, und dass der Ueberschuss des Baryts durch eine normale oder $\frac{1}{10}$ normale Säure wieder Weggenommen wird. Das Erkennen der letzten Sättigung geschieht aber nicht in der Flüssigkeit selbst, sondern durch Betupfen eines mit Kurkumatinctur gelb gefärbten Filtrirpapiers. Diese Reaction ist so ausserordentlich scharf, dass die Methode zu den genauesten analytischen Resultaten führt. Was sie einerseits dadurch einbüsst, dass sie eine Tüpfelanalyse ist, das gewinnt sie reichlich durch die grosse Bestimmtheit ihrer letzten Entscheidung, da alle Unsicherheit, welche von der Wirkung der Kohlensäure auf Lackmuslösung herrührt, vollkommen ausgeschlossen ist. Ein Tropfen einer zehntel Lösung einer Säure bringt die sichere Entscheidung.

Man gebraucht zu dieser Analyse 1) ein Barytwasser von beliebiger Starke, nahe an der Sättigung, oder doch so, dass es keine Krystalle mehr absetzt. 2) Eine titirte Säure, normal oder zehntelnormal, Oxalsäure oder Salzsäure. 3) Ein richtig bereitetes Kurkumatapier.

1) Das Barytwasser wird durch Auflösen von Barytkrystallen dargestellt und filtrirt in einer mit Kalkröhre versehenen Flasche (vgl. Fig. 84, S. 133) aufbewahrt; oder man hält es in der Fig. 85 abgebildeten Vorrichtung, aus der man es leicht in Pipetten steigen lassen kann. Oeffnet man den Quetschhahn durch Drücken, während man mit der andern Hand die 10 cbcm-Pipette in das Kautschukröhrchen einsetzt, so steigt das Barytwasser in die Pipette hinauf bis über die Marke. Man lässt bis an die Marke ausfließen und leert dann die Pipette aus. Es ist nothwendig, dass in die Pipette keine kohlensäurehaltige Luft ein- dringt, wodurch sie trüb und auch im Volumen vermiert wird. Um dies zu vermeiden, versieht man die Pipette mit einem Kalkröhrchen (Fig. 86) oder noch besser, mit einer Hand zu halten, setzt man das Röhrchen mit einem Kork fest auf die Pipette mit dem ausgezogenen Ende nach oben. Es enthält das Gemenge aus Glaubersalz und Kalk,

1) Diese bereitet man durch Glühen eines Gemenges von salpetersaurem Baryt und gestossenem Schwepspath, damit die Masse nicht übersteigt, und Auflösen in kochendem Wasser und Filtriren; oder aus Chlorbaryum und Aetznatron, Aufkochen, etwas Absitzenlassen und Abziehen mit einem Glasheber.
oder gekörnten Natron-Kalk, oben und unten durch etwas Baumwolle von den Mündungen getrennt. Es ist zu bemerken, dass das Baryt-

Fig. 85.

Fig. 86.

Pipette zu Barytwasser.

wasser kein Alkalihydrat enthalten darf, weil sonst rückwärts Zersetzung eintraten können.

3) Das Kurkumapapier. Die zur Anfertigung eines empfindlichen Papieres nötigen Vorsichtsmassregeln sind schon oben (S. 82) genau beschrieben worden. Das zu verwendende Papier soll blendend weisse, locker, nicht dicht, und etwas kräftig sein, damit es rasch capillarisch wirkt. Die im
Dunkeln getrockneten Blätter werden in kleinere Stücke zerschnitten (50 auf 100 Millimeter) und in einer flachen Blechdose oder in einer dichten Mappe aufbewahrt. Der Farbestoff ist in Alkalien mit braunrother Farbe löslich und kann durch Säuren auf Zeuge fixiert werden.

Die acidimetrische Operation wird nun in folgender Weise vorgenommen. Man bestimmt zuerst den Werth des Barytwassers in cbcm der zehntel Säure, indem man 10 cbcm Barytwasser herausnimmt und unter der Bürette so lange mit $\frac{1}{10}$ Säure versetzt, bis ein mit einem Glasstäbe herausgenommener kleiner Tropfen auf dem Kurkumapapier keinen braunrothen Kranz mehr bildet. So lange noch Baryt stark vorwaltet, wird die ganze benetzte Stelle braunroth aber mit einem farblosen Wasserkrantz. Wird die Barytlösung schwächer, so bleibt die benetzte Stelle in der Mitte gelb, hat aber am Rande einen stark gebräunten Ring. Es liegt hierin gerade die Ursache der grossen Empfindlichkeit, dass eine grössere Menge der Barytfüssigkeit durch den Rand des Fleckens filtrirt und hier eine verstärkte Wirkung hervorbringt. Im Fall man zu weit gegangen ist, so dass der braune Rand plötzlich ausbleibt, während er vorher noch stark war, kann man den Versuch wieder in Ordnung bringen, wenn man noch 1 cbcm Barytwasser aus einer kleinen Pipette hinzufügt, und nun vorsichtiger tropfenweise weiter geht.

Zur Analyse wird in der Art verfahren, dass man die saure Substanz abwägt, in Lösung bringt und nun mit der 10 cbcm-Pipette Barytwasser hinzubringt, bis nach der letzten vollen Pipette durch Betupfen von Kurkumapapier ein brauner Fleck entsteht. Die Zahl der Pipetten ist notirt, was man als Vorsicht mit einem Kreidesstrich auf dem Tische bei jeder Pipette ausführt. Dann wird mit der Säure rückwärts gemessen. Die Barytpipetten nach dem Titer in cbcm zehntel Säure verwandelt, und davon die zurückmessende Menge abgesogen, geben den Werth der Säure in cbcm, die mit dem $\frac{1}{10000}$ Theil des Atomgewichtes multiplizirt das Gewicht der Substanz geben.

Oder einfacher, man hat das Barytwasser in dem oben beschriebenen Apparate (S. 133, Fig. 84) mit einer in $\frac{1}{15}$ cbcm geteilten Bürette in Verbindung und lässt aus dieser zur Probe hinzufliessen, bis die durch Lackmus gerötete Flüssigkeit eben in Blau umschlägt. Die auf Zehntel-Normal reducirten Cubikoentimeter geben dann mit $\frac{1}{10000}$ des Atomgewichtes multiplizirt sogleich das Resultat. Dies ist das einfachste und kürzeste Verfahren. Es ist vortheilhaft, die saure Flüssigkeit und das verdünndende Wasser samt der blauen Lackmuslösung vorher bis nahe an den Siedepunkt zu erhitzen, um alle Kohlensäure auszutreiben.
Salzsäure

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>43. Salzsäure</td>
<td>ClH</td>
<td>36.46</td>
<td>3.646 g</td>
<td>0.03646 g</td>
</tr>
</tbody>
</table>

Um den Gehalt an wasserleerer Salzsäure sogleich in Procenten zu erhalten, kann man in der folgenden Art verfahren:

Da 1 Atom = 36.46 g wasserleerer Salzsäure gerade 1 Liter Normalkali sättigt, so müssen 3.646 g Salzsäure genau 100 cbcm Normalkali sättigen. Wäge man also 3.646 g der wässerigen Salzsäure ab, so sind die verbrauchten Cubikcentimeter Normalkali die Procente der Salzsäure. Um aber die Salzsäure, deren spezifisches Gewicht man einmal kennt, nicht zu wägen, kann man sie auch mit einer in Zehntel-Cubikcentimeter getheilten Pipette abmessen. Da die Flüssigkeit einen um so kleineren Raum einnimmt, je grösser ihr spezifisches Gewicht ist, so muss man das Gewicht in Grammen erst durch das spezifische Gewicht dividiren, um die Anzahl Cubikcentimeter zu erhalten, welche dem Gewicht in Grammen gleich sind. 3.646 g Salzsäure von dem spezifischen Gewicht 1.1239 nehmen einen Raum von \[
\frac{3.646}{1.1239} = 3.24 \text{ cbcm ein.}
\]

Salpetersäure

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>44. Wasserleere Salpetersäure</td>
<td>NO₅</td>
<td>54</td>
<td>5.4 g</td>
<td>0.054 g</td>
</tr>
</tbody>
</table>
Die Stärke der Salpetersäure lässt sich ebenfalls leicht und sicher auf alkalimetrischem Wege bestimmen. Die Erscheinungen sind ganz normal.

Schwefelsäure.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz.</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>45. Wasserleere Schwefelsäure</td>
<td>SO_3</td>
<td>40</td>
<td>4 g</td>
<td>0.040 g</td>
</tr>
<tr>
<td>46. Schwefelsäurehydrat</td>
<td>$\text{SO}_3 + \text{H}_2\text{O}$</td>
<td>49</td>
<td>4.9</td>
<td>0.049</td>
</tr>
<tr>
<td>47. Saures schwefelsaures Kali</td>
<td>$\text{KOH} + 2\text{SO}_3 + \text{H}_2\text{O}$</td>
<td>136.11</td>
<td>13.611</td>
<td>0.13611</td>
</tr>
<tr>
<td>48. Saures schwefelsaures Natron</td>
<td>$\text{NaO} + 2\text{SO}_3 + \text{H}_2\text{O}$</td>
<td>120</td>
<td>12.0</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Die vielfache Anwendung der Schwefelsäure zu alkalimetrischen Messungen lässt schon die umgekehrte Messung der Schwefelsäure durch Alkalien mit Recht vermuten. In der That bietet sie auch nicht die geringste Schwierigkeit dar, da die Schwefelsäure eben so intensiv die Lackmustinctur rot färbt, als die Kalilauge blau.

Doppelt schwefelsaures Kali und Natron.

Doppelt schwefelsaures Kali $= 136.11$.
1 cbcm Normalkali $= 0.13611$ g KO, 2SO_3, Aq.
Doppelt schwefelsaures Natron $= 120$.
1 cbcm Normalkali $= 0.120$ g KO, 2SO_3, Aq.
Kohlensäure.

Kersting hat eine Methode beschrieben, die Kohlensäure direkt durch ihre Wirkung auf Lackmustinctur zu bestimmen. Es soll diese in zweierlei Weise geschehen können: einmal, indem man durch Alkali die violette Färbung eben wegnimmt; das anderemal, indem man durch Alkali übersättigt und nun mit normaler Säure die violette Färbung wieder hergestellt.

Bei den von mir angestellten Versuchen hat sich obige Methode als sehr unzuverlässig, ja als falsch herausgestellt.

Man gebe in zwei gleiche Gläser gleichviel Wasser und Lackmustinctur und dann eine gleiche Menge kohlensaures Wasser. Beide Flüssigkeiten nehmen dieselbe violette Färbung an. Setzt man nun zu der einen eine beliebige Menge doppelt kohlensaures Natron, so geht diese violette Färbung ganz entschieden in Blau über, und man kann eine bedeutende Menge kohlensaures Wasser hinzufügen, ehe die violett Färbung wieder eintritt.

Etwas Aehnliches ist sogar schon von starken Mineralsäuren bemerkt, und hier ist es wieder Gay-Lussac, welcher die Beobachtung machte, dass die Gegenwart von neutralem schwefelsauren Kali die Lackmustinctur minder empfindlich mache. Fast bei jeder alkaliometrischen Operation bemerkt man, dass der Farbenwechsel mit der zunehmenden Menge der

gebildeten Salze weniger deutlich wird. Man hat zu dieser Erscheinung noch keine befriedigende Erklärung gefunden.

So hat das doppelt kohlensaurc Natron nach unseren Begriffen keine Affinität mehr zu Kohlensäure, und dennoch hemmt es die Wirkung derselben auf Pigmente, wenn sie in seiner Wirkungssphäre zur Wirkung kommen sollen. Da in den meisten Fällen, wo Kohlensäure gemessen werden soll, auch doppelt kohlensaures Natron vorhanden ist, wie bei natürlichen und künstlichen Mineralwässern, so wird uns gerade da die Methode im Stiche lassen, wo sie am nützlichsten sein könnte.

1) Freie Kohlensäure wird vom Baryt gebunden und die verbrauchte Barytlösung entspricht der Kohlensäure genau; 1 cbcm Zehntel Säure = 0,0032 g CO₂.

2) Einfach kohlensaure Alkalien mit einem Ueberschuss von Barytwasser versetzt, verändern die Alkalität des Barytwassers nicht. Es schlägt sich kohlensaurer Baryt nieder und ein Aequivalent Alkali, welches ebenso stark wirkt wie der Baryt, wird frei. Das Barytwasser muss nothwendig im Ueberschuss vorhanden sein.

3) Doppelt kohlensaure Alkalien werden vom Barytwasser in der Art zersetzt, dass Baryt mit dem ganzen Kohlensäuregehalt als einfach kohlensaurer Baryt niederfällt. Es wird daher für je zwei Aequivalente Kohlensäure nur ein Aequivalent Alkali in Freiheit gesetzt. Die verschwundene Alkalität des Barytwassers entspricht also nur dem zweiten Atom Kohlensäure.

4) In einer Lösung von kohlensauren Erden in freier Kohlensäure wird letztere durch Barytwasser gemessen, dagegen die zu dem Oxyd gehörige Kohlensäure fällt mit diesem nieder und wird nicht gemessen. Hierbei ist zu beachten, was über den kohlensauren Kalk unter Nro. 7 gesagt werden wird.
5) In einer Lösung von doppelt kohlensauren Alkalien und Erden in freier Kohlensäure wird die letztere und das zweite Atom Kohlensäure gemessen, welche in den doppelt kohlensauren Salzen enthalten ist, aber nicht diejenige Menge, welche einfach kohlensaure Verbindungen bildet.

6) Chlorbaryum nimmt bei einfach kohlen sauren Alkalien die ganze Alkalität weg, indem sie in den niederfallenden kohlen sauren Baryt übergeht, welcher nicht löslich ist. Aetzende Alkalien werden durch Chlorbaryum in ihrer Alkalität nicht verändert, weil ein Äquivalent Baryt in Freiheit gesetzt wird. Da nun auch einfach kohlen saure Alkalien durch Barytwasser nicht gemessen werden, so kann man in allen Fällen, wo kohlen saure Alkalien vorhanden sind, dieselben durch Chlorbaryum nehmen und muss das auch thun, wenn man nur die Kohlensäure bestimmen will. Aetzende Alkalien können überhaupt nicht vorhanden sein, wo freie Kohlensäure gemessen werden soll.

Der Beweis für obige Sätze wird durch die Versuche gegeben.

10 cbcm Barytwasser, welche = 30°8 cbcm $\frac{1}{10}$ Oxalsäure waren, erhielten einen Zusatz von 10 cbcm $\frac{1}{10}$ kohlen saurem Natron, und zeigten dann eine Alkalität = 30°85 cbcm $\frac{1}{10}$ Oxalsäure, also unverändert.

0°2 g krystallisiertes doppelt kohlen saures Natron wurden in kaltem Wasser gelöst und dazu 10 cbcm Barytwasser ($= 30°8$ cbcm $\frac{1}{10}$ Oxalsäure) und Chlorbaryum gesetzt, dann der Überschuss des Barytwassers = 7°2 cbcm $\frac{1}{10}$ Oxalsäure gefunden.

Es war also eine Menge von Baryt durch Kohlensäure gesättigt worden, welche durch $30°8 - 7°2 = 23°6$ cbcm $\frac{1}{10}$ Oxalsäure gemessen ist. Dies mit 0°0084 ($= \frac{1}{10000}$ At. doppelt kohlen saurem Natron) multiplicitir geb 0°19824 g dieses Salzes statt 0°2. Nun wurden 0°2 g desselben Salzes alkalimetrisch mit $\frac{1}{10}$ Oxalsäure gemessen und davon 23°8 cbcm verbraucht. Die nahe Gleichheit der beiden Zahlen 23°6 und 23°8 zeigt, dass gleichviel Säure auf das zweite und das erste Atom Kohlensäure verbraucht wurde, dass also das Salz ein Bicarbonat ist, und dass von dem Barytwasser nur die Häfte der Kohlensäure gemessen wird.
Bei Anwendung von 0·4 g doppelt kohlensauren Natrons und 20 cbcm Barytwasser mit Chlorbaryum wurden dagegen 15·2 cbcm $\frac{1}{10}$ Oxalsäure verbraucht. Es war also eine Menge Barytwasser gesättigt worden, welche durch $2 \times 30·8 = 15·2 = 46·4$ cbcm $\frac{1}{10}$ Oxalsäure gemessen ist. 0·4 g desselben Salzes direct gemessen erforderten 47·5 cbcm $\frac{1}{10}$ Oxalsäure. Wir haben also

für die halbgebundene CO$_2$ 46·4 cbcm $\frac{1}{10}$ Oxalsäure,

für die ganzgebundene " 47·5 " " "

also ebenfalls wieder Bicarbonat. Die erste Zahl mit 0·0084 multiplicirt gibt 0·38976 g, die zweite 0·399 g doppelt kohlensaures Natron statt 0·400 g. In ganz gleicher Weise wurden für 0·4 g doppelt kohlensaures Kali

für halbgebundene CO$_2$ 39·8 cbcm $\frac{1}{10}$ Oxalsäure,

für ganzgebundene " 39·6 " " "

aber ebenfalls übereinstimmend mit der Voraussetzung gefunden. Da überhaupt einfach kohlensaure Alkali mit Kurkumapapier nicht gemessen werden können, so hat man in allen Fällen, wo solche vorkommen können, einen kleinen Überschuss von Chlorbaryum, dann so viel Vollpipetten (1 oder 5 oder 10 cbcm) Barytwasser zuzusetzen, bis nach starkem Erhitzen der rothe Fleck auf Kurkumapapier entsteht, der dann durch Zehntel Säure zurückgemessen wird.

Thonerde.

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc.</th>
<th>1 cbcm Normalalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>49. $\frac{1}{2}$ Atom Thonerde</td>
<td>$\frac{Al_2O_8}{8}$</td>
<td>17·17</td>
<td>1·717 g</td>
<td>0·01717 g</td>
</tr>
<tr>
<td>50. $\frac{1}{2}$ Atom Kalialaun</td>
<td>$\frac{1}{4}[Al_2O_3 \cdot KO + 8SO_3 + 24 Aq.]$</td>
<td>158·12</td>
<td>15·812</td>
<td>0·15812</td>
</tr>
</tbody>
</table>

Die Thonerde als solche hatte sich bis jetzt allen Versuchen entzogen, durch eine leichte massanalytische Operation bestimmt zu werden. Nun ist aber der Werth der verschiedenen Alausorten ganz proportional ihrem Thonerdegehalt, und es war ein Verfahren wünschenswerth, den relativen Werth der Thonerdesalze zu bestimmen. Ich habe in der ersten
Auflage dieses Werkes eine Bestimmung der Thonerde durch Ammoniak angegeben, welche darauf beruht, dass die mit der Thonerde verbundene Schwefelsäure so gut wie im freien Zustande vorhanden ist, weil die blau Farbe des Lackmuspigmentes erst eintritt, wenn die letzte Spur Thonerde gefällt ist, so dass der Farbenwechsel erst mit der vollendeten Zersetzung eintritt, während er bei anderen Fällungen, von Bittererde, Zinkoxyd und ähnlichen schon mit dem Anfange der Zersetzung eintritt. Die Anwendung schwefelsaurer Thonerdesalze hatte aber den Nachtheil, dass sich basisch-schwefelsaure Thonerde ausschied, welche allmählich wieder Schwefelsäure abgab, so dass die bereits eingetretene blau Farbe wieder in Roth überging. Alle diese Schwierigkeiten werden nach E. Erlenmeier und Löwenstein vermieden, wenn man das schwefelsaure Thonerdesalz durch Chlorbaryum vollständig zersetzt. Der schwefelsaure Baryt braucht nicht entfernt zu werden, indem er die Erkennung des Farbenwechsels nicht nur nicht erschwert, sondern im Gegen teil deutlicher macht. Dieselben haben auch ein Mittel entdeckt, um zu erkennen, ob in einer Flüssigkeit mehr Schwefelsäure vorhanden ist, als dem Thonerdegehalt entspricht. Sie behandeln nämlich die zu prüfende Flüssigkeit mit frisch gefälltem phosphorsaurem Bittererde-Ammoniak. Freie Schwefelsäure zersetzt dieses Salz in phosphorsaurem Bittererde, welche unlöslich ist, und in schwefelsaures Ammoniak, welches neutral ist. Schwefelsaure Thonerde bildet damit phosphorsaure Thonerde, welche unlöslich ist und also nicht reagirt, und schwefelsaures Bittererde-Ammoniak, welches neutral reagirt. Die Säure der Thonerde tritt in Freiheit und kann gemessen werden. Das Verfahren ist also folgendes:

Die Alaune enthalten 4 At. Schwefelsäure, von denen nur eins gesättigt ist; die drei mit der Thonerde verbundenen werden alkaliometrisch gemessen. Es entspricht also 1 ecbm Normalkali 1/3 von 1/1000 At. Thonerde, wie in der Rubrik aufgestellt ist.

Es ist zweckmässig, alle als Alaun dienende Thonerdesalze auf Kali alaun zu beziehen. Der Fabrikant kann also den Titer seines Normal kalis mit reinem Kalialaun nehmen, von dem 15·812 g 100 ecbm Normal kali erfordern.
Essig säure.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz.</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>51. Wasserleere Essigsäure . .</td>
<td>C₄H₂O₃</td>
<td>51</td>
<td>5·1 g</td>
<td>0·051 g</td>
</tr>
<tr>
<td>52. Eisessig . . .</td>
<td>C₄H₂O₆ + HO</td>
<td>60</td>
<td>6</td>
<td>0·080</td>
</tr>
</tbody>
</table>

Bei den verschiedenen Arten der Essigsäure ist die maassanalytische Methode mehr als bei anderen Säuren angezeigt, weil das specifische Gewicht hier von so geringer und unsicherer Bedeutung ist. Enthalten aber die Flüssigkeiten noch andere Stoffe, welche sie leichter oder schwerer als reines Wasser machen, wie Extractivstoff, Weingeist, Holzgeist, Aceton, so ist die Maassmethode die einzige sichere und zugleich rasch fördernde. Ich fange mit den farblosen Essighen an.

Officineller Acetum concentratum.
5 cbcm wogen 5·204 g, woraus das specifische Gewicht zu 1·0408 sich herausstellt. Mit der aräometrischen Wage bestimmt, fand es sich zu 1·042.

Die in gleicher Art abgefassten 5 cbcm forderten

1. 27 cbcm Normalkali,
2. 27·05 „ „
3. 27 „ „

Nehmen wir die Mehrzahl der Versuche zu 27 cbcm, so geben diese, da das Atom der wasserleeren Essigsäure, C₄H₂O₃, = 51 ist, 27 mal 0·051 = 1·377 g wasserleere Essigsäure oder 26·46 Proc.

Da das specifische Gewicht des Acetum concentratum immer nahe an 1·04 steht, so kann man für pharmaceutisch-chemische Zwecke auch den Acetum concentratum mit der Pipette abmessen, statt ihn abzuwägen. Da nach unserem System 51 g wasserleere Essigsäure 1 Liter Normalkali, also 5·1 g genau 100 cbcm Normalkali sättigen würden, so hätten wir diejenige Menge abzumessen, welche gerade 5·1 g wiegt. Diese ist aber 5·1 = 4·904 cbcm. Wir können also ohne grosse Gefahr 4·9 cbcm Acetum concentratum herausspipettiren und diese mit Normalkali bestimmen.
Vom obigen Essig wurden 4.9 cbcm genommen und darauf genau 26.4 cbcm Normalkali verbraucht. Der Procentgehalt ist also 26.4, fast genau wie oben.

Es ist zu bemerken, dass der Farbenübergang bei schwachen Säuren nicht so rasch und deutlich ist, als bei starken, indem hier auch die letzte Spur noch freier Säure das Lackmuspigment stark rötet.

Bei der Essigsäure gehe man bis auf die vollständig blaue Farbe, d. h. bis ein Tropfen der Kaliflüssigkeit in der bereits gefärbten Flüssigkeit nicht mehr als ein blauer Flecken erscheint.

Der farblose oder schwach gefärbte Spritessig kann ebenfalls direct mit Normalkali abgelesen werden. Ein guter gewöhnlicher Essig hat ein specifisches Gewicht von 1.01 bis 1.011. Wollte man nun 5.1 g herauspipettiren, so müsste man \(\frac{5.1}{1.011} = 5.04 \text{ cbcm} \) herausnehmen. Wenn man die \(\frac{4}{100} \text{ cbcm} \) vernachlässigt, so stellt sich die einfache praktische Formel heraus, dass, wenn man 5 cbcm Essig herauszieht, die verbrauchten Cubikcentimeter Normalkali gerade die Procente an wasserleerer Essigsäure angeben. Nimmt man 10 cbcm Essig, so hat man natürlich die verbrauchten Cubikcentimeter zu halbiren.

Ein ganz klarer Schnellessig wurde zu diesen Versuchen verwendet.

1. 10 cbcm = 11.8 Normalkali = 5.9 Proc.
2. 5 „ = 5.9 „ = 5.9 „
3. 5 „ = 5.9 „ = 5.9 „

Für stark gefärbte Essige, so wie andere saure Flüssigkeiten ist unten ein besonderes Verfahren beschrieben.

Weinsäure

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz.</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>53. Wasserleere Weinsäure . .</td>
<td>C₄H₄O₆</td>
<td>66</td>
<td>6.6 g</td>
<td>0.066 g</td>
</tr>
<tr>
<td>54. Krystalлизире Weinsäure . .</td>
<td>C₄H₂O₆ + HO</td>
<td>75</td>
<td>7.5</td>
<td>0.075</td>
</tr>
</tbody>
</table>
1·212 g krystallisirte Weinsäure mit Baryt gemessen und auf Normal reducir't erforderten 16·146 cbcm Normalbaryt; × 0·075 = 1·2119 g Weinsäure.

Die Anzeichen sind ganz sicher und deutlich.

Weinstein.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Norm.- Kali = 1 Pro. Substanz.</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>55. Weinstein</td>
<td>KO + 2 C₆ H₂ O₅ + H₂O</td>
<td>188·11</td>
<td>18·811 g</td>
<td>0·18811 g</td>
</tr>
</tbody>
</table>

Es handelt sich hier nur um die Bestimmung von Weinsteinmengen, die aus Analysen hervorgegangen sind, worin der Weinstein als das Maass von Kali oder von Weinsäure gewonnen wurde. Man kann den Weinstein weniger gut wägen, wenn er sich auf einem Filtrum befindet, und wegen seines natürlichen Wassergehaltes kann man ihn nicht kräftig ausdörrn. Das Lufttrockenmachen ist lange dauernd und unsicher.

Doppelt weinsaures Natron.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel.</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>56. Doppelt weinsaures Natron</td>
<td>$2(C_4H_2O_6)\text{NaO} + 3\text{H}_2\text{O}$</td>
<td>190</td>
<td>19 g</td>
<td>0.19 g</td>
</tr>
</tbody>
</table>

4 g doppelt weinsaures Natron erforderten 21 cbcm Normalkali. 21×0.19 geben 3.99 g statt 4 g. Umgekehrt bestimmt man das Atomgewicht aus dieser Analyse. Womit muss man 21 multiplizieren, um 4 g zu erhalten? $21 \times 4; x = \frac{4}{21} = 0.1904$, also das Atom $= 190.4$ statt 190.

Zitronensäure.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel.</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>57. Wasserleere Zitronensäure</td>
<td>$C_4H_2O_4$</td>
<td>58</td>
<td>5.8 g</td>
<td>0.058 g</td>
</tr>
<tr>
<td>58. Krystallisirte Zitronensäure</td>
<td>$C_4H_2O_4 + 1\frac{1}{2}\text{H}_2\text{O}$</td>
<td>70</td>
<td>7.0</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Die krystallisirte känfliche Zitronensäure hat die Formel $3C_4H_2O_4 + 4\text{H}_2\text{O}$ oder $C_4H_2O_4 + 1\frac{1}{3}\text{H}_2\text{O}$ und das Atomgewicht 70.

2 g derselben erforderten 28.8 cbcm Normalkali. Dies gibt 2.016 g Säure.

2 g derselben mit Kamppecholzinctur forderten 29 cbcm; dies gibt 2.03 g statt 2 g.
Bernsteinäure

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>59. Wasserleere Bernsteinäure</td>
<td>C₄H₂O₅</td>
<td>50</td>
<td>5 g</td>
<td>0,050 g</td>
</tr>
<tr>
<td>60. Krystallisirte Bernsteinäure</td>
<td>C₄H₂O₅·HO</td>
<td>59</td>
<td>5,9</td>
<td>0,059</td>
</tr>
</tbody>
</table>

2 g krystallisirte Bernsteinäure erforderten an gebräuchter Barytlösung auf Normal reduziert 34 cbcm × 0,059 = 2,006 g.

Salicylsäure

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Norm.-Kali = 1 Proc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. Wasserleere Salicylsäure</td>
<td>C₁₄H₉O₅</td>
<td>129</td>
<td>12,9 g</td>
<td>0,129 g</td>
</tr>
<tr>
<td>62. Krystallisirte Salicylsäure</td>
<td>C₁₄H₉O₅·HO</td>
<td>138</td>
<td>13,8</td>
<td>0,138</td>
</tr>
</tbody>
</table>

1 g krystallisirte Salicylsäure erforderte an Barytwasser auf Normal reduziert 7.25 cbcm; diese × 0,138 geben 1,0005 g Salicylsäurehydrat. Oder man sucht das Atomgewicht der Salicylsäure, wenn 1 g derselben 7,25 cbcm Normal-Alkali gesättigt hat. So ist 7.25 x = 1 g; also x = 1 / 7,25 = 0,138. Dies ist bei Normalflüssigkeiten der tausendste Theil vom Atomgewicht; also dieses selbst 138.
Oxalsäure und Kleesalz. Gebundenes Kali als Weinstein bestimmt. 153

Die Karbolsäure ist gar keine Säure, da sie mit Alkali nicht einmal ihren Geruch verliert und kann nicht acidimetrisch gemessen werden.

Oxalsäure und Kleesalz (Oxalium).

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 obcm Norm.-Kali = 1 Prc. Substanz.</th>
<th>1 obcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>63. Wasserleere Oxalsäure . .</td>
<td>C₂O₃</td>
<td>36</td>
<td>3·6 g</td>
<td>0·096 g</td>
</tr>
<tr>
<td>64. Krystallisirte Oxalsäure . .</td>
<td>C₂O₃ + 3 HO</td>
<td>63</td>
<td>6·3 g</td>
<td>0·063</td>
</tr>
<tr>
<td>65. Kleesalz . .</td>
<td>KO + 2C₂O₃ + 8aq.</td>
<td>146·11</td>
<td>14·611</td>
<td>0·14611</td>
</tr>
<tr>
<td>66. Vierfach oxalsaures Kali . .</td>
<td>KO + 4C₂O₃ + 8aq.</td>
<td>218·11</td>
<td>21·811</td>
<td>0·21611</td>
</tr>
</tbody>
</table>

Es bedarf keines Beleges, dass man freie Oxalsäure mit Normalkali messen könne, da dieses auf jene gestellt ist.

Gebundenes Kali als Weinstein bestimmt.

1 obcm Normalkali = 0·04711 g Kali.

Die Methode gründet sich auf die Ausscheidung des Kalis als Weinstein und Messen desselben durch normales Alkali oder Baryt. Die ganze Sorge geht auf die richtige Ausscheidung des Weinsteins.

Wenn das zu bestimmende Kali in einer neutralen Verbindung ist, so dürfen keine Erden und Metalloxyde dabei sein, eine Bedingung, die gewöhnlich schon von selbst eintritt. Sollte es nicht der Fall sein, so fällt man mit kohlensaurem Natron, kocht, filtrirt und sättigt das überschüssige kohlensaure Natron mit Salzsäure, wobei man Lackmustinctur
zu Hilfe nimmt. Ein kleiner Ueberschuss von Salzsäure oder kohlen-
saurem Natron schadet nicht.

Das gewogene Kalisalz wird in einer Porzellanachale in Wasser ge-
löst, dann setzt man ihm eine etwas überschüssige Menge doppelt wein-
saures Natron zu, und dampft im Wasserbade zur Trockne ein, oder
man zerreibt beide Salze in einer Porzellanachale, durchfeuchtet sie mit
etwas Wasser, zerreibt noch mehr, und trocknet im Wasserbade ein.

Alle neutralen Kalisalze setzen sich mit doppelt weinsaurem Natron
in Weinstein und ein lösliches Natronsalz um. Freie Mineralsäure ist
deshalb zu vermeiden, weil sie lösend auf Weinstein wirkt, und kohlen-
saure Alkalien sind zu vermeiden, weil sie einen Theil des doppelt wein-
sauren Natrons sättigen, wodurch man über die vorhandene Menge der
freien Weinsäure im Unklaren bleibt. Das doppelt weinsaure Natron
mit 2 At. Wasser hat das Atomgewicht 190, und da das reinste neutrale
Kalisalz mit dem größten Kaligehalt Chlorkaliunm, mit dem Atom-
gewicht 74:57, so sind 3 Theile doppelt weinsaures Natron auf 1 Theil
Kalisalz in jedem Falle hinreichend. Hat man schwefelsaures Kali oder
eine Verbindung, die entschieden nach Natron enthält, so reicht man
mit kleineren Mengen doppelt weinsauren Natrons aus.

Es kommt nun darauf an, den Ueberschuss dieses Salzes wegzuschaf-
fen. Dies geschieht durch Auswaschen mit einer kalt gesättigten Wein-
steinlösung. Man bereitet diese Lösung mit kalkfreiem Weinstein und
mit destilliertem Wasser durch Schütteln in einer Stöpselflasche, in welcher
Lösung sich der Weinstein leicht absetzt. Die Lösung ist den Schim-
mein unterworfen, was dann beim Gebrauche eine Filtration nothwendig
machen würde, wenn nicht in dem Zusatze einer kleinen Menge wein-
geistiger Salicylsäurelösung ein vortreffliches Mittel gefunden wäre, diese
Lösung unbestimmt lange halbar zu machen. Die früher empfohlenen
Antiseptica, Pfefferminzöl, Kampher, Chinin und Karbol säure, haben
nen keinen Erfolg gehabt. Man bewahrt sie im Sommer im Keller. Die
Flasche enthält immer einen Ueberschuss von Weinstein.

In dieser Lösung lösen sich alle Salze wie in reinem Wasser, nur
der Weinstein nicht, und man hat also darin ein Mittel, die übrigen Salze
to entfernen.

Die getrocknete Salzmasse lasse man vollständig erkalten, und zer-
reibe sie in der Schale mit Weinsteinlösung zu einem Brei, spült diesen
auf ein kleines Filtern und wäscht mit Weinsteinlösung aus, wobei man
den Trichter mit einer Glastafel bedeckt hält, um Verdunstung zu verhüten.

Die vollständige Entfernung des überschüssigen doppelt weinsauren
Natrons erkennt man an folgenden Zeichen.

Man pipettirt 10 ccm Weinsteinlösung ab, versetzt sie mit Lack-
mus und titirirt sie mit einzelnen Tropfen Normalkali blau. Man braucht
6 bis 8 Tropfen Normalkali auf 10 ccm Weinsteinlösung. Von der
zuerst ablaufenden Flüssigkeit 'pipettire man ebenfalls 10 ccm in ein
Glas und titirire sie mit Normalkali blau.
Gebundenes Kali als Weinstein bestimmt.

Gebraucht man zuerst mehr als 6 bis 8 Tropfen, etwa 25 bis 30, so hat man hieran ein Zeichen, dass eine genügende und überschüssige Menge doppelt weinsaures Natron vorhanden war. Gebraucht man aber gleich im Anfang nur 6 bis 8 Tropfen, so ist der Versuch zweifelhaft, indem nun bloss Weinstein vorhanden ist. Man kann den Versuch wieder in Ordnung bringen, wenn man alle Flüssigkeit mit gepulvertem doppelt weinsaurem Natron versetzt, einige Zeit bedeckt stehen lässt und dann wieder auf dasselbe Filtrum bringt, bis die ablaufende Flüssigkeit mehr als 6 bis 8 Tropfen Normalkali zur blauen Farbe gebraucht. Wenn man die filtrirte Flüssigkeit jedesmal weggiesst, so sieht man an der abnehmenden Zahl der Tropfen, dass man sich dem Auswaschen des doppelt weinsauren Natrons nähert, und wenn zuletzt 10 cbcm Waschwasser eben so viel Nosmalkali erfordern, als die reine Weinsteinlösung, so ist das Auswaschen beendet.

Man bringt jetzt das Filtrum mit dem Weinstein in ein Becherglas, setzt Lackmustinctur zu und erwärmt bis zum Kochen, damit sich der Weinstein grösstentheils löse. Jetzt lässt man Normalkali zuziessen, bis die bläue Farbe stehen bleibt. Jeder cbcm ist gleich $\frac{1}{1000}$ At. Kali oder Kalisalz.

1 g Chlorkalium in dieser Weise in Weinstein umgesetzt, erforderte 13'4 cbcm Normalkali. Das Atom des Chlorkaliums ist 74'57, also haben wir erhalten $13'4 \times 0'07457 = 0'999238$ g Chlorkalium statt 1 g; oder auf Kali berechnet $13'4 \times 0'04711 = 0'6313$ Kali; berechnet 0'632 g.

2 g Chlorkalium in Weinstein verwandelt, erforderten 26'8 cbcm Normalnatron. Dies gibt $1'9985$ g Chlorkalium statt 2 g, und $1'2626$ g Kali statt 1'264 g.

2 g einfach schwefelsaures Kali in einer zweiten Operation behandelten dabei 2'0002 g schwefelsaures Kali, und als zu einer gleichen Menge die Hälfte Kochsalz gesetzt wurde, kam dasselbe Resultat heraus. Man kann bei diesen Versuchen Normalnatron dem Kali vorziehen, weil unter Umständen die Flüssigkeiten zu dem Versuche zurückgebacht werden müssen, wo dann ein Gehalt an Kali hinderlich wäre.

Das Filtrum ist allerdings mit Weinsteinlösung benetzt, allein seine Wirkung ist höchst unbedeutend. Ein Filtrum von 115 mm Durchmesser mit Weinsteinlösung benetzt und bedeckt ablaufen gelassen, wurde bei Zusatz von Lackmus durch 1 Tropfen Normalkali gebläut.

Der Weinstein hat vor vielen anderen Salzen die Eigenschaft der Ueberschmelzung, d. h. in Flüssigkeiten, in denen er ihrer Temperatur nach nicht gelöst bleiben kann, lange gelöst zu bleiben und sich erst sehr langsam abzusetzen. Seine erste Absetzung in den Weinflüssern, die Jahre lang dauert, gibt davon das schönste Beispiel. Aus diesem Grunde haben andere Methoden der Fällung immer zu geringe Resultate gegeben. Wenn man eine mit doppelt weinsaurem Natron gesättigte Lösung auch
noch ferner mit Weinstein sättigt, so erhält man eine Flüssigkeit, welche mit neutralen Kalisalzen sogleich starke Niederschläge von Weinstein bildet. Da aber wegen der Schwerlöslichkeit des doppelt weinsauren Natrons viel Wasser vorhanden ist, so setzt sich der Weinstein trotzdem, dass alle Flüssigkeiten damit gesättigt sind, dennoch nicht sogleich ab, und man erhält durch Titrieren des Niederschlags zu schwache Resultate.

Es wurde ferner versucht, den abgesetzten Weinstein durch seine Höhe in einer Glasröhre zu bestimmen. Auch dies Verfahren gab keine vergleichbare Zahlen. Es muss hier nothwendig das doppelt weinsaure Natron ebenfalls in gesättigter Lösung angewendet werden, und es tritt wieder der Fall der langsamsten Ausscheidung ein.

Ist das Kali in einer alkalischen Verbindung, so ist die Operation noch viel einfacher. Die alkalimetrische Operation genügt hierbei allein nicht, weil noch kohlensaures Natron vorhanden ist, was ebenfalls alkalimetrisch wirkt, und dennoch nicht gemessen werden soll. Dem Salpeterfabrikanten ist es mehr um das Kali als um das Natron zu thun. In diesem Falle bringe man die gewogene Probe in Lösung und sättige sie aus einem tarirten Glase mit gepulverter Weinsteinsäure unter Zuziehung von Lackmuspapier. Ist die Flüssigkeit aber genau gesättigt, so wage man die verbrauchte Weinsteinsäure ab, und nehme dann noch eine gleiche Menge aus dem Glase und füge es der Probe zu. Dadurch sind Kali und Natron in doppelt weinsteinsaure Salze verwandelt. Man dampft zur Trockne ein, und zieht das Salzgemenge, wie oben, durch kaltgesättigte Weinsteinslösung aus, wodurch nur Weinstein übrig bleibt, der acidimetrisch gemessen wird.

Bolley\(^1\) hat diese Methode unter seiner Leitung prüfen lassen und gefunden, dass die Resultate genauer werden bei vermehrtem Zusatz von doppelt weinsaurem Natron. Er leitet dies davon ab, dass Weinstein in Wasser und Natronsalpeterlösung leichter auffällig ist, als in doppelt weinsaurem Natron, weil eine gesättigte Weinsteinslösung mit einer gesättigten Lösung doppelt weinsauren Natrons einen Niederschlag von Weinstein erzeugt. Er sieht es als eine Schwierigkeit an, das anhängende Natronbitartrat aus dem Niederschlag zu entfernen, erwähnt aber nicht, dass dies in meiner Methode durch eine kaltgesättigte Weinsteinslösung bereits geschehen ist. Es ist ferner nicht mitgetheilt, in welcher Weise die Kalibestimmung aus dem Weinstein geschehen solle, denn wenn man den gefällten Weinstein, wie bei ihm gesah, durch Glühren, Verwandeln in Chlorkalium und Bestimmung dieses als metallisches Platin aus dem Kaliumplatinchlorid bestimmen wollte, so konnte man diesen Weg mit dem angewandten Salpeter selbst einschlagen, ohne den ge-

\(^1\) Journ. f. prakt. Chem. 103, 495; Zeitschr. des österr. Apothekervereins 1888, 354.
nommenen Umweg. Ich hatte für den Weinstein die alkalmetriche Probe vorgeschlagen.

Eine abgekürzte Methode rührt von Dr. Frank her. Er löst das zu untersuchende Kalisalz, meistens Chlorkalium, in der genügenden Menge gesättigter Weinsteinlösung, fügt dann eine Lösung von doppelt weinsaurem Natron in gesättigter Weinsteinlösung hinzu, lässt verschlossen abkühlen, um die Ausscheidung des Weinsäures zu befördern, zieht die überstehende Flüssigkeit mit Aspiration ab, und titrirt den ausgeschiedenen Weinstein mit normaler Kalilösung. Da sich der Weinstein erst in längerer Zeit absetzt, so wird wohl ein Stab über Nacht angesehen sein. Das Abziehen der Flüssigkeit verrichtet Frank mit einer kleinen Saugpumpe. Ebenso sicher und viel bequemer geschieht es durch einen gläsernen Heber, dessen Ausflussende mit einem Quetschhahn versehen ist; durch vorsichtiges Öffnen kann man der Flüssigkeit jede Bewegung geben, so dass kein Theil des Niederschlags mit aufgesogen wird. Auch liess er sich der Niederschlag auf einem Filtrum sammeln, und nach dem Abfließen mit einer kleinen Centrifugalmaschine (Fig. 87, a. f. S.) trocken schwingen und dann sogleich titriren. Das Bedürfniss einer abgekürzten Methode zur annähernden Bestimmung des Kalis bei der Stassefurter Kaliindustrie hat zu diesem Verfahren geführt, bei welchem die von mir vorgeschlagene Eindampfung zur Trockne und Auswaschung mit Weinsteinlösung auf dem Filtrum umgangen wird. Auch in der abgekürzten Methode war der Weinstein mehreremal mit gesättigter Weinsteinlösung ausgewaschen worden, die Trennung der Flüssigkeit aber durch Wegsagen statt durch Filtriren bewirkt worden.

Die Methode lässt sich auch in der Art ausführen, dass man das Chlorkalium, fein gepulvert und abgewogen, unmittelbar in einer genügenden Menge der Lösung von saurem weinsauren Natron in gesättigter Weinsteinlösung abschüttelt, absetzen lässt und eine Nacht stehen lässt. Alsdann wird die Flüssigkeit abgezogen, mehreremal mit Weinsteinlösung ausgewaschen und dann heiss mit Normalkali und Lackmus titrirt.

1962 g Chlorkalium so behandelt, erforderten 25,9 ccm Normalkalich; dies mit 0,0746 (1/1000 At. Chlorkalium) multiplicirt gibt 1932 Chlorkalium statt 1962 g. 2 g reines schwefelsaures Kali, fein zerrieben
Die Menge der zuzusetzenden weinsauren Natronlösung kann man für jedes Kalisalz vorher berechnen, indem man 10 cbcm der weinsauren Natronlösung mit Normalkali titriert. Sie muss dann etwas mehr betragen, als der aus dem Kalisalz möglicher Weise entstehende Weinsteine, selbst wenn das Kalisalz chemisch rein wäre. 2 g Chlorkalium würden im höchsten Falle \[
\frac{2}{0.0746} = 26.8 \text{ cbcm Normalkali}
\]
erfordern. Man muss also wenigstens so viel der sauren weinsauren Natronlösung zusetzen, dass sie 26.8 bis 27 cbcm Normalkali sättigen, welches man ein für allemal für die vorhandene Lösung durch obigen Probeversuch feststellt.
Gebundenes Kali und Natron als Kieselfluorkalium und -Natrium bestimmt.

1 cbcm Normalkali = 0.01955 g Kalium = 0.02355 g Kali.

Die Kieselfluossäure hat die Zusammensetzung HF,,SiF,, und ist in Wasser löslich. Beim Zusammenbringen mit einem Kalisalz tauscht sich das Atom Wasserstoff gegen ein Atom Kalium aus, und es entsteht die Verbindung KF,, SiF,, welche sich wegen ihrer größeren Schwierlöslichkeit ausscheidet. In dieser Verbindung ist das Fluorkalium neutral, aber das Fluorsilicium reagirt sauer, und erfordert zu seiner Zersetzung 2 At. einer Base, woraus dann 2 fernere Atome einer neutralen Fluorverbindung und 1 At. Kieselerde entsteht, nach der Gleichung:

$$\text{KFI, SiF}_2 + 2 \text{KO} = \text{KFI}, 2 \text{KFI} + \text{SiO}_2.$$

Die Neutralität entsteht also, weil an die Stelle von 1 At. Silicium 2 At. Kalium treten, und das Silicium, welches mit Fluor sauer reagirt, mit Sauerstoff als Kieselerde keine Reaction hat. Von den 3 At. Fluorkalium, welche entstehen, war nur eins in der zu untersuchenden Verbindung und die beiden anderen sind in der Messflüssigkeit hinzugebracht worden. Man hat also nur die Hälfte der Cubikkentimeter mit dem vollen Atomgewichte oder die ganze Zahl der Cubikkentimeter mit dem halben Atomgewichte anzuwenden. 1 cbcm Normalkali repräsentirt also

II. Alkalimetrie.

\[\frac{0.03911}{2} = 0.01955 \text{ g Kalium und } \frac{0.04711}{2} = 0.02355 \text{ g Kali, ebenso } \]
\[0.0115 \text{ g Natrium und } 0.0155 \text{ g Natron.} \]

Dieser Umstand vermehrt offenbar die Genauigkeit der Bestimmung, dass man eine doppelt so grosse Menge Messflüssigkeit anzuwenden hat. Das Verfahren ist also folgendes:

Stolba hat eine grosse Anzahl Kalibestimmungen in reinen Salzen gemacht, um die Methode zu prüfen, und die Resultate sind sehr befriedigend. Dahin gehören Kaliumplatinchlorid, Chlorkaliunm, chloraures Kali, doppelt chromsaures Kali, Weinestein, Blutlaugensalz, neutrales oxalsaures, salpetersaures, schwefelsaures Kali. In soweit sind die Resultate ganz gut, obgleich man bei vielen dieser Salze, wenn man sicher ist, dass nur Kali vorhanden ist, auch auf andere und einfachere Weise verfahren kann. Der grösste Mangel der Methode besteht darin, dass man auch nothwendig das Natron mit bestimmt, weil das Kieselfluornatrium ebenfalls von Weingeist niedergeschlagen wird. Sie hat also einen entschiedenen Nachtheil gegen die Kalibestimmung mit Chlorplatin oder mit doppelt weinsaurem Natron, da diese das Kali allein fällen. Nun ist aber der Fall, dass Kali und Natron zusammen vorkommen, der allernäufigste, wie bei Chlorkaliunm, Salpetere, Pottasche, Basalten, Feldspat, Phonolithen, Zeolithen, Aschen, Kalidüngmittel und ähnlichen, wo gerade eine leichte und gute Kalibestimmung wünschenswerth wäre. Die Verschläge Stolba's, eine indirekte Analyse einzuleiten, können nicht Platz greifen, weil man entweder nicht wissen kann, ob Kali und Natron allein vorhanden sind, oder weil man die Summe derselben nicht kennen kann. Ist nur eine Säure vorhanden, wie Chlor oder Schwefelsäure, und steht es fest, dass nur Kali und Natron vorliegen, so kann man auch durch die Chlorbestimmung oder die Fällung der Schwefelsäure eine indirekte
Analyse einleiten. Will man das Kali allein durch Platin ausscheiden und nachher im Rest das Natron durch Kieselflußsäure, so ist der Nutzen der Methode zu beschränkt.

Die indirekte Analyse ist aber unter allen Methoden die schlechteste, weil sie die Fehler multiplicirt und aus kleinen Differenzen grosse Resultate herausrechnet.

Es ist somit von der gut ausgesonnenen und durchgeführten Methode wenig Anwendung zu erwarten.

1) Fresenius, Zeitschr. f. analyt. Chem. 1, 405.
Säuremessung im Harn.

Wenn das angewendete Papier Chlorbleiche hatte, so wird es nach dem Trocknen fleckig roth.

Das rothe Papier stellt man sich aus dem blauen durch Ueberpinselung mit einer schwachen Säure dar. Sehr zweckmässig ist es, über die blauen Bogen mit dem ausgedruckten sauren Pinsel an einem Lineal ganz gerade Striche zu ziehen, so dass eben so breite Streifen blau stehen bleiben, als der Pinsel roth streicht. Schneidet man nun einen rothen und blauen Streifen in der Mitte mit einer Scheere durch, so erhält man Streifen, die der Länge nach halb roth und halb blau sind. Diese geben in jeder Flüssigkeit sogleich eine bestimmte Anzeige.

Nach dem Trocknen des Streifens sind alle Striche auf dem blauen Lackmuspapier entschieden roth geworden, und die letzten auf dem rothen Papier blau, so dass diese Flüssigkeit scheinbar beide Reaktionen zugleich gegeben hat.

Essigäther.

(*Ueberhaupt Aether organischer Säuren.*)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel.</th>
<th>Atomgewicht</th>
<th>Abzuwägend Menge für 1 cbcm Norm.-Kali = 1 Prc. Substanz</th>
<th>1 cbcm Normalkali ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>67. Essigäther</td>
<td>C₇H₈O₄</td>
<td>88</td>
<td>8,8 g</td>
<td>0,088 g</td>
</tr>
</tbody>
</table>

Die zusammengesetzten Aether sind alle durch das Austreten von 1 At. Wasser entstanden, in welchem die Säure den Sauerstoff und der

Im Allgemeinen kann man rechnen, dass für jedes Gramm Aether 12 cbcm normales Alkali, oder reduziertes Barytwasser, ausreichen werden, um noch einen Ueberschuss von Baryt nach der Zersetzung zu haben, der dann nach Pettenkofer's Methode mit 1/10 Oxalsäure zurückgemessen wird.

Beim Öffnen des Glases müssen zwei Erscheinungen vorhanden sein: 1) man darf den Geruch des Aethers nicht mehr wahrnehmen, und 2) die Flüssigkeit muss auf Kurkumapapier den braunen Fleck machen, also noch überschüssigen Baryt enthalten. Man ist dann sicher, dass der Aether zersetzt ist, und das Aequivalent desselben am Barytwasser gesättigt erscheint. Man bringt die Flüssigkeit unter die 1/10 Oxalsäurebürette und misst den freien Baryt rückwärts durch Betupfen von Kurkumapapier. Hier der Verlauf einer ganzen Operation.

3 cbcm Essigäther wogen 2'667 g; dies gibt das spezifische Gewicht 2'667\[\frac{3}{8} = 0'889.\] Sie erhielten 90 cbcm Barytwasser von dem Factor 0'345, welche also 31'05 cbcm Normal vorstellten. Nach zwei Stunden
Chlornhydrat. 165

wurde geöffnet, wobei aller Geruch verschwunden und die Barytreaction noch vorhanden war. Es wurden zur Sättigung des Baryts 71.4 cbcem 1/10 Oxalsäure = 7.14 Normal gebracht. Es sind also 31.05 — 7.14 = 23.91 cbcem Normal gesättigt gewesen. Dies macht 23.91 × 0.088 = 2.10408 g reinen Essigäthers in 2.667 g des untersuchten, also 78.89 Procent.

Chlornhydrat

\[C_4HCl_3O_2 + 2HO = 165.38. \]

1 cbcem Normalalkali = 0.16538 g Chlornhydrat.

Das Chlornhydrat lässt sich noch leichter als der Essigäther durch Baryt zersetzen, und indem hieraus Ameisensäure und neutrales Chloroform entsteht, ist ein äquivalenter Theil der Alkalität des Barytwassers verschwunden. Die Zersetzung geschieht nach folgender Formel:

\[C_4HCl_3O_2 + BaO, HO = C_2HCl_3 + C_2HO_3, BaO. \]

Man bringt das gewogene Chlornhydrat in eine Flasche, löst es in Wasser, setzt einige Tropfen Lackmuslösung hinzu, um zu sehen, ob es freie Säure enthält, welche man mit einigen Tropfen Barytwasser abstumpft; darauf lässt man Barytwasser aus der Bürette zufließen, für jedes Gramm Chlornhydrat 7 bis 8 cbcem Normal. Da nämlich 165.38 g

= 1000 cbcem Normal sind, so kommen auf 1 g im Minimum \(\frac{1000}{165.38} \) = 6

und ein Decimalbruch, so dass 7 genügen. Die Einwirkung muss in der Kälte geschehen, weil beim Erhitzen auch ein Theil Chloroform von dem überschüssigen Baryt zersetzt werden kann.

2 g Chlornhydrat in Wasser gelöst zeigten etwas Säure, welche mit einem Tropfen Barytwasser weggewonnen wurden. Nun wurden 40 cbcem Barytwasser vom Factor 0.345, also 13.80 cbcem Normal, zugelassen, das Glas verschlossen und nach öfterem Umschütteln nach einer Stunde ausgemessen. Es wurden 16.2 cbcem 1/10 Normal = 1.62 cbcem Normal verbraucht; es waren also 13.80 — 1.62 = 12.18 cbcem Normal gesättigt worden; diese mit 0.16538 multipliziert, geben 2.014 g Chlornhydrat. Ich habe fast jedesmal einen kleinen Überschuss erhalten, vielleicht von einer beginnenden Zersetzung des Chloroforms selbst.
Säurebestimmung in gefärbten Flüssigkeiten.

(Essig, Holzessig, weisser Wein, rother Wein, Most etc.)

Die Farbenwandlung von Lackmus und Kochenille kann in gefärbten Flüssigkeiten nicht genau erkannt werden. Vielfach enthalten diese Flüssigkeiten Substanzen, welche selbst durch Sättigung der Säure eine Farbenwanderung erleiden. Ich habe deshalb versucht, diese sämtlichen Analysen auf eine gemeinschaftliche Methode zurückzuführen, welche die größte Bestimmtheit gestattet. Es ist dies die Pettenkofer’sche mit Barytwasser und Kurkumapapier.

Die Analyse ist nun sehr einfach.

Die Flüssigkeit kommt nun unter die $\frac{1}{10}$ Oxalsäureburette und wird bis zum Verschwinden des braunen Ringes auf dem Kurkumapapier ausgemessen. Die Barytpipetten werden mit ihrem Factor in $\frac{1}{10}$ Oxalsäure verwandelt, und davon die zuletzt verbrauchte Menge dieser Säure abgezogen. Der Rest ist der Werth der zu bestimmenden Säure.

Einige Beispiele werden dies am besten erläutern.

5 cbcm Barytwasser waren $= 19'1$ cbcm $\frac{1}{10}$ Oxalsäure.

1) Weisser Wein. 10 cbcm desselben mit Lackmus versetzt wurden von 5 cbcm Barytwasser alkalisch, und es wurden 10'7 cbcm $\frac{1}{10}$ Oxalsäure dagegen verbraucht. Das Barytwasser war $= 19'1$ cbcm $\frac{1}{10}$ Oxalsäure, davon ab 10'7 lassen 8'4 cbcm $\frac{1}{10}$ Oxalsäure als Mass der Weinsäure. Das Atomgewicht der kristallisierten Weinsäure ist 75, also 1 cbcm Zehntelflüssigkeit $= 0'0075$ g Weinsäure, folglich 8'4 cbcm $= 0'0075 \times 8'4 = 0'063$ g Weinsäure in 10 cbcm Wein oder 6'3 per Mille.

2) Rother Wein. 10 cbcm dazu 5 cbcm Barytwasser, dagegen 11'8 cbcm $\frac{1}{10}$ Oxalsäure. Also 19'1 $- 11'8 = 7'3$ cbcm $\frac{1}{10}$ Oxalsäure $0'0075 \times 7'3 = 0'05475$ g $= 5'475$ per Mille kryst. Weinsäure.

3) Tafelessig. 10 cbcm desselben wurden erst durch die fünfte Pipette Barytwasser alkalisch; 5 $\times 19'1 = 95'5$ cbcm $\frac{1}{10}$ Oxalsäure; dagegen 12'5 cbcm $\frac{1}{10}$ Oxalsäure; also waren gesättigt an Baryt 95'5 $- 12'5 = 83$ cbcm $\frac{1}{10}$ Oxalsäure. Essigsäurehydrat $= 60$, also 1 cbcm $\frac{1}{10}$ Flüssigkeit $= 0'0060$ g Essigsäurehydrat; folglich 83 cbcm $= 0'0060 \times 83 = 0'498$ g Essigsäurehydrat in 10 cbcm $= 4'98$ Proc. Essigsäure.
Die Resultate verschiedener Bestimmungen derselben Substanz sind sehr übereinstimmend, und differiren höchstens um 0\textquotesingle 1 cbcm. Es lassen sich übrigens alle Säuren nach dieser Methode messen, und wenn man sie allgemeiner benutzen wollte, liessen sie sich noch viel bequemer zurichten. Man würde sich das Barytwasser der $\frac{1}{10}$ Oxalsäure gleich stellen und dasselbe in einer Bürette mit Ab- und Zufluss, die auch gegen Kohlensäurezutritt durch Natronkalkröhen geschützt wäre (S. 133), bereit halten. Es würde dann die abgewogene oder gemessene Säure mit Lackmus versetzt und aus der Barytbürette auf Blau titriirt, dann aber rückwärts mit der $\frac{1}{10}$ Oxalsäure auf Verschwinden des braunen Ringes auf Kurkumapapier gemessen werden. Die Cubikcentimeter des Barytwassers weniger jenen der $\frac{1}{10}$ Oxalsäure sind dann ohne Weiteres das Maass der zu bestimmenden Säure. Ganz besonders ist die Methode bei Essigsäure anzuwenden, da deren sogenannte neutrale Salze nicht neutral auf Lackmus wirken. Eine Analyse von offizinelim $\text{Acidum aceticum dilutum}$ ergab folgende Resultate: 1 cbem $\text{Acid. acetic. dilut.}$ wog 1\textquotesingle 038 g; dies stimmt mit dem von der Pharmacopoe angegebenen spezifischen Gewichte 1\textquotesingle 038 überein; sie erhielten 3 Pipetten Barytwasser $= 57\text{\textquotesingle} 3$ cbem $\frac{1}{10}$ Oxalsäure; dagegen 6\textquotesingle 8 cbem $\frac{1}{10}$ Oxalsäure, also $57\text{\textquotesingle} 3 - 6\text{\textquotesingle} 8 = 50\text{\textquotesingle} 5$ cbem $\frac{1}{10}$ Oxalsäure; und diese mit 0\textquotesingle 0060 multiplicit gebn 0\textquotesingle 303 g Essigsäurehydrat in 1\textquotesingle 038 g Essigsäure, also $\frac{100 \cdot 0\text{\textquotesingle} 303}{1\text{\textquotesingle} 038} = 29\text{\textquotesingle} 2$ Proc. Eissessig. Die Pharmacopoe setzt 29 Proc.

Allgemeine Bestimmung gebundener Säuren in Erd- und Metalloxydsalzen.

im Gyps darauf begründet, und an dieser Stelle ist deutlich ausgesprochen, dass das kohlensaure Natron so viel an Alkalität verloren hat, als der vorhandenen Schwefelsäure entspricht. Später haben Langer und Wawnikiewicz\(^1\) diese Methode als von Bunsen vorgeschlagen auf eine Anzahl Salze angewendet.

Das Verfahren ist im Allgemeinen folgendes:

1. Die Salze der fixen Alkaliien bleiben ausgeschlossen, weil man ein Alkali nicht mit sich selbst fallen kann. Das Ammoniak kann weggekocht werden, und dies leistet genau dasselbe, was eine Filtration thut. Es wurde jedoch auch schon so der Säuregehalt des Salmiaks (1. Aufl. Thl. I, S. 66 und oben S. 111) bestimmt, wie von Langer und Wawnikiewicz (loc. cit. S. 235) die Säure des salpetersauren Ammoniaks, wechseln wir diesen Fall als erledigt hier übergehen können.

2. Die alkalischen Erden, Kalk, Strontian, Baryt, sind im reinen Zustande in Wasser löslich, können also nicht mit reinem, sondern mit kohlensaurem Alkali gefällt werden. Da die kalt gefällten kohlensauren Erden amorph und in Wasser etwas löslich sind, so müssen die Fällungen in der Siedhitze geschehen, besonders bei Kalk.

Bittererdesalze können von reinem und kohlensaurem Alkali gefällt werden; Kalialunn durch kohlensaures Alkali, da gefällte Thonerde in reinem Alkali löslich ist.

a. Zinc oxydsalze werden siedend, anch um die Bildung von basischen Verbindungen zu verhindern, mit einem Überschuss aus kohlensaurem Natron gekocht; reines Zinc oxyd ist in Kali unlöslich.

b. Kupferoxydsalze, siedend heiss, mit reinem Kali, wobei sich schwarzes wasserleeres Kupferoxyd bildet.

c. Silberoxydsalze werden durch sténdes Kali zersetzt, sogar Chlor- silber; letzteres aber nicht durch kohlensaures Alkali.

\(^1\) Liebig's Annal. d. Chem. u. Pharm. Bd. 117, S. 230 (Februar 1861).
Allgemeine Bestimmung gebundener Säuren etc.

e. Nickel- und Kobalsalze mit reinem Natron.
f. Blei oxydsalze, auch schwefelsaures und Chlorblei, mit kohlensaurem Natron.
g. Eisenoxydul und Oxydsalze mit reinem und kohlensaurem Alkali in der Siedhitze.
h. Quecksilberchlorid und Chlorür, sowie andere Salze mit reinem Alkali.
i. Manganoxydulosalze kochend mit kohlensaurem Natron.

Ohne Zweifel können noch viele andere Salze hierhin gezogen werden, und es ist noch hinzuzufügen, dass, wenn man die Reinheit der Verbindung anderweitig festgestellt hat, in dieser Analyse auch eine Bestimmung der Basis enthalten ist.

Atomgewichtsbestimmungen durch Titirung.

Wenn man mit dem richtigen Atomgewicht die Mengen einer Säure bestimmen kann, so muss man auch umgekehrt, wenn man die Menge kennt, das Atomgewicht finden können, welches bei normalen Flüssigkeiten das Tausendfache des für einen Cubikcentimeter gefundenen Gewichtes beträgt. Man bedarf dazu eine normale alkalische Flüssigkeit, oder ein Barytwasser, welches auf eine richtige Säure, Oxalsäurehydrat, gestellt ist. Der ganze Verlauf der Untersuchung wird aus dem Folgenden erhehlen.

Es wird eben ein Barytwasser gemischt und in dem Apparate (Fig. 84, S. 133) eingefüllt. Es wurden 1·26 g Oxalsäure, mit 3 At. Wasser, abgewogen und mit dem Barytwasser und Lackmus auf blau gemessen. Es wurden 58·6 cbcm verbraucht. Diese 1·26 g Oxalsäure stellen aber im System \(\frac{126 \cdot 1000}{63} \) = 20 cbcm vor; wir haben also zur Reduction auf Normal, nach dem Ansatz:

\[58·6 \times x = 20 \]

den Factor des Barytwassers

\[x = \frac{20}{58·6} = 0·341 \]

gefunden.

Es soll nun das Atomgewicht einer Säure, z. B. der Salicylsäure, gefunden werden. Von schöner Dresdener Salicylsäure wurde 1 g abgewogen und mit dem Barytwasser auf blau titirirt. Es wurden 21·1 cbcm verbraucht; diese mit 0·341 multiplicirt geben 7·195 cbcm Normal. Der Werth eines Cubikcentimeters in Salicylsäure geht aus der Gleichung herwor:

\[7·195 \times x = 1, \]

wonach

\[x = \frac{1}{7·195} = 0·1389, \]

und danach wäre das Atomgewicht = 138·9.

Bei einem zweiten Versuch wurde auf 1 g Salicylsäure 21·2 cbcm Baryt verbraucht = 7·2292 Normal und hieraus ergibt sich das Atomgewicht 138·3. Die Salicylsäure ist aus 1 At. Karbolsäure (C₁₂H₉O₂) und 2 At. Kohlensäure (C₂O₄) entstanden, hat also als einfaches Hydrat die Formel C₁₄H₁₀O₃·H₂O, indem die Bestandtheile eines Atoms Wasser ausgetreten und als Hydratwasser aufgenommen sind. Danach ist das Atomgewicht = 138.
Atomgewichtsbestimmungen durch Titrirung.

Bekanntlich wird die Formel der organischen Körper aus den Resultaten der Verbrennungsanalyse abgeleitet, und die Grösse des Atomgewichtes aus der Bestimmung der Sättigungskapacität, nach Berzelius aus der Analyse der Blei- oder Silberverbindung; diese dient dann zur Feststellung des Multiplums der aus der Verbrennung abgeleiteten Formel. 2 g Weinsäure erforderten 78.4 cbcm Baryt = 26.7344 cbcm Normal und diese geben das Atomgewicht 74.8 statt 75. 2.267 g Zitronensäure erforderten 94 cbcm Barytwasser = 37.054 cbcm Normal, und dies gibt das Atomgewicht \[\frac{1000 \times 2.267}{32.054} = 70.72 \] statt 70.

Dass die gewonnenen Zahlen nicht genauer stimmen, liegt daran, dass die Hydrate die unsichersten Verbindungen der Säuren sind, weil man sie nicht trocknen kann, und das, was man lufttrocken nennt, etwas sehr unbestimmtes ist, während man die Blei- und Silbersalze scharf trocknen kann. Es handelt sich übrigens nur darum, ob 1 Atom Wasser oder mehrere vorhanden sind, und darüber lässt die Bestimmung doch keinen Zweifel.
Dritter Abschnitt.

Oxydations- und Reductionsanalysen.

(Oxydometrie.)

Allgemeines.

Die Oxydations- und Reductionsanalysen bilden einen sehr wichtigen Theil der Massenanalyse, indem dadurch eine Menge von Stoffen quantitativ mit einer Leichtigkeit und Genauigkeit bestimmt werden können, wovon die Gewichtsanalyse keine Beispiele hat. Die Erscheinungen der vollendeten Oxydation sind im Allgemeinen so leicht zu erkennen, dass man in den meisten Fällen nicht über einen Tropfen der zuzusetzenden Flüssigkeit im Ungewissen ist. Sauerstoff aufnehmende Stoffe werden direct durch ein Oxydationsmittel von bekannter Zusammensetzung bis zur völligen Oxydation titriert; Sauerstoff abgebende Körper werden erst durch eine bestimmte, aber überschüssige Menge eines reducirenden Körpers reducirt und dann der überschüssige Theil des Reductionsmittels durch Zusetzen des titirten Oxydationsmittels bestimmt.

Durch die Bemühungen vieler Forscher sind unsere Mittel in diesem Felde zu einer bedeutenden Summe angewachsen, und da mehrere der angewandten Mittel sich auf viele Stoffe in gleicher Art anwenden lassen, so entstehen durch Combination eine solche Menge von Methoden, dass unser Reichthum fast verwirrend ist. Allein die Methoden sind nicht alle gleich gut und nicht alle gut. Wir haben also bei der systematischen Behandlung dieses Gegenstandes durchaus nicht alle einmal vorgeschlagenen und angewendeten Mittel in historischer Vollständigkeit mitzuteilen, sondern nur die nach allen Erfahrungen besten Methoden voranzustellen, und die minder guten, in einzelnen Fällen immer noch
brauchbaren, gelegentlich zu erwähnen. Zunächst müssen wir die angewendeten Oxydations- und Reduktionsmittel einzeln und in ihrer Verbindung kennen lernen und darunter eine passende Auswahl treffen.

Wenn man jedes der oben genannten Oxydationsmittel mit jedem der Reduktionsmittel in Wechselwirkung bringen könnte, so würden daraus 10 × 5 oder 50 verschiedene Operationsmethoden hervorgehen. Allein diese Combinationen sind nicht alle möglich, weil einige dieser Paare, wie Jod und Oxalsäure, oder chromsaures Kali und Oxalsäure, gar nicht auf einander wirken, wenigstens nicht in der Kälte und in verdünnten Lösungen, auch sind diese Combinationen nicht alle nothwendig, indem man mit einigen der besten Combinationen alle nur vorkommenden Fälle der Analyse unterwerfen kann; ja selbst durch diese wenigen Combinationen entstehen eine Menge Doppelmethoden, wodurch man einen und denselben Körper bestimmen kann.

Das Zinnchlorür hat die grossen Erwartungen, die man von ihm anfangs hegte, nicht ganz erfüllt, indem seine Wirkung von der Verdünnung abhängt. Es hat sich aber in einzelnen Fällen als ganz brauchbar erwiesen. Zink wird zu Reductionen, aber nicht zu Bestimmungen verwendet. Die besten Combinationen, welche sich vollkommen bewährt haben, und deren wir uns im Verlaufe zu unseren Zwecken bedienen werden, sind die folgenden:

 b. Chamäleon gegen Oxalsäure mit denselbem Erkennungszeichen.

2) Doppelt chromsaures Kali gegen Eisenoxydul mit Kaliumeisen-
cyanidreaction.

3) Jod gegen unterschwefligsäures Natron mit der Jodstärkereaction.
4) Arsenigsäures Kali gegen freies Chlor, Brom, Jod und unter-
chlorigsäure Salze ebenfalls mit der Jodstärkereaction.

173
Chamaeleon minerale.

Uebermangansaures Kali gegen Eisenoxydul oder Oxalsäure.

Empirische Chamäleonlösung: 5,646 g übermangansaures Kali im Liter = dem Eisenoxydul von 10 g metallischem Eisen.

Fe bedeutet überall das im Eisenoxydul vorhandene metallische Eisen.

Allgemeines Verhalten.

Das übermangansaure Kali ist zuerst von Marguerite 1) in die Massanalyse eingeführt worden. Es stellt in reinem Zustande schwarze, glänzende Nadeln dar, welche sich in Wasser mit wunderschöner violetter rother Farbe lösen. Es besitzt eine ungemein stark färbende Kraft, so dass man in durchsichtigen, farblosen Flüssigkeiten gegen weissen Hintergrund die kleinsten Mengen wahrnehmen kann. Auf dieser Eigenschaft und auf jener, dass es an oxydable Körper \(\frac{3}{7} \) seines Sauerstoffgehalts abgibt und dann in ein bei dieser Verdünnung farbloses Manganoxydulsalz übergeht, beruht seine Anwendung.

Das übermangansaure Kali krystallisirt ohne Wasser und hat dann die Formel \(\text{KO} + \text{Mn}_2\text{O}_7 \) und das Atomgewicht 158,11. Es ist eines von jenen Salzen, die mit der grössten Leichtigkeit im chemisch reinen Zustande hergestellt werden können, und die in ihren schwarzen glänzenden Krystallen schon äusserlich das Zeichen der Reinheit tragen. Da wir uns mit diesem Körper vielfach zu beschäftigen haben, so müssen wir sein Verhalten gegen die meisten Substanzen, mit denen er absichtlich oder zufällig zusammengebracht wird, genau kennen.

Das übermangansaure Kali wird durch starkes Glühen zerstört, wobei es 10,8 Proc. Sauerstoff abgibt und sich in ein schwarzes Pulver verwandelt, aus welchem Wasser grunes mangansaures Kali auszieht und 54 Proc. schwarzes Manganoxyd zurücklässt. Die Krystalle verpuffen beim Reiben mit Phosphor, stärker beim Erhitzen, mit Schwefel schwächer als mit Phosphor, mit Kohle aber gar nicht durch Reiben, wohl aber durch Erhitzen, indem die Kohle wie Zunder verglimmt.

1) Annal. d. Chim. et de Phys. 18, 244.
Starke Säuren zersetzen das übermangansaure Kali; die ausgeschiedene Säure hat dieselbe Farbe wie das Salz in Lösung, allein sie zerfällt leichter durch Selbstentmischung; verdünnte Schwefelsäure hat tagelang keine zersetzende Wirkung. Die wässerige Lösung des Salzes mit Salpetersäure oder Schwefelsäure gekocht, entwickelt reichlich Sauerstoffgas, während Manganoxyd niederfällt.

Verdünnte Schwefelsäure zerstört das Salz nicht. Die rohe englische Schwefelsäure enthält nichts, was das Salz verändert. Man kann sich deshalb dieser Säure zur Versetzung der zu prüfenden Flüssigkeiten bedienen. Da das reine Salz neutral ist, das durch Zersetzung gebildete Manganoxydul aber nur in saurer Lösung existiren kann, so muss der zu prüfende Körper einen bedeutenden Ueberschuss an freier Säure besitzen. Ohne diese Vorsicht schlägt sich braunes Manganoxydhydrat nieder. Dieses nimmt die Flüssigkeit die Durchsichtigkeit und trübt die Erscheinung in einer Weise, die das Erkennen des Endes der Operation unmöglich macht. Auch würde an sich die Analyse falsch sein, da die Reduction der Uebermangansaure auf Manganoxydul berechnet ist, und nicht auf ein höheres Oxyd. Es ist in allen Fällen die freie Uebermangansaure, welche die Zersetzungen bewirkt. Wenn sich einmal durch zu starke Konzentration und durch zu wenig Säure die Flüssigkeit getrübt hat, so ist es nicht mehr thunlich, durch Zusatz von Säure wieder Klarheit hervorzubringen, besonders wenn die Flüssigkeit, wie bei der Braunsteinanalyse, schon Manganoxydulsalz enthieilt.

Salzsäure wird bei starker Konzentration schon in gewöhnlicher Temperatur, bei geringerer Konzentration in höherer Temperatur zersetzt, indem Chlor frei wird. Verdünnte kalte Salzsäure zersetzt das Salz nicht gleich, insbesondere nicht in jener kurzen Zeit, welche zur Vollendung einer Analyse nochwendig ist. Wenn die zu behandelnde Flüssigkeit Salzsäure enthält, wie die Lösungen der Eisenerze, so muss man immer eine starke Verdünnung und Abkühlung bis mindestens zur Wärme des Zimmers eintreten lassen. Da bei den meisten Stoffen, mit Ausnahme der Oxalsaure, die Entfärbung des Salzes augenblicklich und in jeder Temperatur eintritt, so ist es zweckmässig, die Flüssigkeiten bis zur gewöhnlichen Temperatur abzukühlen. In jedem Falle hat man aber durch den Geruch zu prüfen, ob sich Chlor entwickelt hat. In diesem
Falle ist die Analyse als zweifelhaft anzusehen. Ofters ist jedoch bemerkt worden, dass selbst bei Wahrnehmung eines leichten Chlorgeruches die Analyse ganz dieselben Zahlen gegeben hat, als wenn er auch vermißt war. Ist man also in der Lage Salzsäure in Spiele zu haben, so versäume man nicht, immer stark zu verdünnen. Die Regel bleibt aber, dass man Salzsäure vermeide, wenn dies möglich ist, und nur Schwefelsäure verwende.

Reine Salpetersäure in starker Verdünnung zersetzt das Chamäleon nicht, ebensowenig salpetersaurer Salze in Verbindung mit verdünnter Schwefelsäure. Wenn aber die kleinste Spur einer niederen Oxydationsstufe des Stickstoffs vorhanden ist, so findet Entfärbung statt. Verdünnt man die rauhende gelbe Salpetersäure mit Wasser bis zur Farblosigkeit, so entfärbt sie dennoch das Chamäleon; nur längeres Kochen kann sie von diesen Stoffen, Stickoxyd, salpetrige Säure, in der Art befreien, dass sie auf das Chamäleon nicht mehr zerstörend wirkt. Man wird jedoch niemals in die Lage kommen, Salpetersäure den zu prüfenden Körperrn zuzusetzen, da sie selbst oxydierend wirkt und demnach den Zustand des Körpers bereits vor der Analyse verändert haben kann.

Aetzendes Ammoniak zu verdünntem Chamäleon gesetzt entfärben dasselbe nicht sogleich, ebensowenig Ammoniaksalze, welcher letztere Fall der allein mögliche ist, da die zu prüfenden Flüssigkeiten alle stark sauer sein müssen. Die Gegenwart von Ammoniaksalzen hindert also nicht die Anwendung des Chamaleons.

Die bis jetzt erwähnten Stoffe sind nur nebenbei, als Lösungsmittel, und einer derselben immer vorhanden. Die eigentlich zu prüfenden Stoffe sind meistens Metalle in Lösung, welche zwei Oxydationsstufen haben, von denen die niedere das Chamäleon zerstört, die höhere aber nicht, wie bei Eisen, Zinn, Kupfer. Es ist also das Chamäleon das Maass des Sauerstoffs, welcher nothwendig ist, das Metall von der niederen auf die höhere Oxydationsstufe zu erheben, und indem man die Natur des Metalls und seiner Oxyde, sowie die Stärke des Chamaleons vorher kennt, kann man die Zusammensetzung oder den Gehalt an Metall finden.

Oxydulsalz ein blanes Oxydsalz, welches die Erscheinung ein wenig trübt. Kupferoxydsalze sind wirkungslos.

4. Zink hat nur eine Oxydationsstufe, ist also wirkungslos gegen Chamäleon; ebenso Kadmium. Da sich bei der Reduction der Eisenoxydsalze durch Zink immer ein Zinksalz bildet, so ist dies Verhalten von Wichtigkeit.

7. Verdünnte, mit Salpetersäure angesäuerte Quecksilberoxydulsalze entfärben augenblicklich, Sublimat und Quecksilberoxydsalze nicht.

8. Mit Salpetersäure angesäuerte Bleioxysalze entfärben nicht.

9. Viele organische Stoffe in verdünnter, mit Schwefelsäure angesäurerter Lösung, wie Weingeist, Weinsäure, Essigsäure, Filtrirpapier, entfärben nicht sogleich. Man hat jedoch grundsätzlich alle organischen Stoffe so viel als möglich fern zu halten, was meistens keine Schwierigkeit hat.

10. Eigentliche Neutralsalze, Salpeter, die schwefelsauren Salze von Kali, Natron, Bittererde, Zinkoxyd, Kuperoxid, die Chloride von Kalium Natrium, Baryum, Calcium, das phosphorsaure Natron wirken gar nicht auf das Chamäleon; unlösliche oder ungelöste Stoffe werden damit niemals zusammengebracht.

11. Oxalsäure zersetzt in der Kälte die Chamäleonflüssigkeit.

Es lassen sich ausser der Oxalsäure keine anderen organischen Säuren mit Chamäleon vollständig ausmessen. Manche wirken anfangs kräftig, zeigen

Mohr's Titrirbuch.
aber gegen Ende immer schwächere Wirkung. Es wird überall nur ein Theil des Wasserstoffs oxydiert, und es bleibt eine organische Verbindung übrig. Gerbsäure, Gallussäure und Pyrogallussäure mit viel Schwefelsäure versetzt, entsättigen anfangs sehr kräftig; es tritt eine gelbe Farbe auf, verschwindet aber später wieder. Die bereits gerührte Flüssigkeit entfärbt sich wieder nach längerer Zeit, und man kann ein bestimmtes Ende nicht erkennen.

Ameisensäure, Salicylsäure, Karbolsäure, Harnsäure wirken anfangs kräftig, lassen aber bald nach und können nicht zu Ende geführt werden.

Bereitung des Chamäleons.

Bereitung der Messflüssigkeiten.

Es wird vorausgesetzt, dass man reines, in schwarzen Nadeln kry-
stillisiertes übermangansaures Kali, in undurchsichtigen Gefässen auf-
bewahrt, in Händen habe. Da die Wechselwirkung mit sauren Eisen-
Bereitung der Messflüssigkeiten.

oxydulsalzen am schnellsten und vollkommensten vor sich geht, so ist es am zweckmäßigsten, alle damit gemachten Analysen auf metallisches Eisen im Eisenoxydul zu beziehen, und durch Berechnung auf andere Körper zu übertragen. Wir haben deshalb hier keine systematischen Titirflüssigkeiten (S. 56), sondern nur zwei empirische, von denen die stärkere auf 10 g metallisches Eisen als Oxydul im Liter, die schwächere ebenso auf 1 g Eisen im Liter gestellt ist. Man kann in diesem Falle die Menge des oxydirten Eisens sogleich an der Bürette ablesen.

Die Bereitung geschieht nach folgender Berechnung: 1 At. übermangansaures Kali (Mn₂O₇, KO = 158·11) gibt 5 At. Sauerstoff ab, und diese oxydiren das Oxydul von 10 At. metallischem Eisen = 280. Es sind also 158·11 übermangansaures Kali und 280 Eisen als Oxydul die äquivalenten Mengen, welche sich vollkommen zersetzen, so dass von keinem Theile etwas unzersetz. übrig bleibt. Um eine Flüssigkeit herzustellen, von welcher 1 Liter einer Menge von 10 g Eisen entspricht, haben wir den Ansatz:

\[280 : 158·11 = 10 : x, \]

woraus

\[x = \frac{158·11}{280} = 5·646 \text{ g übermangansaurem Kali.} \]

Die schwächere Flüssigkeit, die wir zehntel-empirische nennen können, enthält:

0·5646 g des Salzes in 1 Liter.

Sie kann auch aus der stärkeren dargestellt werden, wenn man 100 cbcm zu 1 Liter verdünnt.

Von der ersten ist 1 cbcm = 0·010 g Fe,

" letzter " 1 " = 0·001 "

Beim Ablesen der Bürette kommen die Ganzen der verbrauchten Cubikcentimeter der ersten Flüssigkeit auf die zweite Decimale der Gramme zu stehen, oder sie geben die Centigramme; und von der schwächeren kommen die Ganzen auf die dritte Stelle nach dem Punkt. Beispielsweise sind 37·8 cbcm der ersten Flüssigkeit = 0·378 g Fe, und bei der zweiten = 0·0378 g Fe. Hätte man von einem Eisenerz 1 g in Arbeit genommen, so liest man an der Bürette sogleich die Procente metallischen Eisens ab.

Die Auflösung des abgewogenen Salzes (5·646 g für 1 Liter) geschieht nicht im Literkolben selbst, weil man bei der tiefen Färbung der Flüssigkeit nicht erkennen kann, ob alles Salz gelöst ist, sondern in einem Becherglas mit gutem Ausguss. Die Gefäße werden vorher mit alkalischer Chamäleonlösung ausgespült, um alle Reste organischer Stoffe wegzunehmen, der Literkolben wird auf einen Porzellanteller gestellt und die Lösung aus dem Becherglas nach jeweiligem Erwärmen in den

Titerstellung des Chamäleons.

Die Lösung des reinen übermangansauren Kalis in reinem Wasser ist sehr haltbar. Hat man dafür Sorge getragen, dass sie vollkommen klar in die Flasche kam, so sieht man daran, wenn sie noch keinen Bodensatz gebildet hat, oder die Wände des Glases nicht getrübt erscheinen, dass sie noch richtig ist. Sollte sie aber durch längeres Stehen trüb geworden sein, oder überhaupt den Verdacht einer Veränderung gegen sich haben, oder wenn man absolute Sicherheit haben will, so muss man von neuem den Titer nehmen und zur Wage zurückkehren.

1. Mit metallischem Eisen.

1) Um Verwechselungen zu vermeiden, sollen die systematischen Flüssigkeiten nur in der Anmerkung figuriren. $1/10$ Chamäleon enthält 3.162 g übermangansaures Kali im Liter, und jeder Cubikcentimeter ist gleich $1/10000$ Atom eines Körpers, der bei der Oxydation 1 At. Sauerstoff aufnimmt.
Schmirgelpapier durch, und wägt ein Stück ab von 0.1 bis 0.3 g. Nachdem man die feinste Substanzenwage mit dem kleinen Balken zurecht gestellt und mit den Gewichten belastet hat, schneidet man mit der Drahtscheere ein Stück Draht ab und bringt es mit der Scheere und zuletzt mit der Feile ins Gleichgewicht. Man hat jetzt die Länge des Drahtes und kann mit leichter Mühe eine ganze Zahl gleicher Drähte abkneifen, die nur ein einfaches Nebeneinanderhalten, Abkneifen und einmaliges Legen auf die Wage erfordern. Dieselben bewahrt man in einem hohen Glase oder Glaspumpe mit aufgeschriebenem Gewichte.

Um eine Titration des Chamäleons zu bewerkstelligen, löst man ein solches Drahtstück in verdünnter Schwefelsäure kochend auf. Das metallische Eisen löst sich ohne Erwärmen nur sehr langsam auf, um die hierbei leicht ein tretende Oxydation zu vermeiden, bewirkt man die Auflösung in einer mit Kautschukventil geschlossenen Kochflasche (Fig. 88). Eine Glasspumpe geht luftdicht durch den unteren in dem Glase sitzenden Kork; oben ragt die glatt geschliffene Röhre nur unbedeutend über die Fläche eines darüber geschobenen Korkes hervor. Derselbe dient hauptsächlich, um dem dünnen Streifen darauf gelegten vulkanisierten Kautschuks eine Ebene und eine Befestigung durch zwei Stecknadeln zu geben. Dieses so einfache Ventil bietet einen sehr vollkommenen Schluss von aussen nach innen, während es von innen nach aussen die Gase und Dämpfe entweichen lässt. Wenn man die Säure zum Kochen erhitzt, so entweicht das Wasserstoffgas mit den Wasserdämpfen unter dem Ventil her. Setzt man das Glas nach geschehener Auflösung von der Flamme ab, so legt sich die Platte fest auf die Glasspumpe und gestattet der Luft keinen freien Zutritt. Wenn man nach mehreren Minuten auf die Flasche bläst, so fängt die Flüssigkeit wieder an im Vacuum zu kochen. Eine andere von Krönig angegebene Form des Ventils ist in Fig. 89 (a. f. S.) gezeichnet. Es ist ein Stück einer dickwandigen Kautschukröhre, welches oben durch einen massiven Glasstab geschlossen ist, und seitlich einen Längsschnitt hat. Man biegt die Kautschukröhre über den Zeigefinger der linken Hand, und macht mit einem scharfen, mit Speichel benetzten, Rasirmesser einen Schnitt durch die vordere Wand, von 10 bis 15 mm Länge. Sehr passend ist auch der auf einem Drahtnetz von Messing stehende, in Fig. 90 (a. f. S.) dargestellte, aus zwei Flaschen bestehende Apparat. Die Flasche, welche den Eisen draht enthält, erhitzt man mit einer Weingeistflamme, und wenn aller Draht gelöst ist, zieht man die Flamme weg, wodurch alsbald das Wasser.
der Vorlageflasche zurücksteigt, und die Eisenlösung zugleich verdünnt und abkühlt. Hat man in einer offenen Röhre gelöst, so muss man so gleich nach der Lösung verdünnen.

Fig. 89. Fig. 90.

Lösung des Eisendrahts. Lösung des Eisendrahts.

Die Lösung von 0,1 g Eisendraht in Schwefelsäure muss genau 10 CC. der stärkeren empirischen Lösung erfordern. Trifft das nicht zu, so berechnet man den constanten Factor für diese Lösung, indem man 10 durch die wirklich verbrauchten Cubikcentimeter dividiert, und mit diesem Quotienten die jedesmal verbrauchte Menge Chamäleon multiplicirt.

Die jedesmalige Lösung von Eisendraht in Schwefelsäure dauert gewöhnlich 1/4 Stunde. Um dieser Mühe überhoben zu sein, bedient man sich eines Eisenoxydulsalzes von konstanter Zusammensetzung. Der gewöhnliche Eisenvitriol ist dazu nicht zu gebräuchlich, weil er in seinen sehr zerbrechlichen Krystallen Mutterlange einschliesst und manchmal aus nicht bekannten Ursachen sich oxydiert und gelb wird. Dagegen bedient man sich mit grossem Vorteil des schwefelsauren Eisenoxydul-Ammoniaks, welches Salz mit grosser Leichtigkeit chemisch rein dargestellt werden kann, und sich dann in offenen Gefässen unbestimmt lange ohne alle Veränderung aufbewahren lässt. Dieses Salz besteht aus 1 At. schwefelsaurem Eisenoxydul, 1 At. schwefelsaurem Ammoniumoxyd und 6 At. Wasser und hat demnach das Atomgewicht 196. Es lässt sich rein nur
Titerstellung des Chamäleons. 183

aus ganz reinen Bestandtheilen herstellen, und die Krystallisation gibt nicht die geringste Sicherheit für seine Richtigkeit, weil die dem Ammoniak und dem Eisenoxydul isomorphen Basen Kali, Zinkoxyd, Bittererde und ähnliche immer mit krystallisiren. Man stelle sich also zuerst einen reinen hellblauen, nicht grünen, Eisenvitriol aus Schwefelsäure und metallischem Eisen dar, und dann ein schwefelsaures Ammoniak aus Schwefelsäure und kohlensaurem Ammoniak. Beide Salze müssen krystallisirt sein. Man wäge nun 1 At. Eisenvitriol (139 Theile) und 1 At. schwefelsaures Ammoniak (66 Theile) einzeln ab, löse sie einzeln in möglichst wenig Wasser, während man die Lösungen auf 60° bis 70°C. erwärmt, und giesse beide Flüssigkeiten unter der Voraussetzung, dass sie klar seien, sonst nach Filtration, in eine Porzellanschale. In dieser rührt man das Gemisch beständig um, bis es erkalten ist. Ein Zusatz von wenigen Tropfen Schwefelsäure ist vorteilhaft, um jede Oxidation zu beseitigen. Während des Erkaltns setzt sich reichlich ein hellblauer Krystallmehl ab, welches man am folgenden Tage auf einem Glastrichter mit Baumwollenpausch sammelt und mit einer Zentrifugalmaschine trocken schwingt; ohne eine solche Maschine aus freier Hand an einem Bindfaden nach der Art einer Schleuder, oder man wäscht es mit verdünntem Weingeist aus. Man lässt auf Filtrirpapier an einem mildwarmen Orte trocknen, bis das krystallinische Pulver sich fast wie feinkörniges Jagdpulver verhält.

Es muss von einem trocknen Papiere, aus einem trocknen Uhrglase ganz ablaufen, ohne das kleinste Körnchen sitzen zu lassen. Dieses Salz hat eine angenehme arithmetische Eigenschaft. Es enthält in 196 Theilen 28 Eisen, welches genau $\frac{1}{7}$ des ganzen Gewichtes ausmacht. Man kann also ohne weiteres den Werth jeder Menge Eisen in diesem Salze und umgekehrt ausdrücken.

Abgewogene Mengen von Eisendoppelsalz zu 0,7 g hält man in kleinen Glasröhren vorrätig, um sie ex tempore gebrauchen zu können. Hat man seinen Vorrath an dem Eisendoppelsalz einmal geprüft und richtig gefunden, so kann man unbedenklich die ganze Menge aufbrauchen, ohne von Neuem den Titer zu nehmen. Man kann dies Salz reiner darstellen, als man metallisches Eisen im Handel findet.

Das Doppelsalz mit schwefelsaurem Kali ist nicht so haltbar, wie das Ammoniaksalz, indem es eher verwittert, und es hat auch nicht das einfache Zahlenverhältniss zu reinem Eisen.
III. Chamäleon.

Der Kürze wegen wird das schwefelsaure Eisenoxydul-Ammoniak häufig Eisendoppelsalz genannt werden. Die Titerstellung geschieht damit, wie bei gelöstem Eisendraht, nachdem man freie Schwefelsäure dem Wasser zugesetzt hat, worin es gelöst wird. Eine Portion von 0,7 g muss genau gleich 10 cbcm der empirischen Chamäleonlösung sein.

3. Mit Oxalsäure.

Man wäge genau die Oxalsäure (etwa 0,63 g) ab, löse sie in viel Wasser, dem man eine ziemliche Menge Schwefelsäure zufügt, erwärme das Ganze auf 35° bis 40° C. und setze allmählich das Chamäleon aus der auf 0 angefüllten Bürette hinzu. Anfänglich steht die rothe Farbe eine Zeit lang und verschwindet erst nach einiger Zeit. Bei grösserer Concentration und bei mehr Schwefelsäurezusatz verschwindet sie rascher, als im entgegengesetzten Falle. Wenn keine Salzsäure vorhanden ist, kann man etwas höher erwärmen, ohne das Resultat zu ändern. Ist das erstmal Entfärbung eingetreten, so geschieht dies nachher immer rascher. Die durch das Chamäleon bewirkte rothe Färbung geht durch Braunroth in liches Braun, Gelb und endlich ins Farblose über, wenn die Flüssigkeit zu concentrirt, oder zu wenig sauer ist. Das Richtige ist, wenn nur die rosenrothe Farbe sogleich und bis zum Verschwinden erscheint. Gegen Ende geht dieser Übergang immer rascher vor sich, und die Flüssigkeit wird zwischen jedem Zusatz, wenn sie nur stark verdünnt und genügend sauer war, wieder vollkommen farblos, bis endlich die rosenrothe Färbung stehen bleibt. Hat man die Operation einmal mit Sorgfalt und Erfolg ausgeführt, so ist man über das Ende niemals in Zweifel. Man wendet die Oxalsäure nur in solchen Fällen als Titer- substanz an, wo auch der zu oxydirende Körper ist, wie bei oxalsaurem Kalk, — Bleioxysyd etc.

Die Oxalsäure, C₂O₃ + 3 Aq., geht durch Aufnahme von 1 At. Sauerstoff in 2 At. CO₂ über, die sich unter leichtem Aufbrausen entwickeln.

Wenn die angewendeten Substanzen rein waren, so sind die Analysen auf den Eisenotiter und auf den Oxalsäuretitr ganz gleich laufend.
Berechnung der mit Chamäleon gemachten Analysen.

Bei einem desfalls angestellten Versuche erforderten:

0'56 g Eisendraht . . 53'95 cbcm Chamäleon
0'63 ″ Oxalsäure . . 54 ″

Wasserleeres oxalsaures Natron könnte ebenfalls als Titersubstanz angewendet werden, ist aber überflüssig. Das Äquivalent obiger Mengen wäre 0'570 g.

4. Mit Blutlaugensalz.

Gintel1) empfiehlt das Blutlaugensalz zur Titerstellung des Chamäleons. Ich kann die Vorzüge dieses Körpers nicht finden, mit Ausnahme wenn man selbst Blutlaugensalz bestimmen wollte. Da sich immer Kaliumeisencyanid bildet, welches selbst schon eine gelbe Farbe in Lösung hat, so ist der Farbenübergang nicht so deutlich, als beim Eisenoxydul-
salz aus farblos in licht rosenroth. Die sich immer einstellende uranglasartige Trübung ist ebenfalls hinderlich. Da das Eisendoppelsalz absolut haltbar ist, selbst wenn es Jahre lang in Schachteln aufbewahrt wird, so ist kein Grund vorhanden, dasselbe zu verlassen. Zudem wird das Chamäleon viel öfter zum Bestimmen von Eisen- als von Blutlaugen-
salz verwendet, und da bleibt es doch immer richtiger, den Körper selbst, welchen man bestimmen will, in reiner Verbindung als Titersubstanz anzuwenden.

Berechnung der mit Chamäleon gemachten Analysen.

Die Berechnung geschieht immer gegen die Menge metallischen Eisens, welche durch die verbrauchten Mengen der empirischen Flüssigkeiten angezeigt wird. Sind diese richtig, oder durch Titerstellung auf richtig berechnet, so hat man nur die Eisenmenge mit jenem Factor zu multipliciren, der bei jeder Substanz angegeben ist.

Dieser Factor wird immer in der Art gefunden, dass man das Atom-
gewicht eines Körpers, welcher 1 At. Sauerstoff aufnimmt, durch 2 At. Eisen, die als Oxydul ebenfalls 1 At. Sauerstoff aufnehmen, dividirt. Gesetzt, man suche wasserleere Oxalsäure aus der Menge der empirischen Chamäleonlösung zu bestimmen, so liest man das Eisen im Oxydul an der Bürette ab, und multiplicirt es mit \(\frac{C_2O_3}{2Fe} = \frac{36}{56} = 0'643 \).

1) Zeitschr. f. analyt. Chem. 6, 46.
III. Chamäleon.

Sucht man Blei aus oxalsaurem Bleioxys, so ist der Factor $\frac{\text{Pb}}{2\text{Fe}}$, und will man Bleioxys finden, so ist der Factor $\frac{\text{PbO}}{2\text{Fe}}$. Bei Uebermangan- säure, welche 5 At. Sauerstoff abgibt $\frac{\text{Mn}_2\text{O}_7}{10\text{Fe}}$.

Praktische Bemerkungen über den Gebrauch des Chamäleons.

Die Chamäleonflüssigkeit kommt in drei verschiedenen Formen zur Anwendung:

1) direct, bei Eisenoxydul, Oxäsure, oxalsaurem Kalk und Bleioxyl, Blutlaugensalz, salpetriger Säure, reducirter Molybdän säure, Berlinerblau, Kaliumeisencyanid, letztere drei nach geschehener Vorbereitung;

2) als Restmethode bei oxydirenden Körpern, welche durch einen Ueberschuss von Eisenoxydul aus bekannter Menge reducirt wurden: so bei Hyperoxen, Salpetrsäure, Chromsäure, Chlor säure, Chloralkal etc.;

3) bei reducirenden Körpern nach vorgängiger Wirkung auf schwefel saures Eisenoxyd: so bei Schwefelwasserstoff, Schwefelsäure, Kadmium, metallischem Kupfer, Kuperoxyl und ähnlichen.

Bei allen Fällen endigt die Chamäleonalysyse mit der schwach röthlichen Farbe, welche eigentlich schon einen Ueberschuss der Titirflüssigkeit anzeigt. Dieser ist um so unbedeutender, je grösser die Menge des vorbrauchten Chamäleons überhaupt ist. Da diese Operationen immer bei starker Verdünnung stattfinden sollen, so kann man sich dadurch gegen jenen kleinen Fehler schützen. Man versetzt das zum Verdünnen bestimmte Wasser mit der noch nötigen Menge Schwefelsäure und färbt die Flüssigkeit mit einigen Tropfen Chamäleonlösung licht roth, stellt einen Theil dieser Flüssigkeit zur Seite und bringt die zu bestimmende Substanz in den andern. Man lässt nun aus der Blasebürette die Chamäleonflüssigkeit einfließen, bis dieselbe Färbung wie in dem andern Theile hervorgebracht ist. Man hat nun nichts abzuziehen, da gerade soviel, als der Ueberschuss beträgt, schon vorher vorhanden war.

Die Farbe des Chamäleons ist so intensiv, dass man in den meisten Fällen nicht bis in die Mitte der Bürette sehen, und den concaven Me niscus nicht erkennen kann. Man liest dann den oberen Rand ab. Diesen sieht man als eine gerade Linie am besten, wenn man sich mit dem Rücken gegen ein Fenster stellt, die Bürette etwas seitlich ins volle Licht.
hält, und ein weisses Papier in einiger Entfernung hinter die Bürette hält. Man kann aldann bei getheilten ganzen Cubikcentimatern bequem Zehntel ablesen, wenn man gewöhnt ist, an Barometern Noniusbeobachtungen zu machen.

Eine gut bereitete Chamäleonflüssigkeit ist weit haltbarer, als man gewöhnlich glaubt. Ich habe schon den Titer in 3 Monaten nicht im geringsten geändert gefunden. Die Flüssigkeit ist etwas dem Blasenwerfen und Schäumen unterworfen. Der Schaum bleibt lange stehen und hindert das Ableisen in der Bürette. Es ist deshalb gut, beim Eingießen in die Bürette diese schief zu halten, damit die Flüssigkeit am Glase langsamer herablaufe. Um den Schaum ganz sicher zu vermeiden, bewahre man die Chamäleonflüssigkeit in einer der Spritzflasche ähnlich vorgerichteten Flasche, Fig. 91. Durch den festschliessenden Kork geht die Ausgusströhre bis nahe an den Boden der Flasche, und die Blasenrohre bis in den leeren Theil der Flasche. Letztere hat die Länge der Entfernung des deutlichen Sehens, d. h. 21 bis 24 cm. Um einzufüllen, fasst man die geöffnete Bürette in der linken Hand, bringt das Blaserohr in den Mund und die Ausflussspitze in die Bürette und bläst kräftig in die Flasche. Da der ausfliessende Strahl schief nach unten geht, so fließt er gewöhnlich in schraubenförmigen Windungen in der Bürette hinab. Diese wird gerade gehalten, damit man erkennen kann, ob man den 0 Strich erreicht hat. Diese Art, das Chamäleon zu bewahren und einzufüllen, ist ungleich zweckmässiger, als das Ausgießen aus dem Halse. Die Flasche wird nicht mehr geöffnet, bis sie leer ist, und es kann also

Chamäleonaufbewahrungsflasche. Schwefelsäureflasche mit Kautschukkugelpipette.
niemals Staub in die Flüssigkeit kommen. Der auf der Öffnung der Flasche sitzende Staub schadet nicht, weil er nicht, wie beim Ausgießen, abgespült wird. Der etwa vorhandene Absatz von Manganoxyd wird nicht aufgerührt. Der Kork kommt, wie man leicht einsieht, niemals mit der Flüssigkeit in Berührung. Wenn man die zum Theil geleerte Flasche langsam seitlich neigt, so kann man beobachten, ob ein Absatz am Boden vorhanden ist. Ist das nicht der Fall, so hat man kaum nothwendig einen neuen Tritter zu nehmen.

Die so häufig anzuwendende Schwefelsäure hält man in einer mit einer Kautschukkugel versehenen Pipette (Fig. 92, a. v. S.) vorrätig. Man drückt die Kugel aus, läßt die Schwefelsäure in die Röhre steigen, und führt sie augenblicklich über das Gefäß, wo sie hineinkommen soll. Um Spritzen bei warmen Flüssigkeiten zu verhindern, ist es zweckmäßig, die Schwefelsäure etwas verdünnt anzuwenden, was sie übrigens in der halb offenen Flasche bald von selbst wird.

Man findet jedoch die mit Ansätzen versehenen Kautschukkugeln nicht leicht im Handel und muss sich der zum Spielen bestimmten Bälle bedienen, in die man mit Schellack die Glasröhre festkittet.

Die Chamäleonlösung verträgt keine Berührung mit festen organischen Körpem, ohne zersetzt zu werden. Man bedient sich deshalb der Büretten mit Blaserohr oder Blasekugel. Die Eisenlösung bringt man in eine weithalsige Flasche, verdünnt sie stark mit kaltem Wasser und beginnt nun die Messung. Man läßt die Chamäleonlösung aus den Büretten Fig. 93 und Fig. 94 im Strahl in die Eisenlösung fließen, während man mit der linken Hand die Flasche am Halse hält und umschüttelt. So lange die rothe Farbe noch rasch verschwindet, kann man im Strahl einfließen lassen; sobald aber die gefärbten Stellen grösser werden,

1) Dessen Titrirmethode 1. Aufl. S. 53.
tröpfelt man vorsichtig und schwenkt zwischen jedem Zusatz bis zum vollständigen Verschwinden der Farbe um, ehe man einen neuen Zusatz

Fig. 93.

Fig. 94.

Handbürette mit Blasrohr.

Stehbürette.

Korrigierung überstürzter Analysen.

Wenn man gegen Eisenoxydul arbeitet, kommt dieser Fall nicht leicht vor, weil die Farbenwandlung augenblicklich stattfindet; dagegen bei Ausmessung von Oxalsäure kann es leicht geschehen, dass man mit einer etwas lebhaft rothen Farbe endigt. Um diesen Fehler wieder auszugleichen, macht man eine Eisenflüssigkeit, welche \(\frac{1}{10} \) der empirischen Chamäleonlösung gleich ist, indem man 0,1 g Eisendraht, oder einfacher 0,7 g Eisendoppelsalz mit Schwefelsäure zu 100 cbcm löst und mit dieser Flüssigkeit aus der in \(\frac{1}{10} \) cbcm geteilten Handpipette (Fig. 48, S. 34) die rothe Farbe eben wieder wegnimmt. Die verbrauchten Cubikcentimeter stellen Milligramme Eisen vor und man zieht sie der an der Bürette abgelesenen Eisenmenge als Milligramme ab. Eine solche Flüssigkeit mit 0,7 g Eisensalz und etwas Schwefelsäure zu 100 cbcm kann man längere Zeit vorläßig halten, wenn man ein kleines Stückchen amalgamirtes reines Zink hineinlegt.

Eisen.

Wenn \(m \) Gramm Eisen = \(k \) cbcm Chamäleon sind, so ist 1 cbcm Chamäleon = \(\frac{m}{k} \) Gramm metallisches Eisen.

Metall. Eisen \(\times 1.2857 = \) Eisenoxydul.
\[]
 Metall. Eisen \(\times 1.4286 = \) Eisenoxyd.
\[]
 Metall. Eisen \(\times 2.0714 = \) kohlens. Eisenoxydul.
\[]
 Metall. Eisen \(\times 4.9643 = \) kryst. Eisenvitriol.
\[]
Metall. Eisen \(\times \frac{\text{Atomgewicht}}{28} = \) jeder Eisenverbindung, die 1 At. Eisen enthält.
\[]
Metall. Eisen \(\times \frac{\text{Atomgewicht}}{56} = \) jeder Eisenverbindung, die 2 At. Eisen enthält.
\[]
Metall. Eisen \(\times \frac{9}{7} = \) Eisenoxydul.
\[]
Metall. Eisen \(\times \frac{10}{7} = \) Eisenoxyd.
\[]
Schwefelsaures Eisenoxydulammoniak \(\frac{7}{7} = \) metall. Eisen.
Das Eisen wird zweckmässig mit Eisen oder Eisendoppelsalz gemessen. Sucht man metallisches Eisen und hat man den Titer mit Eisendraht genommen, so ist die Berechnung eine einfache Proportion. Wenn gleiche Mengen Eisen mit Chamäleon gleiche Zahlen geben, so bedarf es keines Beweises für die Richtigkeit der Resultate.

Enthält die zu untersuchende Substanz das Eisen als Oxydul, so ist sie nach dem Lösen zur Messung bereit.

Enthält sie Oxyd, so muss dies erst zu Oxydul reducirirt werden.

Enthält sie Oxydul und Oxyd, die man einzeln bestimmen will, so bestimmt man nach der Lösung zuerst das Oxydul, dann reducirirt man die Lösung einer gleichen Menge zu Oxydul, und erhält das Oxyd, wenn man von dem Ganzen das Oxydul abzieht.

Bei dem Auflösen einer Substanz, welche Eisenoxydul enthält, das für sich bestimmt werden soll, muss man während der Lösung jede Oxydation vermeiden. Dazu dient am bestmöglichen eine solche Apparatur. Fig. 95. In die Flasche zur Linken kommt die zu lösende Substanz mit starker Salzsäure. Man wirft eine kleine Menge doppelt kohlensaures Natron oder Magnesit hinein, verstopft sogleich, und läßt die Gasarten durch die zweite Flasche, welche destillirtes Wasser enthält, entweichen. Die erste Flasche wird erhitzt, bis vollkommene Lösung eingetreten ist. Im ersten Augenblick fällt sich die Flasche mit kohlensaurem Gase an, welches die Luft verdrängt; nachher bilden sich Dämpfe, welche dies Gas wieder verdrängen, so dass Luft nicht hinzukommt. Zieht man die Flamme weg, so verdichten sich die Dämpfe und das destillirte Wasser steigt stürmisch in das Lösungsgefäße über. Die Flüssigkeit wird dadurch so weit verdünnt und abgekühlt, dass man sie, in ein passendes Glas übergegossen, sogleich ausmessen kann. Will man alles zu Oxydul reduciren, so ist diese Sorgfalt nicht einmal nothwendig.

Die Reduction des Oxydes zu Oxydul geschieht am besten mit metallischem Zink. Dies muss natürlich möglichst eisenfrei sein, weil sich sonst sein Eisengehalt mit bestimmt. Das gewöhnliche Zink ist meistens in Eisen ausgegossen oder in eisernen Gefässen zusammengeschmolzen.

Man wirft in die concentrirte noch heisse salzsaur Lösung kleine Stückchen Zink ein, die sich mit stürmischer Wasserstoffentwicklung lösen. Sobald ein Körnchen gelöst ist, muss man ein neues hinzufügen, weil sonst wieder Oxydation eintritt oder wenigstens die Reduction still steht. Die Reduction geht zwar schnell vor sich, allein sie fordert doch eine längere Aufmerksamkeit. Die vollständige Reduction erkennt man an der vollkommenen Farblosigkeit der Flüssigkeit oder durch einen Versuch mit Schwefelyankaliwm, wenn man einen in die Eisenlösung eingetauchten dünnen Glasstab in ein Reagensgläschen mit Schwefelyankaliwmlösung eintaucht. Hierbei darf keine stärkere Röthung stattfinden. Zu dieser Reductionsmethode löst man den Körper am besten in einer etwas weiten Probirröhre, die man während der Einwirkung schief einklemmt. Es entsteht dann von selbst ein lebhaftes Kreisen der Flüssigkeit, welches alle Theile derselben an das Zink bringt.

Schnell und sicher macht man die Reduction in einer Flasche, welche eine so grosse Menge amalgamirter Zinkstücke enthält, dass die verdünnte Flüssigkeit sie eben nur überragt. Es entwickelt sich wenig Wasserstoffgas und dennoch geht die Reduction kräftig vor sich, weil der als Gas entwickelte Wasserstoff überhaupt nicht wirkt. Man bedeckt die Flasche mit einer Glasplatte, um Luftwechsel zu verhindern.

Sehr rasch führt sich die Reduction des Eisenoxydes durch Zink in einer bedeckten Platinschale mit sehr wenig Zink aus. Es entsteht ein galvanisches Element und die ganze bedeckte Bodenfläche der Platinschale entwickelt Wasserstoff und reduziert.

Sucht man den Gehalt an metallischem Eisen, so nimmt man den Titer mit 0.1 g Eisendraht oder mit 0.7 g Eisendoppelsalz. Ein konkretes Beispiel gibt Gelegenheit, sämtliche Berechnungen in Ausführung zu bringen.

Titerstellung:

0.7 g schwefelsaures Eisenoxydul-Ammoniak erforderten 17.3 cbcm Chamäleon.

0.7 g Eisendoppelsalz sind = 0.1 g Eisen, also ist 1 cbcm Chamäleon = \(\frac{0.1}{17.3} = 0.00578 \text{ g Fe} \); von der empirischen Flüssigkeit hatten 10 cbcm verbraucht werden sollen, also 17.3 \(x = 10 \), dann nach der Formel für obige Flüssigkeit = \(\frac{10}{17.3} = 0.578 \).

Analyse: 1 g Eisenvitriol gebrauchte 32.6 cbcm Chamäleon; wie viel Eisen enthält derselbe?

Nach obigem Titer berechnet: 32.6 mal 0.00578 geben 0.188428 g Eisen oder 18.84 Proc., oder: 32.6 \(\times \) 0.578 = 18.84 cbcm = 0.1884 g Fe = 18.84 Proc. Fe; nach der Formel 18.73 Proc. Fe.

Die spezielle Anwendung auf Eisenerze und Schlacken im angewandten Theile.

Von der ungemeinen Schärfe der Eisenbestimmung durch Chamäleon möge hier noch ein Beispiel folgen. Es waren zwei Flüssigkeiten frisch bereitet aus \(\frac{1}{100} \) Atom übermangansäurem Kali = 1.581 g auf das Liter, und von \(\frac{10}{100} \) At. = 19.6 g Eisendoppelsalz, weil die Uebermangansaure 5 At. Sauerstoff abgibt, und das Eisenoxydul nur \(\frac{1}{2} \) At. aufnimmt. Beide Flüssigkeiten waren äquivalent. Es wurden
<table>
<thead>
<tr>
<th>Genommen Eisenlösung</th>
<th>Enthält</th>
<th>Gebraucht Manganlösung</th>
<th>Gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cbcm</td>
<td>0.00028 g Fe</td>
<td>1 cbcm</td>
<td>0.000280 g Fe</td>
</tr>
<tr>
<td>1.4 cbm</td>
<td>0.000392 " " 20"</td>
<td>1.4 cbm</td>
<td>0.000392 " " 20"</td>
</tr>
<tr>
<td>1.8 cbm</td>
<td>0.000604 " " 3"</td>
<td>2 cbm</td>
<td>0.000600 " " 3"</td>
</tr>
<tr>
<td>3.2 cbm</td>
<td>0.000896 " " 48"</td>
<td>3.2 cbm</td>
<td>0.000896 " " 48"</td>
</tr>
<tr>
<td>4.8 cbm</td>
<td>0.001844 " " 8"</td>
<td>4.8 cbm</td>
<td>0.001844 " " 8"</td>
</tr>
<tr>
<td>8 cbm</td>
<td>0.00224 " " 8.9"</td>
<td>8 cbm</td>
<td>0.002296 " " 8.9"</td>
</tr>
<tr>
<td>8.8 cbm</td>
<td>0.002464 " " 20.2"</td>
<td>8.8 cbm</td>
<td>0.002492 " " 20.2"</td>
</tr>
<tr>
<td>20 cbm</td>
<td>0.00560 " " 25.2"</td>
<td>20 cbm</td>
<td>0.005684 " " 25.2"</td>
</tr>
<tr>
<td>25 cbm</td>
<td>0.00700 " " 31"</td>
<td>25 cbm</td>
<td>0.007056 " " 31"</td>
</tr>
<tr>
<td>30.8 cbm</td>
<td>0.008624 " " 31"</td>
<td>30.8 cbm</td>
<td>0.008680 " " 31"</td>
</tr>
</tbody>
</table>

Es erheilt aus diesen Zahlen, dass diese Bestimmung des Eisens zu den scharfensten gehört, die überhaupt in der analytischen Chemie vorkommen, und dass sie die Gewichtsanalyse um ein Bedeutendes überragt. Wenn man zu 100 cbcm Wasser einige Tropfen rein Schwefelsäure setzt, und dann 1 Tropfen obiger Chamaeleonlösung zusetzt, so ist die Röthung schon sichtbar, bei 2 Tropfen aber ganz deutlich. 2 Tropfen sind aber $\frac{1}{12}$ cbcm und die wirklich erreichbare Größe der Scharfe wäre $\frac{0.00028}{12} = 0.000023$ g, d. h. etwa $\frac{1}{50}$ Milligramm Eisen. Es wird sich deshalb die Eisenbestimmung mit sehr verdünntem Chamaeleon ganz besonders empfehlen, wenn man mit sehr kleinen Mengen Eisen zu thun hat, wie bei Brunnenwasser, Mineralwasser, Pflanzenaschen, Blutasche, rohem schwefelsaurem Natron, Mergel, Mineralanalysen u. s. w., und da würde die Reduction in der Platinschale mit wenig Zink anzuwenden sein.

Ist das Eisen sehr stark verdünnt, wie in Brunnenwassern, Mineralwasser, Salzlösungen, so muss man es erst ausscheiden. Dies kann nach Eindampfen mit wenig Salzsäure am besten durch Fällen mit Schwefelnatrium geschehen. Durch Erhitzen bis zum Kochen ballt sich das schwarze Schwefeleisen in Flocken zusammen, welche leicht durch das Filtrum getrennt werden können. Sie werden mit kochend heissem Wasser ausgesüsset, mit der Vorsicht, dass sie niemals frei an der Luft liegen, sondern immer unter Wasser sind. Den schwarzen Niederschlag kann man in einer Kochflasche durch Schwefelsäure zersetzen, bis der Geruch von Schwefelwasserstoff verschwunden ist, und dann unmittelbar nach Abkühlung ausmessen, oder man zersetzt mit schwefelsaurem Eisenoxyd, wo dann aber 3 At. Eisenoxydul gemessen werden:

$$\text{FeS} + \text{Fe}_2\text{O}_3 = 3\text{FeO} + \text{S}.$$

Man hat also nur den dritten Theil des Chamäleons in Rechnung zu bringen.
Mangan. Hyperoxyde.

Fällen mit Blutlangensalz, Zersetzen des Berlinerblaus mit Kali und Messen des in der Flüssigkeit enthaltenen Blutlangensalzes ist zu weitläufig und auch etwas unsicher.

Mangan.

\[
\begin{align*}
\text{Fe} & \times 0.491 = \text{Mn} \\
\text{Fe} & \times 0.634 = \text{MnO} \\
\text{Fe} & \times 0.777 = \text{MnO}_2.
\end{align*}
\]

Die Manganderze werden ausführlich im angewandten Theile besprochen. Es handelt sich hier nur um die Bestimmung des Mangans, wenn es im Laufe der Analyse als Manganhyperoxyd ausgeschieden ist. Dies geschieht durch Erhitzen der Lösung des Oxyduls mit unterschloiges Rayon unter Zusatz von ätzendem Alkali. Das ausgewaschene Hyperoxyd wird sammt dem Filtrum in verdünnter Schwefelsäure aufgenommen und Portionen von 0.7 g Eisendoppelsalz zugesetzt, bis nach einiger Digestion die schwarze Farbe verschwunden ist, und eine Probe mit Kaliumeisencyanid Ueberschuss von Eisenoxydul anzeigt. Es wird stärker verdünnt und mit empirischer Chamäleonlösung zurückgemessen. Die zugesetzten Mengen von Eisendoppelsalz werden jede mit 0.100 g Fe in Ansatz gebracht und davon das rückgemessene abgezogen. Der Rest gibt mit einem der obigen Factoren die gewünschte Verbindung. Uebri gens ist die jodometrische Bestimmung noch schärfer.

Hyperoxyde.

III. Chamäleon.

die jodometrische Bestimmung vorzuziehen. Kobalthyperoxyd kann wegen der röthlichen Farbe seines Chlorürs überhaupt nicht mit Chamäleon gemessen werden.

Uebermangansäure.

\[
\begin{align*}
\text{Fe} \times 0.3964 &= \text{Mn}_2\text{O}_7 \\
\text{Fe} \times 0.5646 &= \text{Mn}_2\text{O}_7, \text{KO}.
\end{align*}
\]

Die Titerstellung des Chamäleons ist zugleich seine Analyse in Bezug auf seinen Gehalt an Uebermangansäure. Diese, \(\text{Mn}_2\text{O}_7\), wird zu 2 At. Manganoxydul \(\text{Mn}_2\text{O}_4\) zersetzt, und gibt 5 At. Sauerstoff ab, und diese oxydiren 5 At. Oxalsäure oder 10 At. Eisenoxydul, also der Factor

\[
\frac{1}{10 \text{ At. Fe}} \times \frac{111}{280} = 0.3964.
\]

Wenn der Gehalt einer Flüssigkeit an Uebermangansäure bestimmt werden soll, so fügt man Portionen von 0.7 g Eisen-doppelsalz und Schwefelsäure hinzu, bis die Farbe vernichtet ist, und geht dann rückwärts mit empirischer Chamäleonlösung, bis Röthung eintritt. Von der im Eisendoppelsalz enthaltenen Eisenmenge zieht man diejenige ab, welche der Chamäleonlösung entspricht, und den Rest Eisen berechnet man mit obigen Factoren auf Uebermangansäure oder das Kalisalz.

0.5 g übermangansaures Kali mit viel Schwefelsäure erhielt 6.3 g Eisendoppelsalz = 0.900 g Fe; dagegen 1.5 cbcm empirisches Chamäleon = 0.015 g Fe; also verbrauchte 0.885 g Fe; diese \(\times 0.3964\) geben 0.350824 g Uebermangansäure; nach der Formel 0.35104 g. Es liegt auch hierin eine Bestätigung der Zusammensetzung der Uebermangansäure.

Oxalsäure.

\[
\begin{align*}
\text{Fe} \times 0.643 &= \text{C}_2\text{O}_3 \\
\text{Fe} \times 1.125 &= \text{C}_2\text{O}_3, 3\text{HO}.
\end{align*}
\]

Es bedarf keines ferneren Beweises, dass man Oxalsäure mit Chamäleon messen könne, wenn das Chamäleon mit Oxalsäure titirt ist. Es findet also hier das Prinzip des Messens eines Körpers mit ihm selbst statt.

Oxalsäure Salze werden abgewogen, in viel Wasser gelöst (1 Theil in 400), mit Schwefelsäure stark angesäuert und dann mit Chamäleon roth titirt. Die verbrauchten Cubikcentimeter Chamäleon werden nach
dem bekannten Titer auf Cubikcentimeter Normaloxalsäure reducirirt und diese auf den Körper berechnet. Die Resultate sind so genau, als der Titer des Chamäleons richtig genommen ist.

Ich will nur ein Beispiel anführen: 1 g neutrales trocknes oxalsaures Natron wurde in destilliertem Wasser gelöst und zu 500 cbcm verständt. Davon wurden jedesmal 100 cbcm herauspipettirt und mit Chamäleon bis zum Erscheinen der rosenrothen Farbe versetzt.

Es wurden verbraucht:
1. 16·2
2. 16·2
3. 16·2 cbcm Chamäleon,
also auf die ganze Menge 81 cbcm.

Diese nach dem Tagestiter auf Normaloxalsäure reducirirt, gaben 14·945 cbcm Normaloxalsäure, und diese mit 0·067 (NaO + C₂O₃ = 67) multiplizirt, geben 1·00132 g statt 1 g oxalsaures Natron. Da hier das ganze Gewicht herauskommt, so folgt daraus, dass das Salz wasserleer ist.

Die in Wasser unlöschlichen oxalsauren Salze lösen sich in Salzsäure oder besser Schwefelsäure und lassen sich dann mit empirischer Chamäleonlösung bestimmen, und nach obigen Eisenfaktoren berechnen.

K a l k.

\[
\begin{align*}
Fe \times 0.5 & = CaO \\
Fe \times 0.893 & = CaO,CO_2.
\end{align*}
\]

Die Oxalsäure, welche mit dem Kalk in ein sehr schwer lösliches Salz von gleichbleibender Zusammensetzung bildet, gestattet den Kalk aus allen seinen Verbindungen auszuscheiden, und mit sehr grosser Schärfe zu bestimmen, selbst wenn nur kleine Mengen davon vorhanden sind.

Es ist sicherer den oxalsauren Kalk direct, als durch Restanalyse aus der überstehenden klaren Flüssigkeit zu bestimmen.

Eine Restmethode dieser Art wird mehrfach Kraut zugeschrieben auf eine Publikation im Chemischen Centralblatt von 1856, S. 136. Dies
ist jedoch unrichtig, da sie schon ausführlich in der ersten Auflage dieses Werkes, aus 1855 S. 187, beschrieben und mit Analysen belegt ist.

Beispiel: 1 g oxalsaurer Kalk hinterliess geglüht 0’674 g kohlensauren Kalk; 1 g oxalsaurer Kalk mit Chamäleon ausgemessen erforderte 75 cbcm desselben. Es sind also 75 cbcm desselben = 0’674 g kohlensaurem Kalk, also 1 cbcm = $\frac{0’674}{75} = 0’009$ g kohlensaurem Kalk.

Den oxalsauren Kalk stellt man durch Fällen von Chlorkalium mit Oxalsaure unter Zusatz von Ammoniak dar. Man lässt ihn längere Zeit warm stehen, bringt auf ein glattes Filtrum und wäscht mit Filtrirpapier bedeckt mit destilliertem Wasser aus, bis die ablaufende Flüssigkeit nicht mehr von Silberlösung getrübt wird. Man trockne an einem mild warmen Ort, bis keine Gewichtsänderung mehr stattfindet. Das lufttrockne Salz ist $\text{Ca}_2\text{O}_3\text{CaO} + 2\text{H}_2\text{O}$.

Der Vorzug vor dem Wägen besteht darin, dass man keine Filteraschen abzuziehen hat, die man nicht genau kennt, und das Filtrum nicht zu trocknen hat.

B l e i.

\[\text{Fe} \times 1’849 = \text{Pb}. \]

Das Blei kann durch die zugleich mit gefällte Oxalsaure mit Chamäleon bestimmt werden. Es kommt dabei auf eine möglichst vollständige Fällung des Bleies an. Das oxalsaure Bleioxyd bildet einen weissen sich leicht absetzenden Niederschlag, der durch längeres Stehen, rascher aber und vollständiger durch Erhitzen bis zum Kochen, dicht und kry stallinisch wird und dann einen sehr kleinen Raum einnimmt. In freien Säuren, auch in Essigsäure und essigsauren Salzen ist er ansehnlich löslich; es muss also die Gegenwart von Essigsäure und ihren Salzen grundsätzlich vermieden werden. Etwa vorhandene freie Salpetersäure muss mit reinem kohlensaurem Natron, jedoch nicht bis zur Bildung eines Niederschlages abgestumpft werden. Das Salz ist am schwersten löslich in einer Flüssigkeit, die überschüssige freie Oxalsaure enthält.
Die Bleiverbindung wird in salpetersaure Lösung gebracht, die freie Säure möglichst vermieden oder abgestumpft und dann stark verdünnt siedend mit viel Oxalsäure gefällt, etwa ⁴⁄₅ des Volums Weingeist zuge setzt, und über Nacht stehen gelassen. Der Niederschlag wird mit wenig Wasser, noch besser mit verdünntem Weingeist, zuletzt aber wieder mit Wasser ausgesüd, vom Filtrum in ein Becherglas gespritzt, was sehr leicht und vollständig geht, mit concentrirter Schwefelsäure versetzt und nach gelinder Erwärmung mit Chamäleon ausgemessen. Der weisse Niederschlag von schwefelsaurem Bleioxyd ist nicht im Geringsten der Beobachtung des Endes hinderlich. Das Filtrum bringt man zuletzt mit in die Flüssigkeit.

2 g salpetersaures Bleioxyd in dieser Weise gemessen erforderten 67,5 ccm empirisches Chamäleon = 0,675 g Eisen, und dies mit 1,849 multiplizirt gibt 1,248 g Blei; nach der Formel 1,251 g.

Sehr leicht kann man das Verfahren in eine Restmethode verwandeln, wobei die Filtration vermieden wird. Man versetzt die möglichst neutrale salpetersaure Bleilösung in einer 300 ccm Flasche mit einer gemessenen jedenfalls überschüssigen Menge Normaloxalsäure, kocht auf, läßt etwas erkalten und füllt bis an die Marke an. 100 ccm der klaren überstehenden Flüssigkeit werden herausgenommen, mit Schwefelsäure versetzt und mit Chamäleon ausgemessen. Hat man die Oxalsäure in gewogenen Mengen von 0,225 g = 0,2 g Fe, oder von 0,450 g = 0,4 g Fe hinzugefügt, und zieht nun die dreifache Menge der auf 100 ccm verbrauchten Chamäleonomenge in Eisen ausgedrückt von der in Oxalsäure zugesetzten Menge in Eisen ausgedrückt ab, so gibt der Rest mit 1,849 g multiplizirt die Menge des Bleies an. Es ist übrigens dann die Bestimmung eine Restmethode, die immer der directen Ausmessung nachzusetzen ist.

\frac{1 \text{ At. Pb}}{3 \text{ At. Fe}} = \frac{103,57}{84} = 1,233 \text{ sein.}
\]
Wismuth.

Fe × 1,238 = Bi.

Das chromsaure Wismuthoxyd ist in Wasser und einer Flüssigkeit, die etwas überschüssiges Ammoniak enthält, ganz unlöslich. Es kommt also darauf an, das Wismuthoxyd als chromsaures Salz abzuscheiden, mit gewogenen Mengen des Eisendoppelsalzes zu zersetzen und den Rest des letztern mit Chamäleon zurückzumessen. Die Wismuthverbindung muss zuerst in Lösung gebracht werden, was bekanntlich durch erwärmt verdünnte Salpetersäure geschieht. Befindet sich doch schon in Lösung, so ist in beiden Fällen die freie Säure soweit durch Ammoniak abzustumpfen, dass ein anfängender Niederschlag entsteht, der aber durch wenige Tropfen Salpetersäure wieder in Lösung gebracht wird. Man fügt nun eine Lösung von doppelt chromsaurem Kali dazu und erhitzt, wodurch der Niederschlag eine dem chromsauren Bleioxylie ähnliche tief gelbe Farbe annimmt und sich leicht absetzt. Von der überstehenden klaren Flüssigkeit gießt man eine Kleinigkeit in ein Uhrglas ab und prüft, ob sie mit Ammoniak oder chromsaurem Kali noch einen Niederschlag giebt. Wenn beides nicht mehr der Fall ist, und ein kleiner Ueberschuss von chromsaurem Kali in der Lösung vorhanden ist, erhitzt man noch einmal, bringt auf ein Filtrum, und süßt mit heissem Wasser aus, bis die abfließende Flüssigkeit ganz farblos ist, was zugleich die Unlöslichkeit des Niederschlags beweist. Dieses wird mit heissem Wasser in ein Becherglas abgespült und dazu gewogene Mengen Eisendoppelsalz und Schwefelsäure hinzugefügt, bis unter Erwärmung der ganze Niederschlag sich gelöst hat und die Flüssigkeit von dem gebildeten Chromchlorid eine rein grüne Farbe angenommen hat. Man filtrirt sie durch dasselbe Filtrum, auf welchem der Niederschlag ausgewaschen wurde, um die Reste des chromsauren Wismuthoxyd-de aufzunehmen, süßt aus, und misst den Rest des Eisenoxyduls mit Chamäleon zurück. Das chromsaure Wismuthoxyd hat die Zusammensetzung BiO₃,2CrO₃ = 332,48 und darin ist 1 At. Wismuth = 208 enthalten. Die 2 At. Chromsäure geben 3 At. Sauerstoff ab, und diese oxydiren 6 At. Eisenoxyd, in welchen 6 At. metallisches Eisen enthalten sind. Es sind also 208 Wismuth = 6 × 28 = 168 Eisen, und nach dem Ansatz 168 x = 208, woraus

\[x = \frac{208}{168} = 1,238. \]

Man muss nun das Eisen mit dieser Zahl multiplizieren, um das Gewicht des Wismuths zu erhalten. Das verbrauchte Eisen ist aber aus dem Eisendoppelsalz bekannt, von dem es bekanntlich 1/7 ausmacht.

Die Zersetzung des chromsauren Wismuthoxyds durch Eisensalz geht leichter als durch Jodkalium und Salzsäure. Ein Ueberschuss von
Eisenoxydul in der zu messenden Flüssigkeit wird durch einen Tropfen Kaliumesiscyanid auf einem Porzellanteller erkannt. Ein solcher muss vorhanden sein, wenn alle Chromsäure zersetzt sein soll.

Kupfer.

Aus metallischem Kupfer: \(Fe \times 0.565 = Cu \)
Aus Kupferyoxydul: \(Fe \times 1.130 = Cu \).

1. Gefälltes metallisches Kupfer wird mit saurem schwefelsaurer Eisenoxyd behandelt und das dadurch entstandene Eisenoxydul mit Chamäleon gemessen:

\[
Fe_2O_3 + Cu = 2FeO \times CuO,
\]

daher der constante Factor \(\frac{1 \text{ At. Cu}}{2 \text{ At. Fe}} = 0.565 \).

Das Kupfer muss in schwefelsaurer Lösung oder als Chlorid vorhanden sein. Durch eine von oben hineingebrachte Stange Zink wird das Kupfer als ein lockerer Schwamm ausgefällt. Dies ist vollständig geschehen, wenn die Flüssigkeit farblos geworden ist und ein mit einem Glasstab herausgenommener Tropfen mit Schwefelwasserstoffwasser auf einem Porzellanteller keine bräunliche Färbung mehr zeigt. Es wird nun die Flüssigkeit vorsichtig in ein Becherglas abgegossen, für den Fall, dass kleine Mengen Kupfer schwimmen sollten, mehr mal abgewaschen und dann mit überschüssigem schwefelsaurer Eisenoxyd und reiner Schwefelsäure so lange digerirt, bis alles zu einer grünen Flüssigkeit aufgelöst ist, stark verdünnt und mit Chamäleonlösung ausgemessen.

2. Kupferyoxydul wird durch schwefelsaures Eisenoxyd und Schwefelsäure in Lösung gebracht und das gebildete Eisenoxydul mit Chamäleon gemessen:

\[
Fe_2O_3 + Cu_4O = 2FeO + 2Cu.
\]

Hier kommen gleich viel Atome beider Metalle in Wechselwirkung; der anzuwendende Factor geht also aus \(\frac{1 \text{ At. Cu}}{1 \text{ At. Fe}} = 1.130 \) hervor und ist dem entsprechend anzuwenden.

Um das Kupfer als Oxydul auszuscheiden, versetzt man seine Lösung, die hier auch Salpetersäure enthalten kann, mit Natronweinstein, dann mit Aetzkali, bis eine klare azurblaue Flüssigkeit entstanden ist, erwärmt bis nahe zum Sieden und fügt kleine Mengen Traubenzucker hinzu, bis ein lebhaft rothes Pulver sich ausgeschieden hat. Die vollständige Fäl-
lungen des Kupfers erkennt man daran, dass die klar überstehende Flüssigkeit eine gelbliche Farbe zeigt von der Einwirkung des Alkalis auf den überschüssigen Traubenzucker. Man filtriert ab und wäscht das rote Kupferoxydul mit heissem Wasser aus. Dann spritzt man es in ein Becherglas, setzt schwefelsaures Eisenoxyd und freie Schwefelsäure zu und misset mit der Chamäleonlösung aus, nachdem man zuletzt auch das Filtrum in die Flüssigkeit geworfen hat. 0·200 g Kupfer erforderten 17·8 cbcm empirisches Chamäleon = 0·178 g Fe, diese × 1·13 geben 0·20114 g Cu.

0·2 g Kupfer in dieser Weise behandelt erforderten 17·6 cbcm Chamäleonlösung = 0·176 g Fe, und mit 1·13 multiplicirt ergeben sich 0·19888 g Cu statt 0·200 g.

Die beiden letzten Methoden haben den Nachtheil zweier Filtrirungen und Auswaschungen, von deren Vollständigkeit das Resultat abhängt.

Nach demselben Factor berechnet sich auch die von Carl Mohr 1) angegebene Bestimmung des Kupfers durch Fallung mit Eisendraht, wobei eine dem Kupfer entsprechende Menge Eisenoxydul gebildet wird. Diese wird mit Chamäleon ausgemessen:

\[\text{CuO} + \text{Fe} \rightarrow \text{FeO} + \text{Cu}. \]

Die Kupferlösung muss neutral oder nur sehr wenig sauer sein, damit sich am Eisendraht kein Wasserstoff entwickle. Es sind bei diesem Vorgange zu viele Dinge ausgeschlossen, wie Salpetersäure, Eisen, andere Metalle etc., als dass die Methode Anwendung finden konnte.

1) Liebig's Annal. d. Chem. und Pharm. 92, 97.
Blutlaugensalz.

(Kaliumeisencyanür, FeCy + 2 KCy + 3 H₂O = 211·22.)

Fe × 7·543 = kryst. Blutlaugensalz.

Die Methode, das Blutlaugensalz durch Chamäleon zu bestimmen, ist von de Haen 1) mitgetheilt worden. Er stellt den Titer des Chamäleons auf chemisch reines Blutlaugensalz und misst damit das unbekannte Salz. Es wird also dabei der Körper mit sich selbst gemessen. Es findet jedoch auch eine bestimmte Beziehung zu den übrigen Titern des Chamäleons statt. Das Blutlaugensalz (FeCy + 2 KaCy + 3 aq.) verhält sich nämlich wie ein Eisenoxydulsalz und es geht das Eisencyanür (FeCy) in Cyanid (Fe₂ Cy₃) über, wobei es also, wie aus der Formel ersichtlich, nur 1/2 At. Cyan oder auf 2 At. Cyanür 1 At. Cyan aufnehmen hat. Aus 2 At. Blutlaugensalz entsteht 1 At. Kaliumeisencyanid (Gmelin's rothes Blutlaugensalz), genau wie in der Darstellung dieses Salzes durch Chlor. 1 At. Cyankalium wird zersetzt, indem das Kalium sich mit dem Sauerstoff der Uebermangansäure zu Kali verbindet und sein Atom Cyan sich auf die 2 At. Eisencyanür wirft, wodurch das Fe₂ Cy₃ entsteht. Es müssen also äquivalente Mengen Blutlaugensalz und metallisches Eisen zu Oxydul gelöst gleiche Mengen Chamäleon gebrauchen. Dies ist durch den Versuch bestätigt worden.

De Haen verlangt eine Lösung von reinem Blutlaugensalz, auf welche der Titer gestellt wird. Da aber diese Lösung bis jetzt keinen anderen Zweck und Gebrauch in der Maassanalyse gefunden hat, so scheint es überflüssig, die vielen bereits vorhandenen Flüssigkeiten noch durch eine neue zu vermehren, da derselbe Zweck auch durch Abwägen von reinem Salze erreicht werden kann.

1) Liebig's Annalen der Chemie und Pharmacie, Bd. 90, S. 160.

1'533 g reines Blutlangensalz erforderte 20'5 ccm empirische Chamäleonslösung = 0'205 g Fe, und diese × 7'543 geben 1'538115 g Blutlangensalz.

Man erseht hieraus, dass man auch, ohne den Titer durch Blutlangensalz selbst zu bestimmen, zu befriedigenden Resultaten gelangt. Für einen Blutlangensalzfabrikanten, welcher wohl allein von dieser Titirrmethode ausgedehnten Gebrauch machen dürfte, ist es jedoch bequemer, eine titirte Lösung von chemisch reinem Blutlangensalz vorrätig zu halten. Es verhält sich alsdann die Reinheit der Salze wie die zur Hervorbringung der rothen Farbe nöthigen Cubikcentimetr Chamäleon.

Gesetzt, man habe auf eine gewisse Menge reines Blutlangensalz 80 ccm Chamäleon verbraucht und auf die gleiche Menge unreines nur 70, so ist die procentische Reinheit 70

Setzt man, um Procente zu erhalten,

\[\frac{70}{80} = \frac{x}{100}, \text{ so ist } x = \frac{70 \cdot 100}{80} = 87'5 \text{ Proc.} \]

Um den Blutlangensalzgehalt einer Lauge, die noch andere Stoffe enthält, welche auf Chamäleon wirken, zu bestimmen, fällt man, nach E. Erlenmeyer, die schwach angesäuerte Lösung mit Einsenchlorid, lässt eine Zeitlang absetzen, wäscht den Niederschlag aus, zersetzt ihn mit der kleinsten Menge ätzenden Alkalis, filtrirt von dem Eisenoxyde ab, versetzt mit Schwefelsäure und misst mit Chamäleonlösung aus. Um die Richtigkeit der Voraussetzung zu prüfen, löste ich 1 g reines Blutlangensalz in Wasser, füllte es mit Eisenchlorid, zersetzte das ausgewaschene Berlinerblau mit Kalihydrat und bestimmte die dazu nothwendige Menge Chamäleon, welche = 24'1 ccm war. 1 g desselben
Blutlaugensalzes direkt mit Schwefelsäure und Chamäleon gemessen erforderte 24 ccm, also eine gleich Menge. Vergleiche übrigens den folgenden Artikel.

Berlinerblau, Pariserblau.

(Eisencyanürcyanid.)

\[\text{Fe} \times 7.69 = \text{Pariserblau.} \]

Nach dem völligen Trocknen über Chlorkalkium pulvert man die Kuchen und bewahrt sie unter gutem Verschluß auf. Zur Titerstellung des Chamäleons wägt man 1 oder 2 g ab, zerreibt sie in einem Mörser zu einem Schlamm und giesst diesen in eine Kochgasche oder ein Becherglas. Den Mörser spült man mit etwas Kali- oder Natronhydrat nach, wodurch sogleich die blaue Farbe in Braun übergeht. In die Kochflasche gibt man noch soviel Alkalihydrat, bis unter starker Erwärmung das Eisenoxyd sich mit seiner eigenen Farbe scheidet. Eine Probe mit rothem Lackmuspapier muss freies Alkali zeigen. Man filtrirt, wäscht aus, was sehr leicht geht, versetzt das Filtrat mit überschüssiger Schwefelsäure und misst mit Chamäleon ans.

Das zu prüfende Berlinerblau wird in gleicher Weise behandelt, wobei die fremden Stoffe, Thonerde, Gyps, Schwerspath, unwirksam sind. Hat man gleiche Mengen von reinem und unreinem Berlinerblau verwendet, und auf das reine a ccm, auf das unreine b ccm verwendet, so ist der Procentgehalt des zu prüfenden \(\frac{b \cdot 100}{a} \).
1 g selbstbereitetes reines Pariserblau erforderte 24,28 cbem Chamäleon; ein käufliches sehr schön kupferrot aussehendes Pariserblau verbrauchte auf dieselbe Menge 22,8 cbem, sein Gehalt ist also \[\frac{22,8 \cdot 100}{24,28} = 93,9 \text{ Proc. reines Blau.} \]

Ein selbstbereitetes kupferglänzendes Pariserblau gab als Mittel von drei gut stimmenden Versuchen mit empirischer Chamäleonlösung den Faktor: Fe \(\times \) 7,69 Pariserblau. Theoretisch würde dieser Factor aus \(\frac{188}{28} = 6,714 \) sein. Das Pariserblau enthält aber immer eine gewisse Menge Blutlaugensalz, welches ebenfalls oxydiert wird.

\[\text{Kaliumeisencyanid.} \]

Rothes Blutlaugensalz. Gmelin's Salz.

\[\text{Fe}_3 \text{Cy}_4 + 3 \text{Kac}_4 = 329,33. \]

\[\text{Fe} \times 11,76 = \text{Kaliumeisen cyanid.} \]

Das rothe Blutlaugensalz muss zuerst in das gelbe verwandelt werden.

Am besten geht die Reduction durch eine Lösung von Eisenvitriol vor sich. Man versetzt das Kaliumeisen cyanid stark mit Aetzkali, erhitzt zum Kochen und giesst eine concentrirte Lösung von Eisenvitriol hinein. Anfänglich schlägt sich reines gelbes Eisenoxyd nieder, durch ferneren Zusatz auch Oxydul, welches mit dem Eisenoxyd durch Kochen in schwarzes Oxydoxydul übergeht. Da dieser Niederschlag sich nicht so leicht absetzt, wenigstens nicht vollständig, so ist es am einfachsten, zu 300 cbem zu verdünnen und davon zwei Proben von 100 cbem abzufiltriren, welche angesäuert gemessen werden. Ein Zeichen der vollständigen Reduction des Kaliumeisencyanids ist einerseits die Farblosigkei der Flüssigkeit an den Wänden, andererseits die schwarze Farbe des Niederschlags, welche beweist, dass zur vollständigen Oxydation keine genügende Menge Kaliumeisen cyanid mehr vorhanden sei. Man titriert das Ferrocyanalkaliun, was nun in der Lösung ist, nach starker Ansäuerung mit Salzsäure, am besten in einer gestielten Porzellan schale, weil man darin den Farbenwechsel am deutlichsten erkennt.
Salpetersäure.

Salpetersäure.

\[\text{NO}_3 = 54. \]

\[
\begin{align*}
\text{Fe} \times 0.3214 & = \text{NO}_3 \text{ (wasserleere Salpetersäure).} \\
\text{Fe} \times 0.6018 & = \text{NO}_3, \text{KO (Kalisalpeter).} \\
\cdot \text{Fe} \times 0.506 & = \text{NO}_3, \text{NaO (Natronsalpeter).} \\
\text{Fe} \times \frac{\text{Nitrat}}{168} & = \text{Grammen desselben Nitrates.}
\end{align*}
\]

Zur Bestimmung der Salpetersäure in Verbindungen besitzen wir eine ziemlich zuverlässige Massmethode von Pelouze \(^2\)), welche eine Restmethode ist und sich auf die oxydirenden Eigenschaften der freien Salpetersäure auf Eisenoxydulsalze gründet. Hat man eine bestimmte Menge eines Eisenoxydulsalzes in Arbeit hineingezogen, so wird nach geschehener Einwirkung der Salpetersäure der Rest des Eisenoxyduls durch Chamäleon bestimmt. Um eine bestimmte Menge eines Eisenoxydulsalzes zu haben, löst man entweder eine gewogene Menge weichen Eisendrahts auf, oder man nimmt bestimmte, in jedem Falle überschüssige Mengen von reinem krystallisirten Eisenvitriol, oder am besten von dem Eisendoppelsalz.

Da das Eisenoxydul, um in Oxyd überzugehen, nur \(\frac{1}{2}\) At. Sauerstoff aufnimmt, die Salpetersäure aber, um auf Stickoxydgas zurückzugehen, 3 At. Sauerstoff abgibt, so ist ersichtlich, dass 1 At. Salpetersäure oder salpetersaures Salz das Oxydul von 6 At. metallischem Eisen zu oxydiren vermag. \[\text{NO}_3 + 6 \text{FeO} = \text{NO}_3 + 3 \text{Fe}_2 \text{O}_3. \]

Um noch einen Rest Oxydul zu haben, muss man also etwas mehr als 6 Atom Eisen auflösen. So wäre z. B. auf 1 At. Kalisalpeter, welches 101.11 wiegt, 6mal 28 oder 168 Eisen eben genügend, man würde also in jedem Falle ungefähr 180 anwenden müssen, um sicher einen Rest zu haben; d. h. man würde für 1 g reinen Kalisalpeter 1.8 g metallisches Eisen vorher lösen. Bei

1) Sitzungsberichte der Wiener Akademie, Mai 1867; Fresenius' Zeitschr. 6, 447.
2) Compt. rend. 1847, Nro. 1. Liebig’s Annalen der Chemie und Pharmacie. 64, 400.
allen anderen Verbindungen würde man dieses Verhältnisse leicht finden, wenn man 6 At. Eisen oder 168 durch das Atom des neutralen salpetersauren Salzes dividirte.

Bei dieser Arbeit hängt alles von der richtigen und exacten Ausführung ab. Es sind dabei eine Menge Fehlerquellen, welche störend auf das Resultat einwirken. Die wesentlichsten sind folgende:

2. Nicht vollständiges Austreiben des Stickoxyds aus der Flüssigkeit, wodurch mehr Chamäleon reducirt wird, besonders bei verdünnten Flüssigkeiten.

3. Entweichen von Salpetersäure, bevor sie auf das Eisenchlorür eingewirkt hat, also bei sehr raschem Kochen der Flüssigkeit nach Zusatz des salpetersauren Salzes und bei relativ geringem Ueberschusse an Eisenchlorür.

4. Etwa auch Verlust an Eisen durch Ueberspritzen bei unvorsichtigem Kochen.

Um diese Klippen zu vermeiden, hat Fresenius\(^1\) das folgende modifizirte Verfahren mit Erfolg eingeschlagen.

\(^1\) Liebig's Annalen der Chemie und Pharmacie. Bd. 106, S. 217.
Salpetrige Säure.

In mehreren Versuchsanalysen erhielt Fresenius 100:1 bis 100:57 der reinen Substanz aus der Analyse wieder.

Man erseht leicht, dass die ganze Bestimmung keine leichte und einfache ist, und durch den Apparat zur Wasserstoffentwicklung, Wasserbad und Lampe sich namentlich nicht zu technischen Prüfungen eignet. Zudem ist sie noch eine Restanalyse, wobei an sich der Fehler der Bestimmung um so grösser sein kann, je grösser der zu bestimmende Rest ist. Man kann auch Kohlensäure statt Wasserstoff anwenden und statt der Retorte ein Kochkölbcchen mit doppelt durchbohrtem Stopfen.

Salpetrige Säure.

\[\text{NO}_3 = 38. \]

\[\text{Fe} \times 0.339 = \text{NO}_3. \]

Die salpetrige Säure bildet Salze, die Untersalpetersäure NO₄ aber keine. Man kann deshalb für die salpetrige Säure einen sicheren Messkörper anwenden. Das passendste Salz für diesen Zweck ist das salpetrigsaure Silberoxyd, Ag₂NO₃ = 154, welches das unlöslichste dieser Salze ist und aus einer warmen Lösung in deutlichen Krystallen dargestellt werden kann. Man stellt dasselbe dar aus stark geschmolzenem Kalisalpeter, den man auflöst, und aus welchem man den meisten Salpeter herausröntflüssigkeiten lässt. Die Mutterlauge fällt man mit einer concentrirten Lösung von Silbersalpeter. Den Niederschlag wascht man etwas ab und krystallisirt ihn einmal oder mehrmal um. Wenn die Mutterlauge viel freies Kali enthält, so entsteht ein basisches Salz, welches ein gelbes Pulver darstellt; in diesem Falle setzt man einige Tropfen verdünnte Salpetersäure zu. Das krystallisirte salpetrigsaure Silberoxyd enthält 24·675 Proc. wasserleere salpetrige Säure, und will man zur Titerstellung 0·1 g salpetrige Säure haben, so hat man 0·405 g salpetrigsaures Silberoxyd abzuwägen.

Die salpetrige Säure wird nach Feldhaus 1) mit reiner Chamäleonflüssigkeit gemessen, und gibt dann konstante und richtige Resultate. Man löst das salpetrigsaure Salz in destilliertem Wasser, welches gegen Chamäleon als ganz wirkungslos geprüft ist, setzt etwas verdünnte Schwefelsäure zu, und misst mit Chamäleon aus, bis zum Auftreten der lichtrothen Farbe. Die Verdünnung ist hierbei nicht ausser Acht zu lassen. 0·154 g oder 1/1000 Atom Silbernitrit verlangen etwa 200 obcm

1) Fresenius' Zeitsehr. f. analyt. Chem. 1, 428.
Mohr's Titrirbuch.
III. Chamäleon.

Wasser, wenn man keinen Geruch von Salpetergas wahrnehmen soll. Auch hat sich empfohlen, erst die Flüssigkeit schwach anzusäuern und die Oxydation der salpetrigen Säure fast zu Ende zu führen, dann stärker anzusäuern und jetzt erst bis zur lichtroten Farbe weiter zu gehen. Das Ausbleichen geschieht nicht so schnell, wie bei Eisenoxydul, und das Nachbleichen dauert oft 1/2 Stunde.

Die salpetrige Säure geht dabei in Salpetersäure über, nimmt also 2 At. Sauerstoff auf, welche das Oxydul von 4 At. Eisen höher oxydiren können. Der Factor für Eisen ist danach:

\[
\frac{NO_3}{4Fe} = \frac{38}{112} = 0.339.
\]

Das Sicherste bleibt auch hier den Titer mit der zu messenden Substanz, d. h. mit gewogenen Mengen salpetriger sauren Silberoxydes selbst zu nehmen.

\[
2NO_4 \rightarrow NO_3 + NO_3.
\]

Mit diesen Vorsichtsmassregeln wurde bei ungleicher Verdünnung in sechs Versuchen der Gehalt an salpetriger Säure innerhalb der Grenzen von 4·117 Proc. und 4·221 Proc. gefunden, was als sehr befriedigend angesehen werden muss.

Gewichtsanalysen mit Harnstoff und Bleihyroxyd geben keine so richtigen und übereinstimmende Resultate. 2 At. Bleihyroxyd, 2 PbO₂, geben an NO₃ 2 At. Sauerstoff, und es löst sich das in Oxyd verwandelte Bleihyroxyd in der freien Salpetersäure auf. Die durch Wägung bestimmte Gewichtsabnahme des Bleihyroxys entspricht also einem halben Atom salpetriger Säure.
Phosphorsäure.

Phosphorsäure.

Belohoubek in Prag gründet eine mit Chamäleon zu beendigende Phosphorsäurebestimmung auf eine Abänderung der unter den Fällungsanalysen beschriebenen Bestimmung durch Uransalze.

Ebenso würde eine Bestimmung des Uranoxydes selbst dadurch gegeben sein, wenn sich ein Bedürfniss darnach zeigen würde.

Schwefelwasserstoff.

Fe × 0‘3036 = SH.
Fe × 0‘2857 = S.

1 cbcm Zehntel-Chamäleon = 0‘0017 g Schwefelwasserstoff.
1 " " " = 0‘0016 g Schwefel.

Wenn man ein Schwefelwasserstoff enthaltendes Wasser mit Eisen- oxydsalzen versetzt, so scheidet sich Schwefel aus, und es entsteht eine
dem Schwefelwasserstoff äquivalente Menge Eisenoxydulsalz. Der ausgeschiedene Schwefel ist bei grosser Verdünnung ohne Wirkung auf das Chamäleon, da der Versuch zeigte, dass von derselben Flüssigkeit sowohl filtrirt als unfiltrirt Flüssigkeit gleich viel Chamäleon verbrauchten. Auch verschwindet die Trübung nicht durch einen Ueberschuss von Chamäleon, sondern man erkennt die rothe Färbung durch die Trübung sehr leicht.

Setzt man aber Chamäleonlösung zu einem sauren Schwefelwasserstoffwasser, ohne vorher Eisenoxydulsalz zugesetzt zu haben, so wird das Chamäleon auch zerstört, aber langsamer, als vom Eisenoxydulsalz; es scheidet sich zuerst kein oder sehr wenig Schwefel aus, die Flüssigkeit bleibt meist klar und man verbrannt im Ganzen mehr Chamäleon, im Verhältniss von $2:38 : 1$, als zu der mit Eisenoxydsalzen versetzten Probe. Es ist deshalb der vorläufige Zusatz von Eisenoxydulsalz unentbehrlich. Obgleich Eisenchlorid dieselben Zersetzungen zeigt, wie jedes Eisenoxydulsalz, so ziehen wir hier das saure schwefelsaure Eisenoxyd vor, weil es fast farblos ist, und die freie Schwefelsäure nicht wie die Salzsäure zersetzend auf die Uebermangansäure wirkt.

Behufs der Analyse bringt man in eine kleine mit Stöp Nel verschliessbare Flasche reines schwefelsaures Eisenoxyd, welches frei von Oxydul sein muss, was man mit Chamäleon prüft, und gibt noch etwas Schwefelsäure hinzu. Man saugt nun das Schwefelwasserstoffwasser in eine Pipette, lässt bis Null ablaufen, taucht die Pipette in die Eisenflüssigkeit und lässt auslaufen. Es geht dadurch keine Spur von Schwefelwasserstoff verloren. Die Flüssigkeit wird trübe von ausgeschiedenem Schwefel, hat aber noch einen Stich ins Gelbliche von dem überschüssigen Eisen-salze. Dieses muss in jedem Falle vorhanden sein, weshalb man auch eine Probe macht, indem man einen spitzen eingetauchten Glasstab auf ein mit Blutlaugensalz oder besser mit Rhodankalium befeuchtetes Papier aufsetzt, wo ein blauer, bezüglich blutrother Fleck entstehen muss. Man lässt die Flüssigkeit eine halbe bis ganze Stunde verschlossen stehen, verdunnt dann noch stärker mit Wasser, dass die Flüssigkeit fast farblos erscheint, und misst mit Chamäleon aus. Man sieht die röthliche Färbung ebenso leicht in der klaren wie in der trüben Flüssigkeit.

Die Zersetzung ist sehr einfach. Eisenchlorid oder ein anderes Oxyd-salz und Schwefelwasserstoff geben Eisenchlorür, bezüglich Eisenoxydulsalz, Schwefel und freie Salzsäure:

$$\text{Fe}_2\text{Cl}_3 + \text{SH} = 2 \text{FeCl} + \text{S} + \text{ClH}.$$

Man sieht hieraus, dass 2 At. Eisen einem Atom Schwefelwasserstoff entsprechen, oder 56 Eisen $= 17$ Schwefelwasserstoff, folglich Schwefelwasserstoff $= \text{Eisen mal } \frac{17}{56}$, d. h. mal 0.3036.

Diese Methode gibt sehr genaue und zuverlässige Resultate, und ist ungemein leicht auszuführen. Schwefelwasserstoff wirkt bei starker

25 ccm eines frisch bereiteten Schwefelwasserstoffwassers erforderten mit schwefelsaurem Eisenoxyd dreimal hinter einander 17.3 ccm Zehntel-Chamäleon. Der Gehalt des Wassers beträgt danach 17.3 × 0.0017 = 0.02941 g in 25 ccm, also 0.118 Proc. S.H.

Es gibt noch eine Anzahl Modifikationen dieser Bestimmung, welche alle mit Chamäleon endigen, und zwar:

1) bei schwefelsaurem Eisenoxyd . . 2.8 ccm 1/10 Chamäleon
2) Zink (2 mal) 2.8
3) Kadmium 2.8
4) Eisenchlorid (2 mal) . . . 3.5 und 3.8

Eisenchlorid ist dannach zu vermeiden.

Schwefelalkalien müssen mit Zink- oder Kadmiumsalzen gefällt und der ausgewaschene Niederschlag mit saurem schwefelsaurem Eisenoxyd zersetzt werden, weil diese Lösungen immer unterschweflgaure Verbindungen enthalten, welche ebenfalls auf Chamäleon wirken.

Auch Schwefelammonium könnte man in derselben Art auf seinen Gehalt an Schwefelwasserstoff prüfen. Man würde das Eisenoxydalsalz vorher stark mit Schwefelsäure versetzen und dann das Schwefelammonium einfließen lassen. Man verdünnt zu 300 ccm, filtrirt schnell eine Portion durch ein Sternfilter ab, nimmt davon 100 ccm und misst sie mit
III. Chamäleon.

Chamäleon aus. Es ist noch Substanz vorhanden, um die Probe ein zweites Mal zu machen und auf unterschwellige Säure zu fahnden.

Der Schwefel, welcher aus Schwefelwasserstoff abgeschieden wird, setzt sich sehr langsam ab und geht selbst bei der Filtration zum Theil durch das Papier. Wenn sich der Schwefel als Schwefelwasserstoff ausstreiben lässt, so geschieht seine Bestimmung sehr scharf durch Chamäleon in der folgenden Weise.

Man zersetzt die Verbindung mit Salzsäure und führt das entwickelte Gas durch eine klare Lösung von ammoniakalischem, schwefelsaurem Kadmium. Es entsteht Schwefelkadmium. Dasselbe wird durch ein Filtrum getrennt, ausgewaschen und in einer Flasche mit saurem schwefelsaurem Eisenoxyd geschüttelt. Nach vollständiger Zersetzung und Ausscheidung von Schwefel wird mit Wasser verdünnt und mit Chamäleon ausgemessen. Bei Anwendung von $\frac{1}{10}$ Chamäleon mit 3,162 g im Liter wurden folgende Resultate erhalten: 1 cbcm desselben ist $= 0,0016$ g Schwefel. 0,1 g reiner Bleiglanz in dieser Weise behandelt erforderte 8,6 cbcm $\frac{1}{10}$ Chamäleon. Diese $\times 0,0016$ geben 0,01376 g Schwefel, berechnet 0,01338 g.

0,2 g Bleiglanz erforderten 17,8 cbcm $\frac{1}{10}$ Chamäleon; $17,8 \times 0,0016 = 0,02848$ g Schwefel; berechnet 0,02676 g. Statt der Kadmiumlösung lässt sich auch essigsäures Zinkoxyd in neutraler oder ammoniakalischer Lösung anwenden. Bei der Anwendung von empirischer Chamäleonlösung geht die Berechnung durch Eisen mit den obigen Factoren.

Die Methode ist allgemein anzuwenden, wo sich der Schwefel als Schwefelwasserstoff entwickeln lässt, also bei Schwefelalkalien, Sodarückständen, bei Schwefelszink, Schwefelkadmium, — Kobalt, — Nickel, — Antimon, — Blei und ähnlichen.

Z i n k.

\[
\begin{align*}
Fe \times 0,5809 &= Zn. \\
_ \times 0,724 &= ZnO.
\end{align*}
\]

Unmittelbar an die Schwefelwasserstoffbestimmung durch Chamäleon schliesst sich die Zinkbestimmung. Sie beruht darauf, dass Schwefelszink mit schwefelsaurem Eisenoxyd und freier Schwefelsäure in schwefelsaures Zinkoxyd und Eisenoxydul und ausgeschiedenen Schwefel umsetzt:

\[ZnS + Fe_2O_3 = 2 FeO + ZnO + S\]

Man hat also das Zink erst als Schwefelszink zu fällen. Zu diesem Zwecke bringt man das Zinkerz mit Salzsäure in Lösung, oder bei Blende
mit Salz- und Salpetersäure, scheidet das Eisenoxyd nach bekannten Methoden und filtrirt. Das Zink fällt man aus dem Filtrat mit Schwefelnatrium, welches sich besser hält als Schwefelammonium, filtrirt und wäscht mit warmem Wasser aus. Das erste Filtrat muss Bleilösungen schwärzen.

Da 1 Atom Eisenoxyd Fe₂O₃ nur 1 At. Sauerstoff an das Zink abgibt, so entsprechen 2 Atome Eisen 1 Atom Zink. Es sind also 56 Eisen

$$= 32\cdot53 \text{ Zink, folglich Zink } = \text{ Eisen } \times \frac{32\cdot53}{56} = 0\cdot5809.$$

Schwefelszink zersetzt sich mit neutralem Eisenoxydsulfat nicht vollständig, weshalb man durch einen vorherigen Säurezusatz die Zersetzung bedingt, die nun zwischen Schwefelwasserstoff und Eisenoxyd eintritt.

Das Speziellere im angewandten Theil.

Kadmium.

Fe = Cd.

Wenn das Kadmium aus neutraler, saurer oder alkalischer Lösung durch Schwefelwasserstoff als orangegelber Niederschlag gefällt ist, so kann es in gleicher Weise, wie Zink, durch saures schwefelsaures Eisenoxyd bestimmt werden. Man bringt den ausgewaschenen gelben Niederschlag samt dem Filtrum in eine Stöpselflasche, setzt schwefelsaures Eisenoxyd und freie Schwefelsäure zu, und zertheilt das Filtrum durch Schütteln in Fasern. Die Auflösung geschieht nicht so rasch wie bei Zink, und muss durch Wärme unterstützt werden. Es ist deshalb auch nützlich, die Luft durch einen Strom Kohlensäure oder durch etwas hineingeworfenes doppelt kohlensaures Natron zu verdrängen. Nachdem der gelbe Niederschlag ganz gelöst ist, wobei sich Schwefel ausscheidet, wird das Glas abgekühlt, die Flüssigkeit verdünnt und mit Chamäleon ausgemessen. Da das Eisenoxyd nur 1/2 Atom Sauerstoff abgibt, das Kadmium aber ein ganzes Atom aufnimmt, so ist die Menge des Kadmiums gleich jener des metallischen Eisens, worauf das Chamäleon titriert ist, weil zufällig das Atom des Kadmiums (56) gerade doppelt so gross ist, als das Atom des Eisens (28). Man nimmt also den Titer des Chamaleons mit 0·1 g Eisendraht oder mit 0·7 g Eisendoppelsalz.

Zinn.

Fe × 1·0535 = Sn.

Zinnchlorür zersetzt Chamäleon allerdings kräftig, allein die Zersetzung geht nicht bis zu Ende. Da hier zu gleicher Zeit eine Säure (Zinn- säure) und ein Oxyd (Manganoxydul) entstehen sollen, so tritt das Gleichgewicht der Affinitäten unter den jedesmaligen Bedingungen früher ein, als die Zersetzung vollendet ist. Verdünnt man Zinnchlorür stark, so braucht man weniger Chamäleon, als bei geringer Verdünnung. Gießt man in eine grosse Menge Wasser einige Tropfen Zinnchlorür, und titriert sie dann mit Chamäleon lichtrotth, so ist noch Zinnchlorür vorhanden; denn setzt man Stärkelösung zu, so gebraucht man eine merkbare Menge Iodlösung, um die blaue Farbe zu erzeugen. Es können also Uebermangansäure und Zinnchlorür zugleich in einer verdünnten Lösung nebeneinander bestehen.
Zinn. Quecksilber.

Dagegen wird die Zersetzung ganz richtig, wenn man das Zinnchlorür durch Kochen mit Eisenchlorid in Zinnchlorid und Eisenchlorür umsetzt. Man braucht immer mehr Chamäleon zu dem Eisenchlorür als zu der ursprünglichen Menge Zinnchlorür, von der das Eisenchlorür gebildet wurde. So wurden für 1 ebcm einer Zinnchlorürlösung 7•5 bis 7•7 ebcm Chamäleon verbraucht, dagegen für das daraus entstandene Eisenchlorür 9 ebcm und 9•1 ebcm. Wenn man metallisches Zinn in Salzsäure löst, so gebraucht man direct nur halb so viel Chamäleon, als wenn man das Zinn in Eisenchlorid auflöst, weil im ersten Falle der Wasserstoffentweicht, im zweiten Falle aber derselbe eine äquivalente Menge Eisenchlorid in Chlorür verwandelt. Die Messung geschieht demnach in der folgenden Art.

Man bringt in einem Glase eine genügende Menge saures schwefelsaures Eisenoxyd zum Kochen, und setzt nun die gemessene Zinnlösung oder das gewogene Salz zu, lässt noch eine Zeit kochen, und prüft mit Rhodankalium auf einem Teller, ob noch Eisenoxyd vorhanden sei, was nothwendig ist, verdünnt dann reichlich mit Wasser und misst mit Chamäleon. Den Titer nimmt man mit gefälltem Zinn, das frisch in Salzsäure in einem Platintiegel gelöst und in gleicher Art mit schwefelsaurem Eisenoxyd behandelt wurde.

Wenn es nur auf den Zinngehalt ankommt und nicht auf seine Oxydationsstufe, so fällt man alles Zinn durch Zink, löst das gewaschene Zinn in Salzsäure bei Berührung mit etwas Platin auf, und behandelt wie oben. Es ist aber dann doch einfacher, das ausgewaschene Zinn zu trocknen und zu wägen. Gefälltes schwarzes und gelbes Schwefelzinn können allerdings auch durch saures schwefelsaures Eisenoxyd zum Messen mit Chamäleon zurecht gestellt werden, allein die Zersetzung geht erst vollständig in der Siedehitze vor sich, was wieder wegen möglicher Oxydation misslich ist. Bei dem Vorhandensein besserer Methoden kann davon abgesehen werden.

Quecksilber.

\[
\begin{align*}
Fe \times 3.5714 &= Hg. \\
\no &= 4.838 &= HgCl.
\end{align*}
\]

Die vorliegende Methode habe ich auf die von Hempel (s. u. unter Jod gegen unterschwefligsaures Natron) angegebene Bestimmung des Quecksilbers gegründet. Sie beruht darauf, dass Quecksilberchlorid in alkalischer Lösung von Eisenoxydulsalzen zu Chlorür reduziert wird, und dass ein Theil des Eisenoxyduls in Oxyd übergeführt wird. Der Rest des Eisenoxyduls wird mit Chamäleon zurück gemessen, der Titer des Chamäleons wird mit reinstem Eisendoppelsalz genommen.
III. Chamäleon.

Es kann nur ein Quecksilberoxydsalz oder Quecksilberchlorid so bestimmt werden, und wegen des Eisenoxydsuls darf auch keine Salpetersäure vorhanden sein. Wenn also das Quecksilberoxydsalz nicht schon eine andere Säure enthält, so muss es durch Abdampfen mit Salzsäure in Chlorid verwandelt werden. Jedes Quecksilberoxydsalz kann mit Salpetersäure und Salzsäure durch Eindampfen zur Trockne ebenfalls in Chlorid übergeführt werden. Da wir also Mittel haben, jede Quecksilberverbindung in Chlorid überzuführen, so können wir damit Quecksilber allgemein bestimmen, und nehmen zur Prüfung der Methode reines Quecksilberchlorid (Sublimat) als Ausgangspunkt.

Dieser Körper gibt, um in Chlorür überzugehen, 1/2 Atom Chlor ab, und da 1 Atom Eisenoxydyul auch 1/2 Atom Sauerstoff oder Chlor aufnimmt, so sind gleiche Atome beider Stoffe äquivalent:

\[2 \text{HgCl} + 2 \text{FeCl} = \text{Hg}_2\text{Cl}_2 + \text{Fe}_2\text{Cl}_5, \]

also 28 Eisen = 100 Quecksilber, folglich Eisen \[\times \frac{100}{28} \] = Quecksilber.

Dies gibt den Factor 3.5714.

Ebenso ist für das Chlorid \[\frac{135.46}{28} = 4.838 \] als Factor gefunden worden.

Molybdän.

\[\text{Fe} \times 0.903 = \text{MoO}_3. \]

Für die Molybdänäsüre existierte weder eine Gewichts-, noch eine massanalytische Bestimmungsmethode. Wernike\(^1\) hat gesucht diesem Mangel durch Reduction der Molybdänäsüre auf Sesquioxyd und Ausmessung derselben durch Chamäleon abzuhelfen. Die Reduction geschieht in schwefelsaurer Lösung durch Zink. Die Molybdänäsüre hat bei dem Atomgewicht des Molybdän = 48 die Zusammensetzung: MoO\(_3\).

\[\text{Mo} = 66.666 \text{ Proc.} \]

\[0 = 33.333 \]

Durch Reduction zu Sesquioxyd, Mo\(_2\)O\(_3\), gibt sie die Hälfte ihres Sauerstoffs oder 16.66 Proc. des Gewichtes der Säure an das Zink ab; oder MoO\(_3\) geben 1/2 At. Sauerstoff ab, und diese oxysieren das Oxydyd von 3 At. Eisen. Der theoretische Factor ist demnach

\[\frac{1 \text{ At. MoO}_3}{3 \text{ At. Fe}} = \frac{72}{84} = 0.857. \]

\(^1\) Fresenius' Zeitschr. f. anal. Chem. 14, 1.
Titansäure. Gold.

Nun fand aber Wernike, dass niemals diese ganze Menge von 16,666 Proc. an Sauerstoff in der Chamäleonlösung in Anspruch genommen werden, sondern nur im Mittel von 17 Versuchen 15,81 Proc. Es muss deshalb der theoretische Factor noch mit dem Bruche \(\frac{16,66}{15,81} \) multiplicirt werden, woraus der an der Spitze stehende 0,903 hervorgegangen ist.

0,5 molybdänsaures Ammoniak 4 Stunden lang der Reduction in einer Platinschale ausgesetzt erforderten 41,6 ccbm empirische Chamäleonlösung = 0,416 g Fe, und diese mit 0,903 multiplicirt geben 0,375648 g Molybdänsäure; nach der Formel 0,3673 g. Der theoretische Factor 0,857 gibt 0,356512 g, also dicht darüber und darunter.

Titansäure

Gold.

Das Gold ist ebenfalls von Hempel in den Kreis seiner Oxalsäurebestimmungen gezogen worden.

Da aber das Gold, wie Rocco in Fidelio singt, ein mächtig Ding ist, und deshalb wenig in rein wissenschaftlichen Untersuchungen vorkommt, und man wohl auf die Richtigkeit obiger Analyse schwören, aber nicht wetten möchte, so dürfte dieselbe nur selten Anwendung finden.

Absorbirter Sauerstoff im Wasser.

\[\text{Fe} \times 0.1428 = 0. \]

1000 cbcm Sauerstoff (0°C.; 760 mm Bar.) = 1.43 g.
1 g Sauerstoff \(\frac{\text{cbcm}}{\text{g}} \) = 700 cbcm.

Eisenoxydulsalze in saurer Lösung sind sehr wenig sauerstoffanziehend, besonders wenn eine starke Säure, wie Schwefelsäure, vorwaltet. Der Grund dieser Erscheinung ist der, dass das Eisenoxyd eine so sehr schwache Basis ist, die ein geringes Bestreben hat, sich mit Schwefelsäure zu verbinden, während Eisenoxydul ein sehr starkes hat. In neutraler Lösung nehmen die Eisenoxydulsalze leichter Sauerstoff auf und das freie, von seiner Schwefelsäure getrennte Oxydulhydrat nimmt den Sauerstoff am leichtesten auf.

Wenn man Eisenoxydul mit Chamäleon bestimmt, so hat man Sorge zu tragen, dass freie Schwefelsäure vorhanden sei, weil nur in diesem Falle sowohl der absorbirte Sauerstoff des verdünnenden Wassers, als auch die Berührung der Atmosphäre während der Dauer eines Versuches ganz ohne Wirkung sind.

Wasserstoffhyperoxyd.

\[\text{HO}_3 = 17. \]

\[\text{Fe} \times 0.303 = \text{HO}_3. \]

Die Lösung des übermangansauren Kalis wird durch Wasserstoffhyperoxyd in der Art zersetzt, dass beide gleichviel Sauerstoff als Gase ausscheiden:

\[5 \text{HO}_3 + \text{Mn}_2\text{O}_7 = 5 \text{HO} + 10 \text{O} + 2 \text{MnO}. \]

Die 5 At. Sauerstoff, welche die Uebermangansaure abgibt, würden hinreichen um das Eisenoxydul von 10 At. Eisen höher zu oxydiren. Der Factor des Eisens ist also:

\[\frac{5 \text{ At. HO}_3}{10 \text{ At. Fe}} = \frac{85}{280} = 0.303 \]

Die zu prüfende Flüssigkeit wird verdünnt und mit etwas Schwefelsäure versetzt, welche hinreicht das Manganoxydul in Lösung zu halten, und dann die 1/10 empirische Chamäleonlösung bis zur Röthung zutropfeln. Die Korrektion zur Färbung der Flüssigkeit wie früher. Es ist eine Restanalyse. Ist nicht mit Ozon zu verwechseln.
S ch w e f e l s ä u r e.

Eine oxydometrische Bestimmung der Schwefelsäure lässt sich in folgender Weise ausführen. Eine Zehntel-Chlorbaryumlösung mit 12,2 g krystallisierter Chlorbaryum im Liter zersetzt sich glatt auf mit 1/10 einfach-chromsaurem Kali (9,735 g im Liter). Ist aber vorher durch Schwefelsäure in neutraler Verbindung ein Theil Baryt ausgefällt, so bleibt bei Zusatz einer der Chlorbaryumlösung gleichen Menge der Chromlösung soviel Chromlösung ungefüllt, als vorher Schwefelsäure vorhanden war. Es ist demnach statt Schwefelsäure eine äquivalente Menge Chromsäure vorhanden. Diese lässt sich durch Eisensalz und empirische Chamäleonlösung bestimmen. Es ist aber die Methode nicht direct genug und es concurrieren zu viele Dinge, drei Flüssigkeiten und ein Salz, dabei, um sie empfehlen zu können.

C h l o r s ä u r e.

\[
\begin{align*}
\text{Fe} & \times 0.2249 = \text{Cl}_2 \text{O}_5. \\
\text{K} & \times 0.3648 = \text{Cl}_2 \text{O}_5 \text{KO}.
\end{align*}
\]

Die Chlorsäure, \(\text{Cl}_2 \text{O}_5 \), zersetzt sich mit Salzsäure in Wasser und 6 At. Chlor:

\[
\text{Cl}_2 \text{O}_5 + 5 \text{Cl} \text{H} \rightarrow 5 \text{HO} + 6 \text{Cl},
\]

und diese 6 At. Chlor oxydiren das Oxydul von 12 At. Eisen, also der Factor \(\frac{\text{Cl}_2 \text{O}_5}{12 \text{Fe}} = \frac{75.46}{336} = 0.2249 \), und ebenso das chlorsaure Kali nach der Formel:

\[
\text{Cl}_2 \text{O}_5 \text{KO} + 6 \text{Cl} \text{H} \rightarrow 6 \text{HO} + \text{ClK} + 6 \text{Cl},
\]

also der Factor \(\frac{122.57}{336} = 0.3648 \). Wendet man das Eisendoppelsalz an, so hat man davon gegen chlorsaures Kali mindestens die 20fache Menge desselben zu nehmen, da das Atomgewicht des chlorsauren Kalis (122.57) mehr wie 19 mal in dem 12fachen Atomgewicht des Eisensalzes (2352) enthalten ist.

0.5 g chlorsaures Kali wurde gelöst, dazu eine Lösung von 10 g Eisendoppelsalz und 1/2 Stunde lang digerirt. Nach dem Erkalten wurde mit Wasser verdünnt und 6.5 cbem empirisches Chamäleon dagegen gebraucht.
Die 10 g Eisensalz sind gleich \(\frac{10}{7} = 1.428 \) g Fe, davon ab 0.065 g Fe, lässt 1.363 g Fe und diese mit 0.3648 multipliziert geben 0.4972 g chlorsaures Kali statt 0.500 g.

Chromsäure.

Fe \(\times 0.312 = \text{Cr.} \)

\(\times 0.598 = \text{Cr}_2 \text{O}_3. \)

\(\times 0.910 = \text{Cr}_3 \text{O}_5. \)

\(\times 0.8733 = 2 \text{Cr}_2 \text{O}_3 + \text{K} \text{O}. \)

\(\times 1.159 = \text{Cr}_3 \text{O}_7 + \text{K} \text{O}. \)

Es wird vorausgesetzt, dass immer Chromsäure vorhanden sei und nicht Oxyd. Daraus berechnen sich die Factoren in der folgenden Weise: 1 At. Cr. = 26.24 gibt als Chromsäure 1.1/2 At. Sauerstoff ab, und diese oxydiren das Oxydul von 3 At. Eisen. Der Factor ist also \(\frac{26.24}{3 \times 28} = 0.312; \)

ebenso ist derselbe für Chromsäure \(\frac{50.24}{84} = 0.598 \) und für doppelt chromsaures Kali, welches 3 At. Sauerstoff abgibt und das Oxydul von 6 At. Eisen oxydirt \(\frac{147.56}{168} = 0.8733. \)

In gleicher Weise wird 1 At. doppelt chromsaures Kali = 147.56, 6 At. Eisendoppelsalz = 1176 zersetzen, oder 1 g doppelt chromsaures Kali ist \(\frac{1176}{147.56} = 7.969 \) g Eisendoppelsalz. Zur Prüfung wurde die Hälfte dieser Zahlen, nämliche 0.5 g doppelt chromsaures Kali und 3.985 g Eisendoppelsalz, einzeln gelöst und dann zusammengegossen. Die Flüssigkeit wurde lebhaft grün und zeigte, dass keine Spur Eisenoxydul überschüssig war, indem ein Tropfen Chamäleonlösung sogleich färbte; dagegen war eine Spur Chromsäure im Ueberschuss, jedoch äusserst unbedeutend. Diese konnte dadurch erkannt und bestimmt werden, dass man die Flüssigkeit mit Chamäleon schwach färbte und dann mit titrirter Eisenlösung (1 CC. = 0.010 g Fe) zurückging. Bei der grossen Empfindlichkeit der Reaction kann man nach einem einzelnen Versuche die Atomgewichte nicht ändern. Die Analyse geschieht immer in der Art, dass man zu der gelösten Probe des Chromsalzes gewogene Mengen Eisendoppelsalz und Schwefelsäure zusetzt, bis sich ein Ueberschuss von Eisenoxydul zeigt, was durch einen Tropfen auf einem Teller mit rotem Blutlängensalz oder Chamäleonlösung geschieht. Mit der empirischen Chamäleonlösung.
III. Chamäleon.

Hierhin gehören auch die Bestimmungen von Oxyden, welche mit Chromsäure gefällt werden können, wie Bleioxyl, Wismuthoxyl, Baryt etc., jeder mit seinem Atomgewicht. Die Reinheit des doppelt chromsauren Kalis gestattet diesen Körper selbst als Titersubstanz anzunehmen.

Chlor und unterchlorigsäure Salze.

\[\text{Fe} \times 0.634 = \text{Cl}. \]

Diese beiden Körper lassen sich nicht mit dem gewöhnlichen Eisen-doppelsalz messen, weil die Oxydation des Eisenoxyls nur in alkalischer Lösung leicht vor sich geht, dabei aber das frei werdende Ammoniak störend eingreift. Es muss also ein anderes ammoniakfreies Eisenoxylsalz zur Anwendung kommen. Man kann das Doppelsalz mit schwefelsaurem Kali oder Natron anwenden, denn beide sind haltbar, was der Eisenvitriol nicht ist. Das Kalisalz wird aus 139 Eisenvitriol und 87 schwefelsaurem Kali durch heisses Löschen, Filtrieren und Krystallisiren dargestellt. Seine Formel ist:

\[\text{SO}_3\text{FeO} + \text{SO}_3\text{KO} + 6 \text{Aqu.} = 217.11 \]

und es enthält 12.8 Proc. metallisches Eisen. Das Natronsalz enthält nur 4 At. Wasser mit der Atomzahl 183 und 15.3 Proc. Eisen. Beide Salze sind leichter löslich als das Ammoniaksalz und scheiden sich nicht in derselben Art als krystallinisches Mehl, sondern als grössere Krystalle aus. Um sie zu benutzen, müssen sie in ein staubrocknes grobkörniges Mehl verwandelt, unter Glasstopfen aufbewahrt und auf ihren wahren Gehalt geprüft werden. Das Kalisalz würde für 0.1 g Eisen statt 0.7 g in einer Menge von 0.775 g angewendet werden müssen. Das trifft aber selten zu und man muss den Procentgehalt einer grösseren Menge des Salzes ermitteln und auf dem Gefässe notiren. Dies geschieht dadurch, dass man 1 g des Salzes mit empirischer Chamäleonlösung ausmisst, wobei die Cubikcentimeter unmittelbar Procente an Eisen sind. Der Formel nach ist sein Eisengehalt 12.8 Proc., allein durch gutes Trocknen steigt er leicht um etwas höher.

Das Natronsalz lässt sich als ein hellgrunes Pulver mit richtigem Eisengehalt darstellen.

Die Bestimmung des wirksamen Chlors geschieht in der Art, dass man 2 bis 4 g Chlorkalk abwägt, in einen Porzellanmörser mit Ausguss

Beispiel: 2 g Chloralkali erhielten 4.5 g Kalisalz, und dagegen wurden 13.5 c bm empirisches Chamäleon verbraucht.

4.5 g Eisensalz mal 0.128 geben 0.5760 g Fe; davon ab 0.135 g lassen 0.441 g Fe; und diese mit 0.634 geben 0.2795 wirksames Chlor in 2 g Chloralkali, also 13.97 Proc. Cl.

Man kann die Analyse auch durch Schütteln mit Granaten in einem weithalsigen Glase mit Glasstopfen ausführen. Es bleibt aber immer eine Restanalyse und steht in Sicherheit und Handlichkeit hinter der Arsenikanalyse zurück.

Gebundenes Jod.

Wenn man ein Jodsalz mit überschüssigem Eisenchlorid destillirt, so geht alles Jod über und Eisenchlorür bleibt zurück. Letzteres kann man mit Chamäleon bestimmen. Da man aber bei dieser Operation das Jod leicht in vorgeschlagenem Jodkalium auffangen und lösen kann, so ist es sicherer, das Jod selbst zu bestimmen, was mit unschweiflig-saurem Natron geschieht (s. dieses).
Traubenzucker.

\[C_{12}H_{12}O_{12} = 180 \]

\[Fe \times 0'642 = Traubenzucker. \]

Die Bestimmung des Traubenzuckers durch Chamäleon gründet sich auf die Oxydation des durch den Traubenzucker ausgeschiedenen Kupferoxyduls. Über diesen Vorgang verweise ich auf die Hauptstelle unter den Fällungsanalysen mit gleicher Überschrift.

Der Traubenzucker reduziert das Oxyd von 10 At. Kupferoxyd zu Kupferoxydul, nimmt also 5 At. Sauerstoff aus; 10 CuO \(-\) O\(_5\) = 5 Cu\(_2\)O. Im System würde eine \(\frac{1}{10}\) Chamäleonflüssigkeit mit 3'162 g übermangansaurem Kali im Liter den fünften Theil eines zehntausendstel Atoms Traubenzucker anzeigen, nämlich \(\frac{180}{5 \cdot 10000} = 0'0036\) g Traubenzucker.

Da wir aber überall die empirische Chamäleonlösung mit 5'646 g übermangansaurem Kali im Liter anwenden, so muss auch der Werth eines Cubikcentimeters in demselben Verhältniss steigen; oder 3'162 : 5'646 = 0'0036 : \(x\), woraus \(x = 0'00642\); und da 1 cbcm empirische Chamäleonlösung = 0'010 g Fe ist, so wird allgemein

\[Fe \times 0'642 (8) = Traubenzucker. \]

0'200 g reiner trockener Traubenzucker gaben Kupferoxydul = 31'2 cbcm empirischen Chamäleons; diese mit 0'642 multipliziert geben 0'200324 g Traubenzucker.
Harnsäure.

50 ccmb alkalischer Kupferlösung mit 36°8 g Kupfervitriol in Liter erforderten 12°5 ccmb 2 procentischer Zuckerlösung, entsprechend 0°250 g Traubenzucker; das abfiltrirte Kupferoxydul mit schwefelsaurem Eisenoxyd behandelt erforderte 39°1 ccmb empirischen Chamäleons = 0°251022 g Traubenzucker.

Die Methode ist nicht ganz frei von Einwürfen. Sie gibt gewöhnlich etwas mehr als die unter den Fällungsanalysen beschriebene. Es gibt jedoch viele Fälle, wo man kaum eine Wahl hat; so bei der Zuckerbestimmung in Früchten, Beeren, stark gefärbten Flüssigkeiten, Malzextract.

Harnsäure.

\[\text{Fe} \times 1°21 = C_5\text{HN}_3\text{O}_2, \text{HO}. \]

Harnsäure in heisser wässriger Lösung wird von Chamäleon unter Vernichtung seiner Farbe zersetzt, anfangs so rasch wie bei Eisenoxydul-salzen, gegen Ende nur unter Mitwirkung der Wärme und langsamer.

0°3 g Harnsäure aus Boexkrementen in etwas Äetzkali gelöst, dann mit Wasser verdünnt und so weit erhitzt, dass bei Zusatz von Schwefelsäure alles gelöst blieb, erforderten in zwei ganz gleichen Versuchen 24°8 ccmb empirisches Chamäleon = 0°248 g Fe, woraus \[\text{Fe} \times 1°21 = \text{Harnsäure}. \]

Das Verfahren ist zu gebrauchen, wenn kleine Mengen Harnsäure auf einem Filterbogen hangend nicht gewogen werden können. Dass keine anderen organischen Stoffe vorhanden sind, welche auf Chamäleon wirken, ist nicht immer festzustellen. Es entwickeln sich keine Gasarten und es entsteht eine andere organische Verbindung, die gegen Chamäleon weniger empfindlich ist. Im Harn selbst kann die Harnsäure nicht unmittelbar mit Chamäleon gemessen werden, weil noch andere darauf wirkende Stoffe vorhanden sind, sondern die Harnsäure muss immer durch Salzsäure und 24 stündiges Stehen an einem kalten Orte ausgeschieden und auf einem Filtrum etwas ausgewaschen sein. Das Wägen auf einem getrockneten Filtrum ist eine lange dauernnde und viel Sorgfalt erfordernnde Arbeit.

Die Harnsäure wird vom Filtrum mit erwärmtem und verdünntem Äetzkali abgewaschen und in ein Becherglas filtrirt, bis an 100 bis 150 ccmb verdünnt, erwärmt, mit viel Schwefelsäure verdünnt und dann sogleich mit Chamäleon gemessen. Das Stehenbleiben der rothen Farbe ist nicht unbegrünst, und man muss sich mit einer mässigen Zeit von einigen Minuten begnügen. Es bleibt immer eine Nothenalyse von nicht
III. Chamäleon.

sehr grosser Genauigkeit und nur zulässig, weil die Wägung auch keine vollkommen scharfen Resultate gibt.

Versuche, die Harnsäure durch Chamäleon in alkalischer Lösung, oder durch doppelt chromsaures Kali, durch Kaliumeisencyanid, durch Jodlösung titrimetrisch zu bestimmen, führten zu keinem brauchbaren Verfahren.

Zusammenstellung der Factoren der verschiedenen Körper, bei Anwendung von empirischer Chamäleonlösung mit 5·646 g übermangansaurem Kali im Liter.

Fe bedeutet überall die Menge metallischen Eisens im Eisenoxydul, welche zu Oxyd oxydiert wurde.

Das Eisen wird an der Bürette abgelesen, indem die Cubikcentimeter Centigramme Fe sind.

Alphabetisch nach den Anfangsbuchstaben der lateinischen Formeln:

\[
\begin{align*}
Fe \times 1\cdot238 &= Bi \text{ (Wismuthmetall).} \\
 0\cdot5 \times &= CaO \text{ (wasserleerer Kalk).} \\
0\cdot893 \times &= CaO, CO_2 \text{ (kohlensaurer Kalk).} \\
0\cdot643 \times &= C_2O_3 \text{ (wasserleere Oxalsäure).} \\
1\cdot128 \times &= C_2O_3, 3HO \text{ (kristallinische Oxalsäure).} \\
1 \times &= Cd \text{ (Kadmium).} \\
0\cdot634 \times &= Cl \text{ (Chlor).} \\
0\cdot2249 \times &= ClO_3 \text{ (Chlorsäure).} \\
0\cdot3648 \times &= ClO_5, KO \text{ (chlorsaures Kali).} \\
0\cdot312 \times &= Cr \text{ (Chrommetall).} \\
0\cdot910 \times &= Cr_2O_3 \text{ (Chromoxyd).} \\
0\cdot598 \times &= CrO_3 \text{ (Chromsäure).} \\
0\cdot8733 \times &= 2CrO_3, KO \text{ (doppelt chromsaures Kali).} \\
0\cdot566 \times &= Cu \text{ (Kupfer durch Zink gefällt).} \\
1\cdot130 \times &= Cu \text{ (Kupfer aus Kupferoxydul).} \\
7\cdot543 \times &= FeCy, 2KCy, 3HO \text{ (kristallinisches Blutlangensalz).} \\
11\cdot760 \times &= Fe_2Cy_3, 3KCy \text{ (Kaliumeisencyanid).} \\
3\cdot5714 \times &= Hg \text{ (Quecksilber).} \\
4\cdot838 \times &= HgCl \text{ (Quecksilberchlorid, Sublimat).} \\
0\cdot491 \times &= Mn \text{ (Manganmetall).} \\
0\cdot634 \times &= MnO \text{ (Manganoxydul).} \\
0\cdot777 \times &= MnO_2 \text{ (Manganhyperoxyd).} \\
0\cdot397 \times &= Mn_2O_7 \text{ (Übermangansaure).} \\
0\cdot5646 \times &= Mn_5O_7, KO \text{ (Übermangansaures Kali).}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Stoff</th>
<th>Menge</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.903</td>
<td>MoO₃ (Molybdänäure).</td>
</tr>
<tr>
<td></td>
<td>0.339</td>
<td>NO₃ (Salpetrige Säure).</td>
</tr>
<tr>
<td></td>
<td>0.3214</td>
<td>NO₃ (wasserleere Salpetersäure).</td>
</tr>
<tr>
<td></td>
<td>0.6018</td>
<td>NO₂₃, KO (Kalisalpeter).</td>
</tr>
<tr>
<td></td>
<td>0.506</td>
<td>NO₂₃, NaO (Natronsalpeter).</td>
</tr>
<tr>
<td></td>
<td>Nitrat</td>
<td>Grammen desselben Nitrats.</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.849</td>
<td>Pb (Blei aus oxalsaurem Bleioxyd).</td>
</tr>
<tr>
<td></td>
<td>0.2857</td>
<td>S (Schwefel).</td>
</tr>
<tr>
<td></td>
<td>0.3036</td>
<td>SH (Schwefelwasserstoff).</td>
</tr>
<tr>
<td></td>
<td>1.0535</td>
<td>Sn (Zinn).</td>
</tr>
<tr>
<td></td>
<td>0.642</td>
<td>wasserleerem Traubenzucker.</td>
</tr>
<tr>
<td></td>
<td>0.5809</td>
<td>Zn (Zink).</td>
</tr>
<tr>
<td></td>
<td>0.724</td>
<td>ZnO (Zinkoxyd).</td>
</tr>
</tbody>
</table>
Vierter Abschnitt.

Chromsäure.

Doppelt chromsaures Kali gegen Eisenoxydul.

Allgemeines Verhalten.

Diese zuerst von Penny und unabhängig von ihm auch von Schabus angegebene Methode beruht auf der Zersetzung der Chromsäure in saurer Lösung durch Eisenoxydulsalze:

\[2 \text{CrO}_3 + 6 \text{FeO} \rightarrow \text{Cr}_2\text{O}_3 + 3 \text{Fe}_2\text{O}_3. \]

Das doppelt chromsaure Kali hat als oxydierende Substanz die wesentlichen Vorzüge, dass seine Lösung ganz titerbeständig ist, dass man es sehr leicht im chemisch reinen Zustande herstellen kann, dass es kein Krystallwasser enthält und dass es, einmal durch Schmelzen von seinem hygroskopischen Wasser befreit, sich sehr lange aufbewahren lässt, ohne dass es sich verändert. Es kommt im Handel in grossen, hochmorgenrothen wasserleeren Krystallen vor, die sehr häufig ganz rein sind. Die wichtigste Verunreinigung ist die durch schwefelsaures Kali. Man kann jedoch nicht mit Barytsalzen auf Schwefelsäure prüfen, ohne die Chromsäure vorher zerstört zu haben, weil sie mit Baryt ein schwerlösliches, hellgelbes Salz bildet.

Sollte das Salz Schwefelsäure enthalten, so muss es einigemal umkrystallisirt werden. Das umkrystallisirte und nochmals auf seine Reinheit geprüfte Salz muss gegen Beimischung von organischen Substanzen geschützt werden.

Es kommt nun darauf an, das Ende der Operation, d. h. jenen Moment zu erkennen, wo die letzte Spur Eisenoxydul oxydiert worden ist. Da die Chromsäure nur auf Eisenoxydul wirkt, so ist einleuchtend, dass der zu bestimmende Eisengehalt als Oxydul vorhanden sein muss, und dass, wenn diese Bedingung nicht geleistet ist, zuerst eine Reduction des Oxyds oder Chlorids zu Oxydul oder Chlorür stattfinden muss. Diese
IV. Chromsäure gegen Eisenoxydul.

vollkommen dunklen Räume die Flüssigkeit sich sehr lange hält. Man stelle die Flasche aus weissem Glase in eine Kapsel aus dicker Pappe, verschliesse sie mit einem Stopfen, durch welchen die Tüpfelröhre fest hindurchgeht, und oben über den Stopfen schiebe man fest eine kreisrunde Papp scheibe, welche eben in die Pappkapsel hineingeht und alles Licht abschliesst. Man fasst beim Gebrauche diese Röhre an dem her vorragenden Ende an, und zieht sie mit der Papp scheibe und dem Stopfen aus dem Glase, um die Tropfen auf die Porzellanplatte aufzusetzen. Die Flüssigkeit kann sehr verdünnt sein. Ein Körnchen des Salzes von der Grösse einer Erbse reicht hin für 50 bis 60 cbcm der Probeflüssigkeit, und hierbei ist auffallend, dass eine sehr verdünnte Flüssigkeit ebenso deutlich gelb gefärbt ist, als eine solche, die 5 bis 6 mal mehr Salz enthält.

0'070 g schwefelsaures Eisenoxydul-Ammoniak in 800 bis 900 cbcm Wasser gelöst geben noch deutliche Reaction, in 1000 cbcm noch eben eine grünliche Färbung. Da 0'070 g Eisensalz 0'010 g Eisen enthalten, so wird Eisen in 100000 Theilen Wasser gelöst noch eben angezeigt.

Obschon diese Arbeit eine Tüpfelanalyse ist, so ist sie doch nicht so zeitraubend, als man glauben sollte, und Erfahrung gibt eine solche Sicherheit, dass man eine Bestimmung bis auf einen einzigen Tropfen genau in verhältnissmässig kurzer Zeit ausführen kann. Die Anzahl der auf dem Porzellanteller gemachten Proben beschränkt sich zuletzt auf 8 bis 10. Die zu diesen Proben herausgenommene Flüssigkeit ist ganz ohne Bedeutung auf das Resultat, da man den Glastab nur an der Spitze benetzt anwendet.
IV. Chamäleon gegen Eisenoxydul.

Sehr bequem ist es, einen kleinen feuchten Schwamm daneben liegen zu haben, an welchem man den Glasstab abstreicht, ehe man ihn wieder in die Flüssigkeit eintaucht.

Was die Stärke der anzuwendenden chromsauren Kalilösung betrifft, so liegen auch hier zwei Methoden vor, nämlich 1) die systematische und 2) die empirische. Die erste ist so regulirt, dass 1 obcm \(\frac{1}{10000} \) Atom Sauerstoff abgibt, wo als dann durch 1 obcm \(\frac{1}{10000} \) Atom eines jeden Körpers angezeigt wird, welcher zu seiner Oxydation 1 At. Sauerstoff aufnimmt. 2 At. Chromsäure (Cr₂O₃) geben 3 At. Sauerstoff ab, es müsste also zu einer normalen Lösung \(\frac{1}{3} \) At. doppelt chromsaures Kali, und zu einer Zehentalösung \(\frac{1}{30} \) At. auf ein Liter genommen werden. Da aber Eisen nur \(\frac{1}{2} \) At. Sauerstoff aufnimmt, so ist 1 obcm dieser Chromlösung \(\frac{2}{10000} \) At. Eisen. Bei der Prüfung dieses Verhältnisses zeigte sich, dass bei der früheren Annahme des Atomgewichtes des Chrum zu 26.78, wo das doppelt chromsaure Kali 148.67 wird, jedesmal chromsaures Kali zu viel vorhanden war, dass also das Atom des Chrum in Bezug auf Eisen \(= 28 \) zu hoch genommen war. Es kommt hier weniger auf eine absolut richtige Bestimmung des Chrum an, als auf sein Verhältnis zu Eisen und Eisenoxydulsalzen, und dies kann durch dieselbe Operation ermittelt werden, wodurch wir das Eisen zu bestimmen suchen. Es ist sogar vorauszusetzen, dass wenn wir in dieser Weise das relative Verhältnisse zwischen Eisen und doppelt chromsaurem Kali feststellen, dann zugleich eine Anzahl kleiner Fehler, die in der Methode und in den Atomgewichten liegen können, unschädlich gemacht werden, weil sie bei der Titerstellung in ganz gleicher Art, wie bei der Eisenbestimmung vorkommen müssen. Zunächst wurde der Wert des anzuwendenden schwefelsauren Eisenoxydul-Ammoniaks durch eine Gewichtsanalyse festgestellt.

2 g dieses in feinen Krystallen angeschossenen und ganz lufttrocknen Salzes wurden in Salzsäure gelöst, mit Salpetersäure oxydiert, mit Ammoniak gefällt und vollkommen ausgewaschen.

Nach dem Trocknen und Glühen wog das Oxyd nach Abzug von 0.003 g Filterflasche 0.407 g. Diese sind \(= 0.2849 \) g Eisen \(= 14.245 \) Proc. Die Berechnung verlangt 14.286 Proc. 1 g dieses Doppelsalzes verbrauchte gegen Chamäleon 20.5 obcm dieser Flüssigkeit; \(\frac{1}{7} \) g Eisen, frisch gelöst, zerstörte ebenfalls 20.5 obcm Chamäleon.

Es wurde zuerst genau abgewogener Eisenraht in Schwefelsäure gelöst und dazu von der berechneten Menge des chromsauren Kalis der grösste Antheil abgewogen hinzufügt und nur der letzte Rest nach dem Ausspruch des Versuchs aus einer sehr genauen und in 10 tel obcm getheilten Bürette hinzugefügt. Die dazu verwendete Chromlösung war eine andere und enthielt 10 g Salz im Liter, also 0.010 g im Cubikcentimeter.
Die gewogenen und gemessenen Mengen des chromsauren Kalis wurden zusammengelegt und daraus das Atomgewicht des chromsauren Kalis gerechnet.

<table>
<thead>
<tr>
<th>Eisen g</th>
<th>Verbrauchtes chromsaures Kali in Grammen</th>
<th>Berechnetes Atomgewicht des chroms. Kalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56</td>
<td>0.4919</td>
<td>147.56</td>
</tr>
<tr>
<td>0.56</td>
<td>0.492</td>
<td>147.60</td>
</tr>
<tr>
<td>0.56</td>
<td>0.4915</td>
<td>147.45</td>
</tr>
<tr>
<td>1.157</td>
<td>1.010</td>
<td>147.50</td>
</tr>
<tr>
<td>0.637</td>
<td>0.560</td>
<td>147.69</td>
</tr>
</tbody>
</table>

Mittel ... 147.56

Es kommen deshalb \[\frac{147.56}{30} = 4.919\] g doppelt chromsaures Kali auf 1 Liter, und das Atom des Chroms gegen Eisen \(= 28\) würde 26.24 sein. Um sich jedoch gegen Zufälligkeiten sicherzustellen, muss man die gemachte Lösung mit der Bürette selbst, die man zu Analysen gebraucht, prüfen.

Es wurde eine solche Chromlösung mit 4.919 g doppelt chromsauren Kalis im Liter dargestellt und in eine Bürette eingefüllt.

Sodann wurden 0.291 g Eisendraht abgewogen, in Schwefelsäure gelöst und mit dieser Flüssigkeit gemessen. Es wurden genau 52 cbcm davon verbraucht. Diese mit 0.0056 multiplicitiert geben 0.2912 statt der angewendeten 0.291 g.

Ein Stück Eisendraht wog 0.408 g; es wurden verbraucht 73.1 cbcm Chromlösung. Dies gibt 0.40936 g Eisen.

Es bleibt also die Zehntelchromlösung aus dem systematischen Gewicht von 4.919 g reinen doppelt chromsauren Kalis zu 1 Liter stehen.

Da man bei Tüpfelanalysen leicht den richtigen Punkt überschreitet, so ist es wichtig, eine solche überstürzte Bestimmung wieder in Ordnung bringen zu können. Man setzt dann eine kleine gewogene Menge schwefelsaures Eisenzydul-Ammoniak zu, und vollendet die Analyse in gleicher Weise, aber mit grösserer Sorgfalt.
IV. Chromsäure gegen Eisenoxydul.

Ein Stück Eisendraht wog 0.310 g und die Bürette war eben bis 56.2 cbcm ausgelassen, als man bemerkte, dass der richtige Punkt schon überschritten war. Es wurde nun 0.1 g schwefelsaures Eisenoxydul-Ammoniak zugesetzt und dann die Operation bis zu Ende gebracht. Es waren im Ganzen 58 cbcm verbraucht. Zieht man nun die 2.55 cbcm Chromlösung ab, die 0.1 g Eisensalz entsprechen, so bleiben 55.45 cbcm. Diese mit 0.0056 multipliziert geben 0.31052 g Eisen, statt der angewendeten 0.310 g.

Oder einfacher, wenn man empirische Eisenlösung mit 70 g des Doppelsalzes im Liter mit amalgamierten Zink oder unter Petroleum (S. 189, Fig. 85) vorrätig hat, so setzt man davon 1 cbcm zu, titriert wieder aus, und zieht 0.010 g Eisen ab.

Eisen.

1) Im System:

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Zehntel-Chromlösung = 1 Proc. Substanz</th>
<th>1 cbcm Zehntel-Chromlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>68. 2 At. Eisen</td>
<td>2 Fe</td>
<td>56</td>
<td>0.56 g</td>
<td>0.0056 g</td>
</tr>
<tr>
<td>69. 1 At. Eisen-oxyd</td>
<td>Fe₂O₃</td>
<td>80</td>
<td>0.80</td>
<td>0.0080</td>
</tr>
<tr>
<td>70. 2 At. krystall. Eisenvitriol</td>
<td>2(FeO + SO₃) + 7 H₂O</td>
<td>278</td>
<td>2.78</td>
<td>0.0278</td>
</tr>
<tr>
<td>71. 2 At. krystallis. schwefelsaures Eisenoxydul-Ammoniak</td>
<td>2(FeO + 2 SO₃) + NH₄O + 6 H₂O</td>
<td>392</td>
<td>3.92</td>
<td>0.0392</td>
</tr>
</tbody>
</table>
2) mit empirischer Chromlösung:

Das oxydirté Eisen liest man an der Bürette ab; die konstanten Factoren sind dieselben wie bei Chamäleon (S. 190).

Dass sich das Eisen nach dieser Methode bestimmen lässt, ist so eben gezeigt und mit Beispielen belegt worden. Das Eisen muss jedesmal in den Zustand des Oxyduls übergeführt werden, wenn es nicht schon in diesem Zustande vorhanden ist.

Hat man nur mit Eisenbestimmungen zu thun, so bedient man sich gewöhnlich der empirischen Methode.

1 At. doppelt chromsaures Kali gibt 3 At. Sauerstoff ab, und diese oxydiren das Oxydul von 6 At. Eisen = 168 Eisen. Um also eine empirische Chromlösung darzustellen, welche im Liter das Oxydul von 10 g Eisen oxydirt, hat man \[\frac{147.59 \cdot 10}{168} = 8.788 \text{ g} \]
doppelt chromsaures Kali zu einem Liter zu lösen, und 0.8785 g zu einer zehntel empirischen Lösung.

Von der empirischen Lösung ist 1 cbcm = 0.010 g Eisen, und von der Zehntellösung 1 cbcm = 0.001 g Eisen.

Das Eisen soll nun, wie das Silber, zu Tausendsteln bestimmt werden. Um nun jedenfalls noch etwas Eisen in der mit chromsaurem Kali versetzten Lösung zu haben, wäge man etwas mehr als 1.000 g, also etwa 1.050 g, bei Gusszeisen 1.2 bis 1.3 g ab.

Diese lose man mit Sorgfalt, dass nichts verspritzt, in reiner Salzsäure oder Schwefelsäure, und nach geschehener Lösung lasse man aus einer Pipette 100 cbcm empirischer Normallösung auf einmal hinzu. Über die Manipulation beziehe ich mich auf das, was von der empirischen Silberprobe gesagt werden wird. Aus den 1.050 Thln. der Probe sind nun 1.000 Thle. Eisen bereits oxydirt; man bringt nun die Flüssigkeit mit der Zehntelchromlösung gefüllte Bürette, und lässt diese Flüssigkeit unter Betupfen von Kaliumcyanid tropfenweise hinzu, bis die blanke Farbe derselben eben aufhört. Jeder Cubikcentimeter dieser Flüssigkeit ist gleich 0.001 Eisen. Man addirt die Cubikcentimeter zu den 1.000 Thln., und berechnet die erhaltene Zahl auf die angewandten 1.050 Thle.

Die Auflösung selbst macht man am besten in einer etwas weiten und langen Probiröhre (20 mm auf 200 mm), die sich in einem Stative eingeklemmt und lose mit einem Stopfen bedeckt ist. Man kann auch das stinkende Gas durch eine Kautschukröhre in Wasser leiten. Die Auflösung ist beendet, wenn die mit weissem Schaum schwimmenden Eisentheilchen verschwunden sind. Nach der Lösung spült man die Flüs-
sigkeit in eine passende Flasche, welche schon 100 cbcm der Chromlösung enthält. Man schüttelt um und titriert mit der Zehntellösung in bekannter Weise zu Ende.

1'050 g Krupp'scher Gussstahl von einem Drehspahn der Spandauer Geschützgießerei wurden nach der Lösung mit 100 cbcm (= 1 g Eisen) Chromlösung versetzt und erforderten noch 40'2 cbcm Zehntellösung. Es sind also im Ganzen 1'000 + 0'0402 oder 1'0402 Thle. reines Eisen in 1'050 Theilen Stahl enthalten oder 990'7 Tausendstel. Es enthält dieser berührte Stahl also noch nicht ein ganzes Procent Kohlenstoff. Die Auflösung war sehr wenig durch Kohle getrübt, und das entweichende Gas noch sehr stark. Eine zweite Probe gab 989'5 Tausendstel.

Will man sich der gewöhnlichen systematischen Flüssigkeiten bedienen, so hat man etwas mehr als 0'56 g Eisen (etwa 0'58 g) abzuwägen, diese mit 100 cbcm der systematischen Zehntellösung zu versetzen, und dann mit einer Hundertstellösung die Analyse zu beenden.

Bis jetzt hat man bei metallischem Eisen entweder nur die anderen Stoffe, wie Kohlenstoff, Silicium, bestimmmt und das Eisen als Ausgleich der gewogenen Substanz angesetzt, oder dasselbe als Oxyd gefällt und nach dem Glühen gewogen.

C h r o m.

Chrom = 26'24; Chromsaure (CrO₃) = 50'24; doppelt chromsaures Kali (2 CrO₃ + KO) = 147'59; chromsaures Bleioxyd (CrO₃ + PbO) = 161'81.

\[
\begin{align*}
Fe \times 0'312 &= Cr. \\
\text{und} \times 0'598 &= CrO₃. \\
\text{und} \times 0'8733 &= 2 CrO₃ + KO. \\
\text{und} \times 1'926 &= CrO₃, PbO.
\end{align*}
\]

Die Chromsaure wird mit ihren eigenen Salzen gemessen und das schwefelsaure Eisenoxydul-Ammoniak oder das metallische Eisen ist nur der Zwischenkörper, auf den die bekannte Lösung und der unbekannte Körper bezogen werden.

Wen man eine gegebene chromsaure Verbindung zu bestimmen hat, so titriert man auf der Wage ein offenes Becherglas mit Eisendoppel-
salz gefällt. Die chromsaure Verbindung ist in saurer Lösung ebenfalls in einem Becherglas. Man bringt nun mit einem Löffel, alles über einem Bogen schwarzen Papiers, kleine Mengen des Eisensalzes zu der
chromsauren Verbindung, schüttelt um bis das Eisensalz gelöst wird und die Farbe des Gemenges rein smaragdgrün geworden ist. Es kommt darauf an, einen kleinen Ueberschuss des Eisendoppelsalzes zu haben, was man durch Prüfen auf einem Porzellan teller mit Tropfen einer Kaliumeisencyanidlösung erfährt. Im vorliegenden Falle soll die Vermischung beider eine blasse Färbung erzeugen. Man setzt das Glas mit dem Eisensalze auf die Wage zurück und bestimmt den verbrauchten Theil durch Gewichtszulage, wobei vorausgesetzt ist, dass nichts verloren gegangen, und dass das Fehlende sich wirklich in der Probe befindet; oder, wenn man eine ungefähre Kenntnisse von dem Chromsäuregehalt hat, berechnet man die Menge des mehr als hinreichenden Eisensalzes, wobei man zweckmässig Zahlen nimmt, die sich glatt durch 7 dividiren lassen.

Man hat nun noch den kleinen Ueberschuss des Eisendoppelsalzes mit Chromlösung zu bestimmen, was in bekannter Art geschieht. Diesen berechnet man auf Eisen, zieht diese Menge von der durch Rückwägen erhaltenen ab, und multiplizirt das Eisen mit dem richtigen Factor, um die gesuchte Substanz zu erhalten.

Ein Beispiel möge dies anschaulicher machen. 1 g doppelt chromsaures Kali wurde zur Bestimmung genommen.

Es wurden demselben zuerst 7·7 g Eisendoppelsalz und Schwefelsäure zugesetzt, allein die Eisenoxydulreaction trat noch nicht hervor. Es wurde nun noch 0·7 g Eisensalz zugesetzt, also im ganzen 8·4 g = 1·2 g Fe. Dagegen wurden 4·5 cbcm empirischer Chromlösung (1 cbcm = 0·010 g Fe) gebraucht, es waren also 1·2 weniger 0·045 g = 1·155 g Fe als oxydirt worden; diese mit 0·8733 multiplizirt geben 1'0086 g, statt 1'000 g doppelt chromsauren Kalis; ferner wurden 3'028 g Eisendoppelsalz = 0·4326 g Fe, abgewogen und mit der Chromlösung gemessen. Es wurden 42·7 cbcm verbraucht. Obige 0'4326 g Fe mit 0·8733 multiplizirt geben 0·3777 g doppelt chromsaures Kali; jene 42·7 cbcm desselben enthalten aber 42·7 × 0·008788 = 0·37524 g dieses Salzes; also gute Uebereinstimmung.

Die Methode ist ganz parallel derselben Bestimmung durch Chamäleon (S. 223) und gibt sehr übereinstimmende richtige Resultate.

Manganoxide.

Fe × 0·778 = MnO₂.

Das Verfahren ist ganz wie bei der Chamäleonanalyse (S. 195), nur die Bestimmung des Ueberschusses nach der Methode verschieden.
IV. Chromsäure gegen Eisenoxydul.

Kupfer.

Dieselben Verfahrensarten und Konstanten, wie oben (S. 201) unter Chamäleon.

Salpetersäure.

Streng's und Kessler's Methoden.

1) Pogg. 92, 57.
den allgemeinen Grundsatz aufstellen, wonach solche Methoden beurtheilt werden müssen.

Wenn der zu oxydirende Körper in eine Säure übergeht, so muss die Einwirkung in alkalischer Flüssigkeit geschehen.

Wenn der zu oxydirende Körper in ein Oxyd übergeht, so muss die Einwirkung in saurer Flüssigkeit geschehen.

Unter diesen Bedingungen entstehen genaue und gleichbleibende Resultate.

Chromsäure gegen Eisenoxydul bildet Chromoxyd und Eisenoxyd, also zwei Oxyde, und die Einwirkung ist in saurer Lösung konstant.

Chromsäure gegen Zinnchlorür bildet Chromoxyd und Zinnsäure, und die Einwirkung ist in saurer Lösung unsicher.

Jod gegen Zinnchlorür ist in saurer Lösung unsicher, in alkalischer bestimmt;

ebenso Jod gegen arsenige Säure und Antimonoxyd in saurer Lösung unsicher, in alkalischer bestimmt. In den drei letztgenannten Fällen entstehen die Säuren von Zinn, Arsen und Antimon und ein neutrales Haloidsalz.

Aus obigen Gründen wurde die Streng'sche Methode in der 2. Auflage dieses Werkes weggelassen, und nur Chromsäure gegen Eisenoxydul beibehalten.

Aus der allgemeinen Betrachtung ergibt sich auch, warum die Kessler'schen Methoden 1) keine genauen sind.

Derselbe stellte

1. Arsenige Säure gegen Chromsäure,
2. Antimonoxyd gegen Chromsäure,
3. Arsenige Säure gegen Uebermanganssäure,
4. Antimonoxyd gegen Uebermanganssäure.

Arsenige Säure und Antimonoxyd (gleichbedeutend mit antimoniger Säure) werden nur in alkalischer Lösung vollständig oxydirt; da aber Chromsäure und Uebermangansäure durch ihre Reduction in Oxyde übergehen, die in alkalischer Lösung nicht existiren können, so können durch die beiden letzteren die beiden ersteren nicht gemessen werden. Es wird nicht in Abrede gestellt, dass kleine Mengen arseniger Säure und Antimonoxyd durch einen Uberschuss von Chromsäure oder Uebermangan-
säure in saurer Lösung in Arsen- und Antimonsäure umgesetzt werden können, aber es geschieht dies nicht bei jeder Verdünnung und es geschieht nicht vollständig, so dass in saurer Lösung kleine Mengen von arseniger Säure und Chromsäure nebeneinander bestehen können, ebenso von Antimonoxyd mit höheren Oxyden des Mangans und der Uebermang-
säure.

Arsenige Säure und Antimonoxyd in saurer Lösung geben gegen Chromsäure kein deutliches Zeichen der Beendigung der Zersetzung, und

1) Pogg. 118, 17.

M o h r 's Titrirbuch.
man muss mit titrirter Eisenlösung zurückmessen; gegen Uebermangansäure sind beide je nach der Verdünnung ungleich wirksam.

Man betrachte die Resultate von Kessler selbst. Auf 10 cbcm Arsenlösung gebrauchte er bei Verdünnung zu 100 cbcm 18,4 cbcm Chamäleon, bei Verdünnung zu 400 cbcm 20,2 cbcm desselben. Dann sagt er (Pogg. 118,49), dass bei der dunkeln, beinahe schwarzbraunen Farbe der Flüssigkeit der Moment der eintretenden Röthung äusserst schwierig zu bemerken gewesen sei. Das wird man wohl nicht für eine gute Methode zu halten haben. Die eingetretene rothe Färbung verschwindet oft noch nach einigen Minuten, woraus hervorgeht, dass arsenige Säure und Antimonoxyd mit Uebermangansäure eine Zeit lang nebeneinander bestehen können. Ebenso trostlos sind Kessler's Zahlen für 0,05 g Antimonoxyd, welche in 20 cbcm Salzsäure gelöst 16,2 cbcm Chamäleon, in 10 cbcm Salzsäure 22,6 cbcm Chamäleon, also 6,4 cbcm mehr erforderten.

Jod
gegen unterschwefligsaures Natron.

Wechselwirkung der Stoffe.

Die Grundlage dieser elegantesten und schönsten aller maassanalytischen Methoden ist die oxydirende Wirkung des Jods gemessen durch unterschwefligsaures Natron.

man eine länger gestandene Jodlösung damit am leichtesten auf ihren wirklichen Werth zurückführen kann.

Das unterschwefligsaure Natron hat die Formel $S_2O_3 + NaO + 5 H_2O = 124$. Wenn es mit einer Lösung von Jod in Jodkalium zusammenkommt, so binden 2 At. unterschweflige Säure 1 At. Sauerstoff aus 1 At. zersetzten Wassers, und es entsteht Tetrathionsäure und Jodwasserstoff:

$$2 S_2O_3 + J + HO = S_4O_6 + JH.$$

In der Flüssigkeit kann man durch Barytsalze keine Spur Schwefelsäure entdecken. Es ist Regel, dass das unterschwefligsaure Natron nur in saure Flüssigkeiten komme, in denen bereits das zu messende Jod vollständig ausgeschieden ist. Ist dies der Fall, so geht das unterschwefligsaure Natron regelmäßig in Tetrathionsäure über, ohne von der Säure zersetzt zu werden. Sonst aber wird das Salz von freien Säuren zersetzt und es entstehen 2 At. Schwefel und 2 At. schweflige Säure:

$$2 S_2O_3 = S_4 + 2 SO_2.$$

Die 2 At. schweflige Säure nehmen, um in Schwefelsäure überzugehen, 2 At. Sauerstoff resp. Jod auf, sind also doppelt so stark in Bezug auf die Jodlösung, als die unterschweflige Säure, woraus sie entstanden sind, welche nur 1 At. Sauerstoff zu Tetrathionsäure aufnehmen:

$$2 S_2O_3 + O = S_4O_6$$

und

$$2 SO_2 + 2 O = 2 SO_3.$$

Die Maßsflüssigkeiten und Titerstellung.

12.7 g Jod und 24.8 g unterschwefligsaures Natron zu 1 Liter.

Die Grundlage der Messung ist die Wirkung des Jods. Dieser Körper eignet sich besonders zum Urmasse, weil er sich leichter wie die meisten anderen chemisch rein darstellen lässt und ein sehr hohes Atomgewicht hat. Es muss deshalb die Bereitung der Zehnteljodlösung mit der grössten Sorgfalt vorgenommen werden.

Um Zehnteljodlösung darzustellen wäge man $\frac{1}{10}$ At. Jod = 12.7 g auf einem Uhrglase genau ab, was bei grossen Krystallen auf dem offenen Glasgefäss geschehen kann. Man werfe diese Menge rasch in eine Literflasche, spüle alle Krystallreste mit der Spritzflasche nach und gebe ungefähr 18 g reines Jodkalium und 200 ccm Wasser hinzu. In der gut verschlossenen Flasche bewirke man die Lösung durch öfteres Umwischen ohne alle Erwärmung. Nun setze man etwa bis zu 500 ccm Wasser zu und schüttele kräftig, um allen Joddampf in die Flüssigkeit aufzunehmen; zuletzt füle man bis nahe an die 1000 ccm Marke an und vermische durch Umschütteln. Die ganze Operation mache man an einem kühlen Orte mit kaltem Wasser und lasse nachher die Flüssigkeit zur Normaltemperatur von 14° R. warm werden, ergänze alsdann den letzten Rest Wasser bis genau an die Marke und schüttele um. Alle Lösungen, worin freies Jod enthalten ist, sollen nicht mit Korken, sondern mit gut schliessenden Glasstopfen verschlossen sein. Es ist zweckmässig diese Lösung in kleinen 200 bis 300 ccm fassenden Flaschen, die beinahe gefüllt sind, aufzubewahren. In dieser Bewahrung hält sie sich ohne Verderbniss unbestimmt lange, und während des Gebrauches kann sie nicht durch Dampfbildung schwächer werden.

Zu sehr scharfen Bestimmungen bedient man sich einer noch verdünnten Flüssigkeit, die etwa nur $\frac{1}{4}$ oder $\frac{1}{5}$ dieser Zehntel- Flüssigkeit enthält. Man gebraucht sie aus sehr grossen Blasebüretten (S. 22), die in ganze Cubikcentimeter getheilt sind, und an denen man Zehntel-Cubikcentimeter abschätzt.

Das anzuwendende Jodkalium muss von Jodsäure frei sein. Man findet dies, wenn man eine mit Stärke versetzte Lösung mit etwas Salzsäure vermischt. Im Falle Jodsäure vorhanden ist, wird Jod ausgeschieden und die Flüssigkeit wird blau. Wenn die Flüssigkeit ungefärbt bleibt, so ist es anwendbar.

Die gleichwertige Lösung von unterschwefligsaurem Natron wird auf diese Jodlösung in der folgenden Art gestellt. Da 2 At. unterschweflige Säure nur 1 At. Sauerstoff oder Jod aufnehmen, so müssen auch 2 At. des unterschwefligsauren Natrons zur Anwendung kommen.
V. Jod gegen unterschwefligsäures Natron.

Im Falle das Salz rein wäre, würden 24.8 g davon gerade hinreichen, eine der Jodlösung gleichwertige Lösung zu geben. Hat man eine grössere Menge dieses Salzes, so kann man mit der ersten Titerstellung zugleich seine Werthbestimmung in der Art vereinigen, dass man in Zukunft mit einer einfachen Wägung sich eine richtige Zehntellösung darstellen kann. Unter Voraussetzung, dass das unterschwefligsäure Natron rein sei, wäge man genau 24.8 g ab, bringe sie mit 2 g anderthalb kohlessauren Ammoniaks in eine Literflasche, löse, falle an die Marke und schüttele um. Diese Flüssigkeit muss nun geprüft werden.

$$97 : 100 = 24.8 : x; \quad x = 25.57$$

25.57 g Salz anwenden müssen, und diese Zahl gilt nun in Zukunft für dieselbe Menge des vorhandenen und angewendeten unterschwefligsäuren Natrons. Zu dem ganzen Liter hätten also 0.75 g des Salzes zugesetzt werden müssen. Nun sind aus obiger Literflasche bereits 30 cbcm Flüssigkeit verbraucht, also nur noch 970 cbcm übrig, und da würde nach dem Ansätze

$$1000 : 0.77 = 970 : x; \quad x = 0.747$$

noch 0.747 g unterschwefligsäures Natron abzuwägen und in den 970 cbcm zu lösen sein. Nachdem dies geschehen, wiederholt man die Prüfung, und sie wird bei richtiger Arbeit und guten Apparaten auf den Tropfen zutreffen. Diese Flüssigkeit ist jetzt zehntelnormal.

Die Maßflüssigkeiten und Titerstellung.

Da die Jodreaction ungem ein empfindlich ist und man bei sehr kleinen Mengen damit zu bestimmender Körper, wie Schwefelwasserstoff, schweflige Säure, Mangan in Mineralien, zu wenige Cubikcentimeter der Lösung verbrauchen würde, um eine grosse Genauigkeit zu erreichen, so bereitet man sich zu diesen Zwecken 1/100 Normallösung, indem man 100 cbcm von jeder der beiden Zehntellösungen in eine Literflasche bringt und mit Wasser bis an die Marke anfüllt.

1 Tropfen dieser Lösung, der bei der Jodlösung 1/zo Milligramm freies Jod enthält, gibt mit Stärkelösung schon eine deutliche Reaction. Die entsprechende hundertstel Natronlösung ist aber sehr wenig haltbar und muss jedesmal frisch bereitet werden, am besten aus gewogenem Salz mit 2'48 g auf 1 Liter.

U rprüfung beider Flüssigkeiten.

Wenn die Flüssigkeiten längere Zeit gestanden haben, oder die Flaschen oft geöffnet worden sind, so hat man Ursache, die Richtigkeit der beiden Flüssigkeiten zu bezweifeln. Die Jodlösung wird schwächer durch Verdunsten von Jod beim Gebrauch der Flüssigkeit. Es ist zweckmässig vor dem Öffnen der Flasche einmal umzuschütteln, um das verdunstete und in Tropfen an den Wänden hängende Wasser zu sammeln und auch den Joddampf wieder in die Flüssigkeit aufzunehmen. Der Glasstopfen muss sehr gut geschlossen und mit Fett eingerieben sein. Man bewahrt die Flasche an einem schattigen Ort, am besten in einem Mauerschrank. Mit dieser Vorsicht hält sich die Flüssigkeit sehr lange richtig.

Die Urprüfung betrifft beide Flüssigkeiten, obgleich sie nicht immer beide gebraucht werden.

Die Jodlösung kann man in mehrere Weise prüfen; entweder 1) man geht auf eine gewogene Menge reines Jod zurück, oder 2) man misst sie gegen Zehntel arsenigsaures Kali aus.

Im ersten Falle wäge man eine beliebige Menge reines Jod zwischen Uhrgläsern oder in einem Platintiegel, bringe es in eine Stöpselflasche, setze Jodkalium und Wasser zu und lasse bis zur Lösung stehen. Dann lässt man unterschwefligsaurer Natrium einfließen, bis die braune Farbe in hellgelb übergegangen ist; erst jetzt füge man Stärkelösung hinzu, und titriere auf farblos. Die verbrauchten Cubikcentimeter notiert man. Nun pipettirt man 10 oder 20 cbcm von der zu prüfenden Jodlösung in ein Becherglas und titrirt sie mit derselben Lösung von unterschwefligsaurer Natron auf farblos. Die 10 cbcm Jodlösung sollen im System 0'127 g Jod enthalten, und diese müssten, wenn sie richtig wären, eine Menge des unterschwefligsauren Natrons verbrauchen, die man aus dem eben gemachten Versuche mit reinem Jod durch eine Proportion berechnet. Wenn diese beiden Zahlen nicht gleich sind, so ist die Jod-
lösung nicht richtig und muss mit einem konstanten Factor multipliziert werden, welchen man dadurch erhält, dass man diejenige Menge Cubikcentimeter, welche die Jodlösung verbrauchen soll, durch jene Menge dividirt, welche sie wirklich verbraucht hat.

Am schärfsten und leichtesten gelingt die Titerstellung nach der zweiten Methode mit zehntel arsenigsäurem Kali unter Zusatz von kohlensaurem Ammoniak. Diese Lösung ist bei gutem Verschluss unbestimmt lange haltbar. Ihre Darstellung wird im folgenden Abschnitt beschrieben werden. Man pipettire 10 oder 20 cbcm zehntel arsenigsäures Kali in ein Becherglas, verdünne ansehnlich, setze noch etwas kohlensaures Ammoniak und Stärkelösung zu, und titrire auf lichtblau. Die Erscheinung ist sehr scharf und sicher, und selbst bei einer Jodlösung von $\frac{1}{4}$ oder $\frac{1}{5}$ der Stärke der zehntel Lösung ist man nicht um einen Tropfen in Zweifel. Es muss kohlensaures Ammoniak im Überschuss vorhanden sein, welches auf die Jodstärke nicht den geringsten Einfluss ausübt, da gegen der arsenigen Säure gegenüber als Alkali wirkt.

Durch einen solchen Versuch kann man den Werth jeder beliebigen Jodlösung ohne weiteres ins System rücken, ohne mit den Atomgewichten mehr zu schaffen zu haben, als in der Berechnung liegt.

Gebraucht man die Hyposulfitlösung allein, so vergleicht man sie mit einer frisch gewogenen Menge reinen Jods, welches in Jodkalium aufgelöst wird. Eine gewogene Menge Jod verbraucht eine bestimmte, zu findende Menge der Natronsalzlösung, hätte aber im System (nach dem Ansatz: 1000 : 12·7 = Jod : x) eine andere Menge verbrauchen sollen. Der Factor ist nun wieder die Sollmenge dividirt durch die Anzahl Cubikcentimeter, welche wirklich verbraucht wurden.

Die Stellung auf frisch abgewogenes unterschwefligsaures Natron ist weniger sicher, weil man keine bestimmten Zeichen der Titerrichtigkeit dieses wasserhaltenden Salzes hat, selbst wenn Reinheit von Chlor und Schwefelsäure nachgewiesen ist.

D i e S t ä r k e l ö s u n g.

Die Stärke wird mit etwas kaltem Wasser vertheilt und dann mit etwa ihrem hundertfachen Gewichte kochenden Wassers übergossen und
Die Stärkelösung.

Bei den vielfachen Anwendungen der Jodlösung und des unter schwefelsauren Natrons in der Maassanalyse ist es eine grosse Belästigung, dass man jedes Mal sich zuerst eine Stärkelösung durch Kochen bereiten soll, und dass dieselbe frisch bereitet nicht klar sein kann, sondern erst durch Absetzenlassen oder Filtriren klar wird.

Um sich diesen Vorzug zu sichern, verfähre man in der folgenden Weise. Die frisch gekochte und eine Nacht in einem Keller abgesetzte Stärkelösung giesse man von dem dicken Bodensatz ruhig ab und löse darin Kochsalz bis zur Sättigung auf. Die noch etwas trübe Flüssigkeit vertheilt man in kleine Gläser von 100 bis 150 cbcm Inhalt und bewahrt sie, bis auf ein’s im Laboratorium, im Keller auf. Bei der Kellertemperatur hält sich die mit Kochsalz gesättigte Lösung sehr lange ohne Verderben und gibt herausnehmen bei der Prüfung mit Jodlösung sogleich die rein blaue Farbe ohne eine Beimischung von Violett, was schon ein Zeichen eines eintretenden Umachlages ist. Die schönste Reaction gibt filtrirte Stärkelösung. Man nimmt dann die mit Kochsalz gesättigte und lässt die Filtration durch ein Sternumfilter im Keller vor sich gehen, was zwar sehr lange dauert, aber auch weiter keine Mühehaltung mehr be ansprucht. Für alle Fälle bereitet man sich auch eine beliebige Menge Chlorzinkstärke. Man gießt die über Nacht abgesetzte, noch etwas trübe Flüssigkeit von dem Bodensatz ab und setzt konzentrierte Chlorzinklösung, die aber von Eisenchlorid frei sein muss, hinzu und lässt nochmal
V. Jod gegen unterschwefligsaures Natron.

in hohen Zylindern absetzen. Es scheidet sich jetzt eine wasserklare Stärke-losung ab, die ohne Filtration getrennt werden kann. Den letzten Rest bringt man auf eine Sternfilter und gibt ihm Zeit abzulaufen.

Vorberieitende Arbeiten.

Es kommt darauf an, dass sich der Apparat leicht handhaben lasse, dass er möglichst wenige und sicher schliessende Verbindungen habe. Röhren von vulkанизirtem Kautschuk zeigten sich weniger gut, als reine, dichte, mit Paraffin getränkte Korke. Beim Eröffnen des Apparates mit Kautschukröhren habe ich oft den Geruch von Chlorschweifel wahrgenommen. Dagegen ist schwarzes biegsames Gummii ohne Nachtheil. Als einfachen und sehr sicher wirkenden Apparat kann man den in Fig. 97 anwenden. Ein kleines Kölbchen von 55 bis 60 eben Inhalt bis an den Hals ist mit einem reinen Korbe mit der Leitungsröhrle verbunden. Dieselbe hat eine aufgelassene Kugel und ist in eine dänne Spitze ausgezogen, beides, um ein etwaiges Zurücksteigen unschädlich zu machen. Die Leitungsröhrle geht durch einen losen Kork in die verdichtende Glassröhre von 320 bis 340 mm Länge und 25 bis 30 mm Weite, und steht selbst in einem starken Glaszyllinder von 320 bis 330 mm Höhe und 60 bis 70 mm Weite, oder wie man ihn gerade hat. Dieser ist bis fast an seinen Rand mit Kühlwasser gefüllt. Der ganze Apparat steht ohne besonderes Stativ fest, indem sich die Verdichtungsröhrle an die Wandung des grossen Zylinders anlehnt. Man füllt eine genügende Menge Jodkaliumlösung in den inneren Zylinder, dann die Substanz in das Kölbchen, übergiesst sie mit einer reichen Menge starker Sulzsäure, verbindet die Röhre durch starken Druck mit dem Kölbchen und stellt die Flamme darunter. Die Entwicklung des Chlorigases beginnt bald; geht sie zu
lebhaft, so mässige man die Flamme, doch darf sie nicht zu sehr nachlassen, weil sonst ein Zurücksteigen der Flüssigkeit zu besorgen wäre. Sobald Chlor übergeht, scheidet sich Jod in der Verdichtungsröhre aus, und wenn dasselbe nicht ganz gelöst bleibt, so fügt man noch etwas Jodkalium zu, was durch Lüften des Stopfens auf der Verdichtungsröhre oder einen besonderen Eingusstrichter geschehen kann. Dieser Stopfen auf dem Verdichtungszylinder darf an sich nicht fest schliessen, sondern muss die durch das Kochen ausgetriebene Luft des Kolbens durchlassen. Wenn man an dem knatternden Geräusch der Blasen hört, dass keine Luft mehr übergeht, und auch die Farbe der kochenden Flüssigkeit ein Ende der Zersetzung anzeigt, zieht man den Destillationsapparat, an dem freien Korke angefasst, aus der Röhre, spritzt die Röhre äusserlich ab und stellt ihn zur Seite. Man leert den Inhalt der Glashülle in eine weithalsige Flasche aus, spült nach und beginnt eine zweite Destillation derselben Flüssigkeit, nachdem noch eine kleine Menge Jodkaliumlösung vorgelegt hat. Es werden so die letzten Spuren Chlor ausgetrieben und sichtbar, indem sie die Jodkaliumlösung gelb färben. Nach Vereinigung beider Destillate bestimmt man das Jod in der beschriebenen Art.

Das Chlorgas kann auch mit kohlensaurem Natron aufgefangen werden, als dann muss aber die Vollendung der Analyse mit arsenigsaurer Kali bewirkt werden, wie im folgenden Abschnitt gezeigt werden wird.

Um wegen des vorzuschlagenden Jodkaliums einigermassen im Klaren zu sein und dass man nicht eine ungebührliche Menge anwende, bediene man sich einer Lösung von reinem Jodkalium von $\frac{2}{10}$ Atom oder 33.2 g im Liter. Von dieser Lösung giesse man etwas mehr Cubikcenti-
meter in die Vorlageflasche, als man Procente reiner Substanz zu erwarten hat, wenn man im Atomgewicht abgewogen hat. Gesetzt, man habe Braunstein mit 0,435 g abgewogen und der Braunstein hätte anscheinend einen Gehalt von 50 bis 60 Proc. Manganhyperoxyd, so gebe man 70 ccm der Lösung in die Vorlageflasche. Die Flüssigkeit enthält deswegen 2 At. Jodkalium, weil vorausgesetzt wird, dass 1 Atom Jod in Freiheit gesetzt werde und das zweite Atom Jodkalium nothwendig ist, um das ausgeschiedene Jod in Lösung zu erhalten. Scheidet sich sichtbar Jod in der Flüssigkeit aus, so ist zu wenig Jodkalium vorhanden und man kann dann von derselben Lösung noch eine genügende Menge zusetzen, um das Jod zu lösen, oder auch ohne dies, weil sich das Jod beim Messen löst.

Bunsen bediente sich zur Chlordestillation des nebenstehenden Apparates (Fig. 98). Die absorbirende Flüssigkeit ist in dem umgekehrten Retortchen enthalten. Das Ende der Destillationsröhre ist durch ein Glasventil geschlossen. Dies ist eine kleine Glaskugel mit Stiel, welche so leicht ist, dass sie schwimmt, und also immer nach oben strebt. Mit dem Stiele steckt sie in der Röhre. Es soll dadurch das Zurücksteigen der Flüssigkeit vermieden werden, was wohl nicht immer genügend stattfindet. Auch ist nicht recht einzusehen, wie man die Röhre mit dem Ventilkügelchen in den Hals der Retorte einbringen kann, ohne dass es herausfällt.

Fresenius bediente sich zu demselben Zwecke des Apparates Fig. 99. In den Hals der Retorte sind einige Kugeln aufgetrieben, um die aus dem Bauche vertriebene Flüssigkeit aufzunehmen. Ebenso ist die Leitungsrohre mit einer Kugel versehen, um beim Zurücksteigen noch Zeit genug zu haben, die Röhre herauszuziehen. Das so gefüchtete Zurücksteigen findet übrigens gar nicht statt, wenn die Flamme geschützt ist und nicht durch Luftzug von dem Kölbcchen abgewehrt werden kann. In dem zuerst beschriebenen Apparate (Fig. 97) wird es durch rasches Herausziehen umgangen, oder man kann auch eine kleine Weingeistflamme zur Hand haben, welche man während des Ausziehens unterhält.

Wenn gleich die Chlordestillation mit Leichtigkeit nach der gegebenen Anleitung ausgeführt werden kann, so lässt sie sich doch in einer sehr grossen Menge von Fällen ganz umgehen und durch eine Digeston
Die Vorbereitende Arbeiten.

in einem hermetisch verschlossenen Glase ersetzen. So werden die chlor-
sauren, jod- und bromsauren, chromsauren Salze, alle Hyperoxyde, Eisen-
chlorid und eine Menge anderer Stoffe durch blose Digestion mit Salz-
säure und Jodkalium vollständig zersetzt, und nach dem Öffnen des Ge-
fasses hat man nur das ausgeschiedene Jod zu bestimmen. Man bedarf dazu
Gläser von 30 bis 200 cbcm Inhalt, ziemlich starken Wänden und einem
sehr gut eingegossenen Glasstopfen. Dabei wird man wohl das letzte
Einschleifen mit feinem Schmirgel gern selbst übernehmen und beim Drehen
des Stopfens denselben immer etwas herausschieben, um das Schmirgel-
pulver zu vertheilen, damit es keine Ringe einschneide.

Das Glas wird während der Digestion in ein Gestell (Fig. 100) ein-
gespannt, in welchem man den Stopfen fest auf das Glas schraubt. In
einem hölzernen Brettchen stecken fest zwei Drähte, welche auf ihrer
ganzen Länge mit einem Schraubengewinde versehen sind, um kleine und
grosse Gläser darin einzuspannen. Zwei leicht laufende Flügelmuttern
pressen den Stopfen fest auf das Glas auf. Ehe man es zu Analysen
gebraucht, probire man es auf seinen dichten Schluss, indem man es ein-
spannt und ganz unter warmes Wasser versenkt. Herausdringende Luft-
blasen bemerkt man leicht und muss dann durch besseres Einschleifen
nachhelfen. In dieses Glas werden die zu untersuchenden Körper mit
starker Salzsäure und einer genügenden Menge Jodkalium gebracht.
Letzteres muss gelöst sein, da es sich in der Salzsäure sehr schwierig löst.
Pulverige Körper bringe man zugleich mit einer Menge von Granaten
hinein, um während der Digestion durch Schütteln das Pulver zu zer-
theilen. Um die Einwirkung des atmosphärischen Sauerstoffs auf die
Jodwasserstoffsäure zu vermeiden wirft man vor dem Verschlussen eine
Prise doppelt kohlensaures Natron hinein oder füllt den leeren Raum
aus einer bereiten Kohlensäureentwicklung mit diesem Gase. Man senkt
das Digestionsglas ganz unter Wasser in einem kupfernen Gefäss und

Die Operation der Jodbestimmung.

Da die Jodlösung nicht die Berührung von geschwefeltem (vulkanisirtem) Kautschuk gestattet, weil sich Jodschwefel bildet, welcher die Röhren hart macht, so muss man sie in eine Bürette mit Glashahn oder in eine Chamäleonbürette einfüllen, die entweder zum Neigen mit Blaserohr (Fig. 30, S. 22), oder zum Stehen mit Blasekugel (Fig. 32, S. 25) eingerichtet ist. Von der Jodlösung gebräucht man in der Regel kleine Mengen, um den Überschuss des untergeschwefelsgauren Natrons zurückzumessen. Das unterschwefligsaure Natron fülle man in eine Quetschhahnbürette von grossem Inhalt. Mit diesen beiden Flüssigkeiten werden eine grosse Menge von sehr scharfen Bestimmungen gemacht.

Körper, welche Sauerstoff aufnehmen und die Jodstärke zu entfärben im Stande sind, wie schweflige Säure, Schwefelwasserstoff, unterschweflige Säure, arsenigsäure Alkalien, alkalische Antimon- und Zinnoxydulösungen, werden mit Stärkelösung versetzt und dann die titirte Jodlösung zugesetzt, bis unter öfterem Schütteln der letzte Tropfen eine blähe Farbe hervorbringt. Diese zeigt an, dass der Körper kein Jod mehr aufnehmen kann, dass also freies Jod vorhanden ist, welches die Stärke blau färbe.

Die freies Chlor, aber keine unterchlorigsaure Alkalien, enthaltenden Körper werden mit überschüssigem reinem Jodkalium versetzt, bis eine braune Lösung entstanden ist. Da Jod nur in unsersetztem Jodkalium löslich ist, so zeigt die braune Farbe, dass wenigstens ein Theil Jod gelöst, also alles Chlor gebunden ist. Wenn auch ein Theil Jod ausgeschle-
Die Operation der Jodbestimmung.

den ist, so schadet dies nichts, weil es sich nachher in dem durch die Operation entstehenden Jodkalium löst; gerathener ist es immer, diesen Fall ganz zu vermeiden, weil, wenn Chlor einen Augenblick im Ueberschuss ist, sich Jodsäure bilden kann. Wenn dagegen kein Jodkalium im Ueberschuss ist, so schlägt sich das Jod ganz heraus und die Flüssigkeit erscheint blassgelb. Es muss dann noch Jodkalium zugesetzt werden, allein unbedeutend bleibt es immer, weil das Jod sich in der durch den Versuch verdünnten Lösung sehr langsam löst. Man sorge also dafür, das Jod ganz durch Jodkalium in Lösung zu halten.

Es ist schon oben angeführt worden, dass wegen der verschiedenen Wirkung von Chlor und Jod nur das letztenannte zur Messung kommen könne. Ein anderer Grund liegt auch darin, dass Chlor die Stärke zerstört und dann selbst als gebunden erscheint, nachdem es in Salzsäure übergegangen ist. Endlich ist auch Chlor sehr flüchtig, Jod dagegen viel weniger.

V. Jod gegen unterschweflgesaures Natron.

Bunsen’s Methode.

1) Bei allen Arbeiten mit Jod erhält man eine Menge Flüssigkeiten, worin das Jod mit Chlormetallen, Kupfer, Zink, Arsen und anderen Stoffen verunreinigt ist. Um dasselbe wiedergewinnen, sammelt man diese Flüssigkeiten in einem grossen weithalsigen Glase oder Topfe, der etwas Kalkhydrat enthält, mit Aufschrift „Jodreste“. Um sie zu Gut zu machen, versetzt man sie zuletzt mit Kalchmilch und dampft etwas ab, um alle Metalle zu fällen und die freien Säuren zu sättigen, dann filtrirt man, dampft ein und destillirt mit Braunein und roher Salzsäure.

Sind die Flüssigkeiten sehr verdünnt, so kann man mit Kupfervitriol und Zinnchlorür fällen, und den Niederschlag nach Abgiessen der Flüssigkeit in den Sammeltopf bringen.

2) Liebig’s Annalen der Chemie und Pharmacie, Bd. 88, S. 265.
Bunsen's Methode.

reinem freien Jod in einer Maasseinheit der Jodlösung. Die Messung
mit Jod überhaupt war von Dupasquier zuerst angewendet worden,
jetzt nur auf solche Stoffe, welche direct mit Jod gemessen werden
konnten. Bunsen hat der Methode eine grosse Ausdehnung gegeben,
indem er durch vorbereitende Operation eine grosse Anzahl von Körnern
in Aequivalente von Jod umsetzte und dann maass.

Freies Jod verwandelt schweflige Säure in Schwefelsäure, indem es
1 At. Wasser zersetzt, den Sauerstoff auf die schweflige Säure überträgt
und selbst den Wasserstoff zu Jodwasserstoff aufnimmt; dagegen kann
auch umgekehrt die Schwefelsäure die Jodwasserstoffsäure in schweflige
Säure, Jod und Wasser zersetzen, je nach dem Grad der Konzentration
und der Massenwirkung;

\[\text{SO}_2 + J + \text{H}_2 \text{O} = \text{SO}_3 + \text{JH} \text{ und } \text{JH} + \text{SO}_3 = \text{SO}_2 + J + \text{H}_2 \text{O}. \]

Soll nun die erste Umsetzung stattfinden, so muss eine so grosse Verdün-
nung stattfinden, dass die schweflige Säure nur etwa 0'03 bis 0'04 von
einem Procent beträgt. Dieser von Dupasquier nicht gekannte Um-
stand machte die ganze Methode trägerisch, wenn man zu grosse Kon-
zentration anwandte. Man muss also wegen dieser Verdünnung eine sehr
grosse Menge von schwefriger Säure vorrätig haben, die nach Bunsen
aus Zylindern, sonst aus hochgradigen Buretten auslaufen gelassen wird.

Ausser dieser Flüssigkeit besitzt man noch eine Jodlösung in Jod-
kalium von sehr schwachem Gehalt, um scharf messen zu können. Der
Gehalt an freiem Jod wird nach einer Analyse festgestellt, oder besser
durch Auflosen chemisch reinen Jods zu einem bestimmten Volum.

Schweflige Säure als Gegenstand der Analyse und Schwefelwasser-
stoff werden allein mit der Jodlösung gemessen, was sich von Dupasquier
nur durch die jetzt vorgeschriebene Verdünnung unterscheidet; in
allen anderen Fällen wird Jod mit schwefriger Säure gemessen. Um
diese grossen Mengen schwefriger Säure leicht abmessen zu können, be-
dient man sich des umstehenden Apparates Fig. 101 (a. f. S.). Die
schweflige Säure ist in der grossen Flasche, auch wohl mit einer Schichte
Petroleum bedeckt, enthalten und fliesst durch ein Kautschuckrohr unten
in die Burette ein. Dies hat den Zweck, dass die Säure, welche leicht
Sauerstoff aufnimmt, nicht an den inneren Wänden der Röhre mit zu
viel Luft in Berührung komme. Die Burette muss an 200 cbcm fassen
und kann von 10 zu 10 cbcm geteilt sein. Alles Uebrige ist aus der
Zeichnung klar.

Alle zu untersuchenden Körper, die kein freies Jod enthalten, wer-
den in ein Aequivalent Jod umgesetzt. Chlor und Brom ohne Weiteres
durch Zumischen von Jodkalium; alle anderen Körper, welche mit Salz-
säure gekocht Chlor entwickeln, werden damit destillirt, das entwickelte
Chlor in Jodkalium aufgesangen und dann das in Freiheit gesetzte Jod
gemessen. Die gelbe Farbe des Jods wird mit ganzen Zylindern der
schwefigen Säure weggemommen, jetzt klare Stärkelslösung zugesetzt, und

Mohr's Titrirbuch.
mit der Jodlösung die blaue Farbe hervorgebracht. Man weiß nun aus einer Probe, wie viel Jodlösung einem Zylinder schwefliger Säure entspricht (t), dann wie viel Zylinder schwefliger Säure (n) angewendet werden, und endlich wie viel Jodlösung man zurück gebraucht hat (t_1). n Zylinder schwefliger Säure entsprechen nt Jodlösung, davon gehen ab t_1 Jodlösung; es sind also $nt - t_1$ verbraucht. Kennt man nun den Gehalt (a) der Jodlösung in einer Maasseinheit (bei Bunsen Bürettengrade oder halbe Cubikcentimeter), so entspricht die zerstörte schweflige Säure einem Jodgehalt von $a(n - t_1)$. Aus dieser Jodmenge wird nach Aequivalenten die Menge des anderen Körpers berechnet.

Von dieser Methode unterscheidet sich die hier angenommene durch folgende Punkte:

Statt der schwefligen Säure ist das unterschwefligsäure Natron angenommen. Letzteres hat die Vorzüge, dass es haltbarer, selbst bei starken Verdünnungen, ist, während die schweflige Säure so leicht Sauerstoff aufnimmt, dass man vom Vormittag auf den Nachmittag schon wieder den Titer nehmen muss, was zwar schnell geschehen kann; allein doch immer eine Mühe ist und Zeit in Anspruch nimmt. Sodann ist es an keine Verdünnung gebunden, indem es bei jeder Verdünnung dieselben Resultate gibt. Und endlich kann man die Messung aus der Bürette in einer Operation vollenden, während das öftere Ausgessen der Zylinder bei der Flüchtigkeit und der Oxydirbarkeit der schwefligen Säure leichter Veranlassung zu Verlusten und Fehlern giebt und in jedem Falle eine größere Mühe ist. Der Umstand, dass das unterschwefligsäure Natron nichts durch Verdunsten verlieren und durch Aufnahme gewinnen kann, ist nicht ausser Acht zu lassen. Die erhaltenen Resultate sind eben so scharf und richtig, wie die mit schwefliger Säure erhaltenen. Statt der Chlordestillation haben wir in vielen Fällen eine Digestion in einer hermetisch verschlosse- nen Flasche vorgezogen, und bei vollständiger Zersetzung eben so scharfe Resultate wie durch die Destillation erhalten. Bei der Digestion ist jede Berührung organischer Körper und jeder Verlust unmöglich. Es ist dann auch die ursprüngliche Methode Bunsen's mehr und mehr durch die vorliegende ersetzt worden.
ich habe später gefunden, dass die Bunsen'sche Methode in Bezug auf die Flüchtigkeit und Verdünnung der schwefligen Säure ungemein verbessert wird, wenn man die schweflige Säure in kohlensaures Ammoniak aufnimmt. Sie kann dann in jeder Stärke mit gleichem Erfolge benutzt werden.

Jod, freies und gebundenes.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm = 1 Pce.</th>
<th>1 cbcm zehntelunterschweflige Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>72. Jod</td>
<td>J</td>
<td>127</td>
<td>1,27 g</td>
<td>0,0127</td>
</tr>
<tr>
<td>73. Jodkalium</td>
<td>KJ</td>
<td>166,11</td>
<td>1,661</td>
<td>0,016611</td>
</tr>
</tbody>
</table>

1. **Freies Jod.**

0,250 g reines Jod wurden in Jodkalium gelöst und mit Stärke versetzt gemessen. Es wurden 19,7 cbcm zehntelunterschwefligen Natron verbraucht; diese geben 19,7 × 0,0127 = 0,2505 g Jod.

0,242 g Jod ebenso behandelt erhielten 19,1 cbcm zehntelunterschwefligen Natron und 0,3 cbcm Hundertstel Jodlösung, um die blaue Farbe hervorzurufen. Die 0,3 cbcm Hundertstelösung sind = 0,03 cbcm Zehntelösung, also im Ganzen verbraucht 19,07 cbcm. Diese mit 0,0127 multipliziert geben 0,242189 g Jod.
V. Jod gegen unterschwefligsaures Natron.

Die Bestimmung des Jods ist so ungenau scharf, dass man die kleinsten Mengen desselben mit der größten Schärfe bestimmen kann. So wurden 0'0127 g Jod aus einer eigens dargestellten Lösung mit einer Pipette herausgenommen. Sie erforderten 10 cc und \(\frac{N}{100} \) - Lösung von unterschwefligsäurem Natron. Dies gibt genau 0'0127 g Jod.

2. Gebundenes Jod.

a. Mit Eisenchlorid oder schwefelsaurem Eisenoxyd.

Nach der vorstehenden Methode wird nur freies Jod bestimmt. Es kann jedoch auch das gebundene Jod bestimmt werden, wenn man es durch ein Verfahren in den freien Zustand versetzen kann. Zu diesem Zwecke bieten sich einzig die Eisenoxydsalze dar, welche durch Erhitzen mit Jodwasserstoffsäure in Eisenoxydul oder Eisenchlorür und Jod zerfallen:

\[
\text{Fe}_2\text{O}_3 + \text{JH} = 2\text{FeO} + \text{HO} + \text{J}
\]

oder

\[
\text{Fe}_2\text{Cl}_3 + \text{JH} = 2\text{FeCl} + \text{ClH} + \text{J}.
\]

Die Jodverbindung muss ein Salz sein, worin das Jod als Salzbilder und nicht als Jodsäure vorhanden ist. Man bringt die gewogene Jodverbindung in eine kleine Kochflasche mit überschüssigem schwefel-
Jod, freies und gebundenes.

saurem Eisenoxyd, welches freie Schwefelsäure enthält, damit sich kein Eisenoxyd absetze. Da sich das Jod nicht gut vollständig ohne Aspiration austreiben lässt, so ist in diesem Falle der Apparat Fig. 102 vorzuziehen, der schon beim Ammoniak verwendet wurde. Die Absorptions-

![Fig. 102. Absorption von Jod in Jodkali.]

röhre mit den zwei Kugeln ist bis in die Hälfte der Kugeln mit Jodkaliumlösung gefüllt, und kann zur Vorsicht in einem größeren, mit Kühlwasser gefüllten Gefäße stehen. Die darauf sitzende Glashülse ist mit Glassplittern oder Perlen gefüllt, die mit Jodkaliumlösung befeuchtet sind. Man verbindet die kleine Glashülse auf der linken Seite mit einem Aspirator und nimmt den Quetschhahn auf der rechten Seite weg, wo durch ein Luftstrom in den Apparat geführt wird, dessen Stärke man an den Blasen im Entwicklungsgefäße erkennt. Durch eine untersetzte Flamme wird das Kolbchen erhitzt. Es bilden sich violette Dämpfe, die sich im oberen Theile des Kolbens verdichten, aber bald durch die Wasserdämpfe in die Röhre und von da in den Absorptionsapparat geführt werden, wo sie sich im Jodkali umlösen. Man lässt nun die Aspiration
V. Jod gegen unterschwefligsaures Natron.

etwas stärker gehen und kann das Ende der Austreibung daran erkennen, dass keine violetten Dämpfe mehr sichtbar sind und die kochende Flüssigkeit eine hellgelbe Farbe angenommen hat. Man trennt die beiden Theile des Apparates und misst die jodhaltige Flüssigkeit mit \(\frac{1}{10} \)-unterschwefligsäurem Natron aus, indem man erst gegen Ende die Stärke-lösung zusetzt.

Von einer Jodkaliumlösung, welche im Liter 1\,308 g Jodkalium, also im Cubikcentimeter 1 Milligramm gebundenes Jod enthielt, wurden 10 cbcm so behandelt. Es wurden auf das ausgeschiedene Jod 7\,8 cbcm Hundertstel unterschwefligsäures Natron verbraucht. Diese 7\,8 cbcm Hundertstelflüssigkeit sind \(= 0\,78 \) cbcm Zehntelflüssigkeit, und die mit 0\,0127 multipliert geben 0\,009906 g Jod, statt 0\,010 g, welche darin enthalten waren.

Ebenso wurde 1 cbcm derselben Flüssigkeit mit Eisenalaun und Schwefelsäure destillirt, und darauf 0\,76 cbcm Hundertstel \(= 0\,076 \) Zehntelflüssigkeit von unterschwefligsäurem Natron verbraucht. Dies gibt 0\,0009652 g Jod statt 0\,001 g.

0\,200 g Jodkalium mit saurem Eisensalz destillirt erforderten 12\,1 cbcm \(\frac{1}{10} \) unterschwefligsäures Natron. Dies gibt 12\,1 \times 0\,016611 \(= 0\,20099 \) g Jodkalium; 0\,5 g Jodkalium \(= 29\,9 \) cbcm \(\frac{1}{10} \) S\(_2\)O\(_2\) \(= 0\,49667 \) g Jodkalium.

In der rückständigen Eisenlauge ist eine dem Jod entsprechende Menge Eisenoxydul vorhanden, welches ebenfalls zur Bestimmung des Jods mit Chamäleon oder zehntelchromsaurem Kali benutzt wurde, wenn das Eisensalz frei von Oxydul war, doch hat dies keinen Werth, weil durch die Luft auch Eisenoxydul oxydiert sein konnte.

b. Mit Kupferchlorür oder -Vitriol.

Die Bestimmung ist die umgekehrte der Kupferbestimmung. Kommt zu einem gelösten Jodmetall Kupfervitriol, so wird die Hälfte des Jods ausgeschieden und die andere Hälfte als Kupferjodür gefällt. Wird die ausgeschiedene Jodmenge mit unterschwefligsäurem Natron gemessen, so geht sie in Jodnatrium über, von dessen Jod die eine Hälfte ausgeschieden, die andere gemessen wird, und so fortschreitend wird die eine Hälfte des Jods zweimal gemessen, was ebenso viel bedeutet, als dass die ganze Menge einmal gemessen wird. Es müssen demnach die gemessenen Jodmengen dem gebundenen Jod gleich sein und 1 cbcm zehntelunterschwefligsäures Natron ist \(= \frac{1}{10\,000} \) Atom Jodmetall.

0\,5 g Jodkalium mit überschüssigem Kupfervitriol gefällt und mit Stärkelösung versezt, bis zum Verschwinden der Einfallstelle mit zehntelunterschwefligsäurem Natron ausgesättirt, erforderten 29\,8 cbcm \(= 0\,496 \) g Jodkalium statt 0\,5 g. Ein anderer 0\,494 g. Die Ausscheidung des Kupferjodürs hängt sehr von der Verdünnung ab. Bei starker Verdün-
Jod, freies und gebundenes.

c. Mit Untersalpetersäure.

¹) Anleitung z. quantit. Analyse, 5. Aufl., S. 541.
V. Jod gegen unterschwefligsaures Natron.

Sehr leicht und sicher führt sich das Schütteln und Trennen des rosenroth gefärbten Schwefelkohlenstoffs durch eine mit Glashahn versehene Glasröhre, Fig. 108, aus. Man lässt den Schwefelkohlenstoff bis an den Kern des Glashahns ablaufen, fügt neuen zu der Flüssigkeit, schüttelt und lässt wieder ablaufen.

Es ist ferner die Uberführung des Jods aus der Flüssigkeit in den Schwefelkohlenstoff hinein keine absolute, sondern nur eine sehr starke, wie zwischen Alkohol, Wasser und Aether, wo mehrmaliges Waschen mit der trennenden Flüssigkeit (Schwefelkohlenstoff, resp. Wasser) nothwendig ist, um eine vollständige Trennung zu bewirken. So lange die überstehende Flüssigkeit noch eine bräunliche oder gelbliche Farbe zeigt, reagirt sie noch deutlich mit Stärke. Es kann deshalb die Waschung mit Schwefelkohlenstoff erst als beendigt angesehen werden, wenn die wässerige Flüssigkeit mit Stärke keine Bläulung mehr zeigt.

Bestimmung des Jods durch Oxydation.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm unterschwefliges Natron = 1 Prc. Subst.</th>
<th>1 cbcm unterschwefliges Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>74. 1/6 Atom Jod</td>
<td>$\frac{J}{6}$</td>
<td>21·166</td>
<td>0·21166 g</td>
<td>0·00021166 g</td>
</tr>
</tbody>
</table>

Versetzt man eine Lösung eines Jodmetalls mit Chlor, so scheidet sich zunächst Jod aus. Vermehrt man die Mengen des Chlors noch weiter, so bildet sich JCl₅, das bei noch weiterem Zusatz in JCl₅ 3) oder durch Wasserzersetzung in die entsprechende Jodäsäre JO₅ übergeht. Alle Chlorverbindungen des Jods, welche weniger Chlor als diese letztere enthalten, färben die Stärke blau, und den Schwefelkohlenstoff, das Chloroform, Benzin intensiv violett. Der Verbindung JCl₅ oder JO₅ geht diese Eigenschaft ab. Schüttelt man daher die Lösung eines Jodmetalls, der man nach und nach eine Lösung von Chlorwasser hinzufügt, mit chemisch reinem Schwefelkohlenstoff, Chloroform oder Stärke, so färben sie sich entsprechend violett oder blau. Bei fortgesetztem Chlorzusatz steigt sich die Färbung bis zu einem Maximum, nimmt dann allmählich wieder ab, bis sie endlich vollkommen verschwindet. Der Punkt des Verschwindens tritt plötzlich und mit der grössten Schärfe auf. Er bezeichnet die Grenze, wo das in der Flüssigkeit enthaltene Jod genau in JCl₅, resp. JO₅ übergegangen ist.

Es wurde folgende Bestimmung vorgenommen. 10 cbem Jodkaliumlösung, mit 0,010 g Jod Gehalt, wurden mit verdünntem Chlorwasser und Chloroform geschüttelt, bis die rothe Färbung des Chloroforms verschwunden war. Es waren 85,8 cbem Chlorwasser verbraucht worden. Um zu sehen, ob ein Ueberschuss von Chlor vor-

1) Schwarz, Anleitung zur Maassanalyse. 1853. S. 114.
2) Liebig's Annalen der Chemie und Pharmacie, Bd. 94, S. 465.
handen sei, wurde erst doppelt kohlensaures Natron und dann Jodkalium zugesetzt. In neutraler und alkalischer Lösung zersetzten sich jodsaure Salze und Jodkalium nicht. Als eine Stärkelösung zugesetzt wurde, erschien die Flüssigkeit leicht blau. Die blaue Farbe wurde mit $\frac{1}{100}$-unterschwefligsaurem Natron weggenommen und davon 1,2 cbm verbraucht.

30 cbm Chlorwasser, mit Jodkalium und Stärke versetzt, waren $= 17$ cbm $\frac{1}{100}$-unterschwefligsaurem Natron, also die angewendeten 85,8 cbm Chlorwasser $= 48,62$ cbm $\frac{1}{100}$-Lösung. Davon gehen ab 1,2 cbm, es bleiben also 47,42 cbm $\frac{1}{100}$-Lösung zu berechnen $= 4,742$ cbm $\frac{1}{10}$-Lösung und diese mit 0,00211 cbm multipliziert geben 0,010056 g Jod statt 0,010 g.

Man ersieht daraus, dass die Resultate im System ganz richtig sind. Um sich aber auch hiervon ganz unabhängig zu machen, kann man direkt den Titer nehmen mit jener Jodkaliumlösung, welche 1,308 g Jodkalium im Liter, also 0,001 g gebundenes Jod im Cubikcentimeter enthält.

Von dieser Flüssigkeit pipettire man 10 oder 20 cbm in eine Stöpselflasche von 200 bis 300 cbm Inhalt und lasse anfangs, ohne Chloroform hinzuzufügen, aus der bis 0 gefüllten Bürette das Chlorwasser hinzufliessen. Die Operation wird dadurch bedeutend beschleunigt, da sich die Substanzen vollkommen durchdringen, und nicht erst durch Schütteln in Berührung kommen. Man setze so lange Chlorwasser zu, als man auf einer Unterlage von weissem Papier noch den leisten Stich von gelber Farbe sieht, dann setzt man Chloroform zu und schüttelt heftig. Das Chloroform reisst das Jod aus der wässerigen Flüssigkeit an sich, färbt sich leicht rosenrot und die Flüssigkeit wird farblos.

Oft ist das Chloroform noch röthlich gefärbt und wird durch heftigeres Schütteln farblos. Dies rührt von unvollkommener Durchdringung her und kann durch längeres Schütteln vermieden werden. Man erhält nun den Werth des Chlorwassers direct in Jod ausgedrückt. Gesetzt, man habe auf 0,010 g Jod 85,8 cbm Chlorwasser verbraucht, so ist

$$1 \text{ cbm Chlorwasser} = \frac{0,010}{85,8} = 0,000117 \text{ g Jod},$$

wie im obigen Falle.

Jede andere Anzahl Cubikcentimeter Chlorwasser berechnet sich nach dieser Zahl ohne Weiteres auf Jod.

Das lange Schütteln und die ohne dasselbe fehlende Durchdringung der Stoffe gab mir die Idee ein, das Chloroform ganz zu umgehen, und die Analyse in eine Restanalyse zu verwandeln.

Man bringe die gewogene Jodverbindung in eine Stöpselflasche und giesse aus einer 100 cbm Flasche oder Pipette einen Überschuss von Chlorwasser hinzu. An dem Verschwinden der gelben Farbe oder durch Betupfen von Stärkelösung auf einem Teller erkennt man, ob noch freies Jod vorhanden sei. Die Stärke darf nicht gebläut werden. Jetzt setzt man doppelt kohlensaures Natron bis zur Neutralität und zuletzt Jod-
Bestimmung des Jods durch Oxydation.

kalium zu. Es wird nun das überschüssige Chlor Jod ausscheiden, da
gegen die gebildete Jodsäure nicht zersetz't werden. Man füge Stärke
hinzu und nehme die blaue Farbe mit $\frac{1}{10}$- oder $\frac{1}{100}$-unterschwebigsaurem
Natron hinweg. Mit demselben Chlorwasser, womit die obige Analyse
gemacht worden, wurde nach der Restmethode der Versuch wiederholt.

10 cbcm Jodkaliumlösung $= 0\cdot010$ g Jod erhielten 100 cbcm Chlor-
wasser, und es wurde einmal umgeschüttelt. Alle Farbe war verschwunden.

Es wurde etwas doppelt kohlensaures Natron, Jodkalium und Stärke
zu gesetzt und mit $\frac{1}{100}$-unterschwebigsaurem Natron farblos titriert. Es
wurden 8'9 cbcm davon verbraucht. Nach dem obigen Titer sind 100
cbcm Chlorwasser $= 56'66$ cbcm $\frac{1}{100}$-unterschwebigsaurem Natron; da
von gehen ab 8'9 cbcm, bleiben 47'76 cbcm $\frac{1}{100} = 4'776$ cbcm Zehntel-
lösung; und diese mit 0'0021166 multiplizirt geben 0'010109 g Jod statt
0'010 g.

Würde man eine gleiche Menge Jod, als in dem Jodkalium enthal-
ten war, im reinen Zustande abwägen und durch Chlornatron oxydiren,
so würde man nur $\frac{5}{6}$ von der Menge gebrauchen, die zum Jodkalium
erforderlich war, weil das Jod nicht auszuscheiden war. Da wir aber
für freies Jod die vortrefflichsten Methoden haben, so ist es ganz un-
geeignet hier den Titer mit freiem Jod zu nehmen, abgesehen davon,
dass es in den Flüssigkeiten nicht löslich ist, und also die Einwirkung sehr
langsam vor sich gehen würde. Die Methode von Dupré eignet sich also
vorzugsweise für kleine Mengen Jod in Jodmetallen.

Es bedarf kaum der Erwähnung, dass bei dieser Analyse alle Oxyde,
welche von Chlor oder Jod affizirt werden, vorher entfernt werden müssen.
Auch organische Substanzen, wie sie in jodhaltigen Mutterlängen vor-
zukommen pflegen, verursachen eine Ungenauigkeit in der Titirung, die
einen zu gross gefundenen Jodgehalt bedingen, weil alles von der organi-
schen Substanz in Anspruch genommene Chlor auf Rechnung des Jods
gesetzt wird. Man wendet daher nach Dupré in solchen Fällen besser
statt der beschriebenen Methode die folgende an, bei der die störende
Einwirkung der organischen Substanz vermieden ist. Es genügt zu
diesem Zwecke, die das Jodmetall enthaltende Flüssigkeit so lange mit
Chlorwasser oder Chlornatron von unbestimmtem Chlorgehalt zu versetzen,
bis die Entfärbung des Schwefelkohlenstoffs oder Chloroforms bei dem
Schütteln eingetreten ist. Bei diesem Punkte ist der gesammte Jodgehalt
in JCl₃ verwandelt. Setzt man jetzt Jodkalium hinzu, so werden auf
1 At. JCl₃ gerade 6 At. Jod frei. Titriert man diese auf gewöhnliche
Weise, so braucht man den gefundenen Jodgehalt nur durch 6 zu dividiren,
um die zu bestimmende Jodmenge, welche in der Flüssigkeit enthalten
war, zu erhalten. Zur Bestimmung des Jods eignet sich am besten die
Zehntel-Lösung des unterschwebigsauren Natrons, nachdem man die
Flüssigkeit stark verdünnt und mit Stärkelösung versetzt hat.

Im Ganzen scheint die Methode der Ausscheidung des Jods durch
Destillation mit Eisenoxydsalzen einfacher und sicherer und wenn das
V. Jod gegen unterschwefligsaures Natron.

Jod in sehr kleiner Menge mit viel fremden Salzen gemengt vorhanden ist, so empfiehlt es sich, dasselbe vorerst mit Kupferchlorür, oder mit Kupferchlorid und Zinnchlorür oder mit Palladiumlösung zu fällen, und dann mit Eisenoxydsalzen zu destilliren.

Unterschweflige Säure.

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm $\frac{1}{10}$-Jodlösung = 1 Prc. Substanz.</th>
<th>1 cbcm $\frac{1}{10}$-Jodlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>75. 2 Atome unterschwefl. Säure</td>
<td>$2S_2O_2$</td>
<td>96</td>
<td>0.96 g</td>
<td>0.0096 g</td>
</tr>
<tr>
<td>76. 2 Atome unterschwefligsaure. Natron</td>
<td>$2(S_2O_3 + \text{NaO} + 6\text{HO})$</td>
<td>248</td>
<td>2.48</td>
<td>0.0248</td>
</tr>
</tbody>
</table>

Das unterschwefligsaure Salz muss in neutraler Lösung oder neben Bicarbonaten vorhanden sein. Man setzt Stärkelösung zu und dann $\frac{1}{10}$-Jodlösung, bis die blaue Farbe eben stehen bleibt. Es ist die schärfste aller maassanalytischen Bestimmungen, wie umgekehrt auch die Jodbestimmung.

Es wurden 0.248 g oder $\frac{2}{1000}$ Atome des Salzes abgewogen, mit Stärke versetzt und mit $\frac{1}{10}$-Jodlösung blau titriert. Es wurden genau 10 cbcm davon verbraucht. 10 cbcm $\frac{1}{10}$-Jodlösung stellen 10mal 0.0008 oder 0.008 g Sauerstoff vor. Demnach nehmen 0.248 g des Salzes 0.008 Sauerstoff durch Jod auf, oder 248 g nehmen 8 Sauerstoff auf. Aus 2 At. unterschweflicher Säure, $2S_2O_3$ entsteht also S_4O_6 oder Tetrasionsäure. Es ist dies die einfachste Analyse der Tetrasionsäure selbst.

Es dürfen natürlich keine anderen Stoffe vorhanden sein, welche die Jodstärke entfärben. Man muss sich dieses Umstandes auf anderem Wege versichern, denn die Bürette ist kein Reagens, sondern eine Wage.
Chlor, freies.

Namen	Formel	Atomgewicht	1 cbcm $1/10$-unter
Chlor	Cl	35.46	schweflige
			Natron ist gleich

Bei der Oxydation der unterschwefligen Säure durch Jod erhält man eine Flüssigkeit, welche mit Barytsalzen keinen Niederschlag erzeugt, also keine Schwefelsäure enthält. Ganz anders verhält sich Chlor. Es entsteht sogleich Schwefelsäure, welche durch Barytsalze in saurer Lösung angezeigt wird. Wenn nichts anderes dabei entsteht, so überträgt 1 At. Chlor achtmal so viel Sauerstoff an die unterschweflige Säure als 1 At. Jod; denn 2 At. unterschweflige Säure, S_4O_4, müssen noch 8 At. Sauerstoff aufnehmen, um in 4 At. Schwefelsäure ($S_4O_4 \rightarrow 4SO_2$) überzugehen, während sie nur 1 At. Sauerstoff aufnehmen, um in Tetrathionsäure (S_4O_6) überzugehen.

Fügt man dagegen dem freien Chlor eine überschüssige Menge Jodkalium zu, so verdrängt das Chlor daraus eine äquivalente Menge Jod, und diese kann nun mit unterschwefligsäurem Natron gemessen werden. Die Flüssigkeit enthält alsdann keine Schwefelsäure.

10 cbcm Chlorwasser wurden aus einer Pipette in Jodkaliumlösung einlaufen gelassen und bis zum Verschwinden der gelben Farbe mit unterschwefligsäurem Natron versetzt. Es wurden 14.8 cbcm davon gebraucht.

Zum Vergleich wurden 15 cbcm Arseniklösung in ein Glas gebracht, und 10 cbcm Chlorwasser dazu gelassen, dann Stärkelösung zugesetzt und mit Jodlösung blau titriert. Es wurden 0.2 cbcm Zehntelösung gebraucht. Es sind also ebenfalls 14.8 cbcm Arseniklösung verbraucht worden.

Lässt man das Chlorwasser erst in kohlensaures Natron laufen und setzt dann Jodkalium zu, so gebraucht man viel weniger unterschwefligsäures Natron. Es muss also reines neutrales Jodkalium und reines unterschwefligsäures Natron angewendet werden.
V. Jod gegen unterschweflighaures Natron.

Zum Ansaugen des Chlorwassers bedient man sich einer Pipette, welche mit einem kalk- und glaubersalzhaltigen Röhrchen versehen ist, auf dessen Verbindung mit der Pipette die elastische Klemme sitzt (Fig. 104, a. v. S.).

Brom, freies.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>1 cbcm 1/10-unterschweflighaures Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>78. Brom</td>
<td>Br</td>
<td>80</td>
<td>0.008 g</td>
</tr>
</tbody>
</table>

Das Brom bildet mit dem unterschweflighauren Natron Schwefelsäure wie das Chlor. Es kann also nicht ohne Vermittlung von Jodkalium gemessen werden. Die Erscheinung ist wie bei Jod allein.

Jod und Brom, gebunden.

1 cbcm 1/10-unterschweflighaures Natron = 0.004 g Brom.

Diese von Reimann 1) im Laboratorium von Bunsen ausgeführte Analyse schliesst sich an die Jodbestimmung von Dupré, die wir oben beschrieben haben.

Versetzt man eine Lösung eines Gemenges von Jodkalium und Bromkalium unter beständigem Schütteln nach und nach mit Chlorwasser von einem bestimmten Chlorgehalt, nachdem man so viel reines Chloroform zugesetzt hat, dass eine haselnussgrosse Menge zum Schütteln ungelöst bleibt, so nimmt das Chloroform eine blaue, bei grosser Verdünnung rosenrothe Färbung an, welche bei fortgesetztem Zusatz von Chlorwasser

1) Liebig's Annalen der Chemie und Pharmacie, Bd. 115, S. 140.
und stetem Umschütteln in dem Augenblick völlig wieder verschwindet, wo auf 1 At. des in der Lösung befindlichen Jodmetalls 6 At. Chlor zugesetzt sind. Ist ausser Jodmetall noch Brommetall vorhanden, so tritt bei weiterem Zusatz von Chlorwasser eine neue Reaction ein, indem das Chloroform nun gelb, dann orange, darauf wieder gelb und endlich, wo auf 1 At. Brom 2 At. Chlor verbraucht sind, gelblichweiss wird; dieselbe Färbung tritt auch in der wässerigen Flüssigkeit auf, wird aber für das Auge schon lange vorher nicht mehr wahrnehmbar, ehe die Bildung des Chlorbroms erreicht ist. Um den Punkt, wo die gelblich-weise Färbung eintritt, am besten beurtheilen zu können, setzt man die Flasche auf weisses Papier. Obgleich der Farbenübergang bis zur angegebenen Reaction ein allmählicher ist, so erlangt doch ein geübtes Auge leicht die Fähigkeit, die richtige Färbung zu erkennen. Fügt man, wenn die dem Einfach-Chlorbrom entsprechende Färbung erreicht ist, noch weiter Chlorwasser hinzu, so verschwindet die Farbe des Chloroforms vollständig, sobald sich Fünffach-Chlorbrom, BrCl₅, gebildet hat. Die Entfärbung geschieht indess so langsam, dass sich dieser Punkt der Wahrnehmung entzieht.

Die beiden aufeinander folgenden Reactionen entsprechen daher den Zersetzungen:

\[
\begin{align*}
KJ + Cl₂ & = KCl + JCl₃ \\
KBr + Cl₂ & = KBr + BrCl.
\end{align*}
\]

Da man 2 At. Chlor auf 1 At. Brom gebraucht, so muss das Atom des Broms in der Tabelle halbiert werden, und 1 obcm ¹/₁₀-Jod oder unterschwefligsaures Natron ist = 0.004 g Brom.

Obgleich die Methode auf keinen hohen Grad von Genauigkeit Anspruch machen kann, so ist sie doch anzuwenden, wo es sich um Bestimmung kleiner Mengen von Jod und Brom handelt, wie etwa zur technischen Prüfung von Kelp, Soolenmutterlingen und ähnlichen. In Flüssigkeiten, welche organische Substanzen enthalten, kann die Bestimmung nur dann ausgeführt werden, wenn sie zuvor mit Ätznatron eingedampft und der erhaltene Rückstand in einer Silberschale geglüht ist.

Unterchlorigsaure Salze, Bleichsalze.

Die Bestimmung des wirksamen Chlors in den Bleichsalzen durch Jod und unterschwefligsaures Natron bietet eigenthümliche Schwierigkeiten und Unregelmässigkeiten dar. Es kann natürlich nur von dieser Methode insofern die Rede sein, als es möglich ist, das wirksame Chlor durch Jodkalium in ein Aequivalent Chlor umzusetzen.
Rudolph Wagner hat diese Methode vorgeschlagen und lebhaft empfohlen. Er bringt 10 g Chlorkalk durch Schütteln mit Glassplittern zum Volum von 1 Liter, und nimmt zu einem Versuche 100 ccm, welche 1 g Chlorkalk enthalten. Seine Jodkaliumlösung enthält $\frac{1}{10}$ an Jodkalium und das unterschwefligsaure Natron ist die gewöhnliche Zehntel-Lösung mit 24.8 g Salz im Liter. Er mischt 100 ccm der Chlorkalklösung mit 25 ccm Jodkaliumlösung, worin also 2.5 g Jodkalium enthalten sind, was mehr ist als die doppelte nötige Menge, setzt unter Umschwenken verdünnte Salzsäure bis zur schwach sauren Reaction zu, und lässt nun die Lösung des unterschwefligsauren Natrons einfließen, bis vollkommene Entfärbung eingetreten ist. Die Umgebung der Stärkelslösung ist ein Verzichten auf eine größere Empfindlichkeit, da die Stärke bei freiem Jod in keiner Weise schädlich wirken kann.

Wenn Chlorgas von kohlensaurem Natron aufgenommen sich nach der Methode nicht bestimmen lässt, so ist Grund genug vorhanden, auch dies für den Chlorkalk anzunehmen. Das nothwendige genaue Einhalten bestimmter Verhältnisse und Bedingungen ist immer ein Zeichen einer mangelhaften Methode, und mit diesen zwingenden Nebenrücksichten kann man auch mit entschieden fehlerhaften Verfahrensarten eine Reihe gleichbleibender Zahlen erhalten. Wenn man gleiche Mengen derselben Chlorkalklösung mit verschiedenen Verdünnungen und Säurezusatz mit $\frac{1}{10}$ unterschwefligsaurem Natron ansaüert, so erhält man die sonderbarsten Sprünge und Abweichungen der Zahlen.

Es ist dies ein Beweis, dass im Jodkalium nicht nur das Kalium, wie es eigentlich sein soll, sondern auch das Jod oxydirt wird, und in der Unregelmässigkeit dieses Vorganges, welche von der Konzentration und Menge abhängt, liegt die Ursache der wechselnden Zahlen.

Ich habe mich übrigens überzeugt, dass Chlorkalk keine Spur von Chlorsäure enthält. Wenn man eine Chlorkalklösung nach Penot’s Verfahren mit zehntel-arsenigsaurem Kali ausmisst, so kann in der alkalischen Flüssigkeit keine Zersetzung der Chlorsäure stattfinden. Ueberalligt man nun diese Flüssigkeit mit Salzsäure unter Zusatz von Jodkalium und Stärkelösung, so findet selbst nach Erwärmung nicht eine Spur einer blauen Färbung statt. Dasselbe trat ein, wenn man durch Betupfen von Jodkaliumstärkepapier die Endreaction mit unterschwefligsaurem Natron hervorbrachte. Es musste theoretisch von zehntel-underschwefligsaurem Natron nur ein Viertel so viel Cubikcentimeter Flüssigkeit als von arsenigsaurem Kali verbraucht werden. Es nimmt nämlich $\frac{\text{As}_2\text{O}_3}{2}$ nur 1 At. Sauerstoff auf, dagegen S_2O_3 nehmen 4 At. Sauerstoff auf, da in diesem Falle Schwefelsäure entsteht. 100 cbcm derselben Chlorkalklösung erforderten 49-6 cbcm Arsenlösung und nur 13-2 cbcm $\frac{1}{10}$-unterschwefligsaures Natron; das stimmt zwar nicht ganz mit der Voraussetzung, ist aber das Resultat des Versuches. Man wird also sehr Nachtheilig operiren, wenn man das unterschwefligsauere Natron in dem Penot’schen Verfahren an die Stelle der Arsenlösung setzen wollte.\(^1\)

Cyan in Verbindungen.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm $\frac{1}{10}$-Jodlösung = 1 Prc. Substanz</th>
<th>1 cbcm $\frac{1}{10}$-Jodlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>79. $\frac{1}{2}$ At. Cyan</td>
<td>$\frac{\text{C}_2\text{N}}{2}$</td>
<td>13</td>
<td>0-13 g</td>
<td>0-0013 g</td>
</tr>
</tbody>
</table>
| 80. $\frac{1}{2}$ At. Cyan-
kalium | $\frac{\text{C}_2\text{N} + \text{K}}{2}$ | 32-555 | 0-3255 | 0-003255 |

\(^1\) Eine Methode, das Chlor durch unterschwefligsaures Natron zu bestimmen, wurde von Fordos und Géliis vorgeschlagen. Sie beruht darauf, dass unterschwefligsaures Natron von freiem Chlor und unterchloriger Säure in schwefelsaures Natron umgesetzt wird. Sie versetzen die Lösung des unterschwefligsauren Natriums mit wenig Säure und färben diese Flüssigkeit schwach mit Indigolösung; dann setzen sie die Lösung des unterchlorigationen Natrons unter Umrühren hinzu, bis die bläue Farbe des Indigos bleiben bleibt. Diese Methode ist in mehrfacher Beziehung fehlerhaft. Zunächst kann man unterschwefligsaurer Salze nicht ansäuern, ohne dass sie mit Absatz von Schwefel zer- setzt werden; sodann müsste die chlorhaltige Flüssigkeit in die Bürette kommen, was unangenehm ist und bei Chlorkalk jedesmal einen Absatz von kohlensaurem Kalk an der Röhre nach sich ziehen würde.

Mohr’s Titritbuch.
V. Jod gegen unterschwefligsaures Natron.

Die hier zu beschreibende Bestimmung des Cyans in Verbindungen ist von Fordos und Gélis angegeben worden. Sie beruht darauf, dass Jodlösung von Cyankalium entfärbt wird, indem Jodkalium und Jodcyan nach folgendem Schema gebildet werden:

\[\text{CyK} + 2 \text{J} = \text{JK} + \text{JCy} \]

Die Erscheinung, welche das Ende der Operation anzeigt, besteht darin, dass die gelbe Farbe des Jods nicht mehr verschwindet, sondern dass sich ein leichter Stich ins Gelbe in der farblosen Flüssigkeit zeigt. Die Verfasser verbieten ausdrücklich die Anwendung von Stärkekleister und die Hervorrufung der blauen Farbe der Jodstärke, indem dies nur ungenaue Angaben liefern würde. Obgleich hiervon eigentlich kein Grund einzusehen war, so haben mir Versuche doch gezeigt, dass dem wirklich so ist.

Da in dem käuflichen Cyankalium noch andere Stoffe vorhanden sein können, welche auf die Jodlösung entfärbend wirken, so müssen diese Nebenwirkungen erst beseitigt werden, ehe man zur Messung des Cyans mit Jodlösung gehen kann. Es können im Cyankalium Aetzkali, einfach-kohlensaures Kali und Schwefelkaliium vorhanden sein. Die Verfasser beseitigen die Wirkung dieser Stoffe, indem sie der Lösung kohlensaures Wasser (oder, wie sie sagen, Selterswasser) zusetzen, wodurch diese Substanzen in Bicarbonate verwandelt werden.

Sie lassen 5 g Cyankalium zu 500 cbcm lösen, nehmen davon 50 cbcm, welche 1/2 g rohes Cyankalium enthalten, verdünnen es in einer geräumigen Flasche mit 1/3 Liter Wasser, setzen 1/10 Liter kohlensaures Wasser zu. Dass sie hierbei eine besondere Jodlösung vorschreiben, versteht sich von selbst. Wir machen jedoch davon keinen Gebrauch, da unser System erlaubt, jede beliebige Jodlösung auf das Atomverhältniss zu reduzieren.

Von einem käuflichen Cyankaliim wurden zur Prüfung der Methode 5 g zu 500 cbcm gelöst, und davon jedesmal 5 cbcm mit einer Pipette herausgezogen.

1. 5 cbcm der Lösung ohne Stärkezusatz und ohne Kohlensäure erforderen 1) 18.2 cbcm, 2) 18.2 cbcm Jodlösung.
 (Titer: 10 cbcm 1/10-unterschweflige. Natron = 23.8 cbcm Jodlösung.)
2. 5 cbcm mit Stärke ohne Kohlensäure 17.6 cbcm Jodlösung.
3. 5 cbcm ohne Stärke, mit Kohlensäure geschüttelt, 18 cbcm Jodlösung.
4. 5 cbcm mit Stärke und mit Kohlensäure 9:3 cbcm Jodlösung.
5. 5 cbcm mit Essigsäure übersättigt und mit Stärke versetzt. Der erste Tropfen Jodlösung machte blau.
6. 5 cbcm mit Essigsäure ohne Stärke bis zur gelblichen Farbe 1:8 cbcm Jodlösung.

Wenn nun auch die blaue Farbe als die mehr sichtbare Erscheinung immer etwas früher eintreten muss, so ist der Unterschied von 1. und 4. doch zu gross, um dies der grösseren Sichtbarkeit allein zuzuschreiben; und man muss zu der Annahme gelangen, dass das Jodcyan unter dem Einflusse von Säuren leichter die Stärkelösung färbt, als freies Jod für sich selbst sichtbar wird.

Vergleichen wir nun die absoluten Resultate mit jenen der Silbermethode.

5 cbcm Cyankaliumlösung gebrauchten nach Nr. 4 obiger Versuche 18 cbcm Jodlösung, welche auf 1/10-Arse niklösung reducir = 7:563 cbcm 1/10-Ar seniklösung sind. Da nun jedes Cubikcentimeter Zehntellösung = 0:0032555 g Cyankalium ist, so entsprechen den 7:563 cbcm 0:02462 g reines Cyankalium, welche in 0:050 g rohen Cyankaliums enthalten sind, oder 49:2 Proc.

20 cbcm der Cyankaliumlösung, welche 0:200 g rohes Cyankalium enthielten, forderten nach Liebig's Methode 7:5 cbcm 1/10-Silberlösung. Diese entsprechen nach den dem Kapitel vorgesetzten Zahlen 0:09915 g reinem Cyankalium, welche in 0:2 g enthalten sind. Dies gibt 49:57 Proc. Es sind demnach die Resultate der beiden Methoden übereinstimmend, und es kann auch die Bestimmung des Cyans mit Jodlösung als eine zu richtigen Resultaten führende angesehen werden.
V. Jod gegen unterschwefligsäures Natron.

Schweflige Säure.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>1 cbcm $1/10$-Jodlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefl. Säure</td>
<td>SO_2</td>
<td>32</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

Die freie schweflige Säure zersetzt sich mit Jodlösung in sehr verdünnten Auflösungen nach der Formel

$$SO_2 + HO + J = SO_3 + JH.$$

Die Verdünnung der schweflichen Säure muss mit ausgekochtem und verschlossenen erkaltem Wasser geschehen, weil durch den absorbrten Sauerstoff ein Theil der schweflichen Säure oxydirt wird. Ob man der Bedingung der Verdünnung Genüge gethan, erkennt man aus der Analyse selbst. 100 cbcm der verdünnten schweflichen Säure sollen höchstens 0.04 g SO_2 enthalten; nun stellt aber 1 cbcm Zehntel-Jodlösung 0.0032 schweflige Säure dar, folglich sind $\frac{0.04}{0.0032} = 12.5$ cbcm.

Es sollen also auf 100 cbcm der Lösung von schweflicher Säure nicht mehr als 12.5 cbcm Zehntel-Jodlösung verbraucht werden müssen.

Bekanntlich hat Bunsen 1) seine volumetrische Methode von sehr allgemeiner Anwendung auf diese Reaction gegründet. Es wird jedoch

1) Liebig's Annalen der Chemie und Pharmacie, Bd. 86, S. 265.
das ausgeschiedene Jod durch unterschwefligsäures Natron eben so sicher und viel leichter bestimmt.

Offenbar gehört die Wechselwirkung zwischen freiem Jod und schwefliger Säure zu den anomalen. Es ist aber gar kein Grund vorhanden, die schweflige Säure im freien Zustande zu messen, vielmehr ist von theoretischer Seite einzusehen, dass bei Gegenwart von einem Alkali, welches auf Jodstärke nicht wirkt, die Messung viel richtiger vor sich gehen müsse. Es entstehen zwei Säuren, Schwefelsäure und Jodwasserstoff. Ist ein doppelt kohlensaures Alkali vorhanden, so wird sowohl die Schwefelsäure zu einem Sulfat, als auch die Jodwasserstoffsäure zu einem Jodmetall gebunden und alle Wechselwirkung hört notwendig auf. Wie mir Versuche gezeigt haben, gibt dies Verfahren absolut konstante Resultate, und da man der Verdünnung überhoben ist, so fällt auch die Störung von lufthaltigem Wasser weg. Es wurde eine Lösung gemacht, welche 10 g schwefligsaurer Natron auf 1 Liter enthielt.

Von dieser Lösung erforderten
10 ccm ohne Verdünnung 23·2 ccm einer sehr verdünnten Jodlösung
(Factor: \(\times 0\cdot25 = \frac{1}{10} \text{ N} \)).
10 „ stark verdünnt 19·1 ccm Jodlösung.
10 „ mit Salzsäure versetzt 23·4 ccm Jodlösung.
10 „ mit kohlensaurem Ammoniak 21·5 ccm Jodlösung.
10 „ mit doppelt kohlensaurem Kali 21·5 ccm Jodlösung.
20 „ desgleichen 43.

Es unterliegt keinem Zweifel, dass die konstanten Resultate mit dem kohlensauren Ammoniak auch die richtigen sind, weil alle störenden Wirkungen beseitigt sind. Das kohlensaure Ammoniak, so wie die Bicarbonate der Alkalien wirken in grosser Verdünnung nicht im geringsten auf die Jodstärke. Man hat also die schwefligsauren Salze in verdünntem kohlensaurem Ammoniak zu lösen, schwefligsures Gas in kohlensaurem Ammoniak aufzufangen, Stärke zuzusetzen und mit titrirter Jodlösung auszumessen.

Schwefelwasserstoff (Sulfhydrometrie).

1) Durch Zehntel-Jodlösung.
1 ccm Zehntel-Jodlösung = 0·0017 g Schwefelwasserstoff.

Die Bestimmung des Schwefelwasserstoffs durch eine titrirte Jodlösung mittelst der Stärkereaction ist zuerst von Dupasquier angewendet worden. Nachher hat sich Bunsen derselben Methode bedient,
V. Jod gegen unschweifigsaures Natron.

indem er nur den Titer der Jodlösung durch Analyse statt durch Abwägung bestimmte.

Schwefelwasserstoff wird durch Jod in ausgeschiedenen Schwefel und Jodwasserstoff verwandelt:

\[\text{SH} + \text{J} \rightleftharpoons \text{JH} + \text{S}. \]

Diese Zersetzung geht, wie wir glauben, glatt auf. Insbesondere ist zu bemerken, dass sich keine Schwefelsäure bildet. Rose\(^1\) sagt darüber bei Gelegenheit, als er die Bildung von Schwefelsäure bei Zersetzung der jodsauren Salze durch Schwefelwasserstoff entdeckte: „Eine Mengung von freiem Jod mit Wasser wird bekanntlich durch Schwefelwasserstoffgas in Jodwasserstoffsäure unter Schwefelsäuresatz verwandelt, ohne dass sich dabei Schwefelsäure erzeugt. Wird indessen jene Mischung erhitzt, während Schwefelwasserstoffgas durch sie geleitet wird, so bildet sich eine geringe Menge Schwefelsäure."

Der letzte Fall kann natürlich hier nicht vorkommen.

\(^1\) Poggendorff, Annal. Bd. 47, S. 168.

\(^2\) Liebig's Annalen der Chemie und Pharmacie, Bd. 86, S. 278.
2) Durch Kupfer und unterschwefligsaures Natron.

1 lcm Zehntel unterschwefligsaures Natron = 0.0034 g
Schwefelwasserstoff.

Man lässt das Schwefelwasserstoffwasser aus einer Pipette in eine verdünnte, jedenfalls überschüssige, Lösung von schwefelsaurem Kupfer-
oxyd fliessen. Es entsteht schwarzes Schwefelkupfer und jeder Verlust
an SH ist vermieden. Diese Flüssigkeit wird zum Kochen erhitzt, wo-
bei sich das Schwefelkupfer in dichten Flocken abscheidet. Man filtrirt
und wäscht heiss aus. Man hat nun die Wahl, das Schwefelkupfer nach
Gewicht zu bestimmen, indem man es, nach Verbrennen des Filters, mit
etwas Schwefelpulver im Wasserstoffstrom stark erhitzt, oder titrimetrisch.
Für den letzten Fall spritzt man das Schwefelkupfer vom Filtrum in
eine Porzellanachse, erhitzt mit etwas Salpetersäure und Schwefelsäure
zur Trockne, löst den gebildeten Kupfervitriol im Wasser, setzt Jod-
kalium und Stärke zu, und bestimmt das freie Jod mit ½/16-unterschweflig-
saurem Natron. Man gebraucht halb so viel Kubikzentimeter, als man
Zehntel-Jodlösung gebrauchte, wenn man diese direct auf das Schwefel-
wasserstoffwasser einwirken liess. Auf 20 lcm desselben Schwefel-
waterstoffwassers wurden direct 17.6 lcm ½/16-Jodlösung, und auf
das durch Kupfer ausgeschiedene Jod genau 8.8 lcm verbraucht. Um
das Verdampfen der concentrirten Schwefelsäure zu vermeiden, lässt man
das Schwefelkupfer in wenig Salpetersäure, setzt schwefelsaures Ammo-
niak zu, und verdampft zur Trockne. Es entsteht hierbei salpetersaures
Ammoniak, welches leicht verflüchtigt wird, und auch bleibend nicht
schatet.

Antimonoxyd.

(SbO₂)

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm Zehntel-Jodlösung = 1 Pr. Substanz.</th>
<th>1 cbcm Zehntel-Jodlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>82. ½ At. Antimon</td>
<td>Sb</td>
<td>61</td>
<td>0.61 g</td>
<td>0.0061 g</td>
</tr>
<tr>
<td>83. ½ At. Antimon-</td>
<td>SbO₂</td>
<td>73</td>
<td>0.73 g</td>
<td>0.0073</td>
</tr>
<tr>
<td>oxyd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84. ½ At. 3fach</td>
<td>SbS₈</td>
<td>85</td>
<td>0.85 g</td>
<td>0.0085</td>
</tr>
<tr>
<td>Schwefelantimon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Das Antimonoxid verhält sich in alkalischer Lösung ganz wie die arsenige Säure. Die Jodstärke wird davon mit grosser Energie entfärbt. Es kann mit Hilfe weinsteinssaurer Salze in alkalische Lösung übergeführt werden.

Nehmen wir das Atomgewicht des Antimons nach den Bestimmungen von Dexter und Dumas zu 122, so hat der kristallisirte Brechweinstein als das reinste leicht darzustellende Antimonoxydsalz die Zusammensetzung:

\[
\begin{align*}
K & \quad 47.11 \\
SbO_3 & \quad 146 \\
C_8 & \quad 48 \\
H_4 & \quad 4 \\
O_{10} & \quad 80 \\
H_2O & \quad 9 \\
\hline
\text{Summe} & \quad 334.11
\end{align*}
\]

und der Antimonoxydgehalt wäre \(\frac{146 \cdot 100}{334.11} = 43.69 \) Procent.

Da das Antimonoxid, \(SbO_3 \), auch antimonige Säure genannt, wie die arsenige Säure 2 At. Sauerstoff aufnimmt, um in Antimonsäure, \(SbO_5 \), überzugehen, so kommt auch davon nur \(\frac{1}{2} \) Atom in den Zahlen der Rubrik vor.

0.2 g krystallisirter Brechweinstein erforderten 11.98 cbcm Zehntel-Jodlösung. Dies gibt 0.087454 g Antimonoxid = 43.7 Procent.

Wie die übrigen Antimonverbindungen, wie Schwefelantimon und Antimonsäure in äquivalente Mengen Oxyd umgewandelt werden können, ist eine von der Bestimmung des Oxyds ganz unabhängige Frage.

0.400 g Kermes minerale wurden mit Weinsäure erhitzt, filtrirt, das Filtrat mit doppelt kohlensaurem Kali übersättigt und mit Kochsalzstärke gemessen = 12.7 cbcm \(\frac{1}{10} \)-Jodlösung = 0.09344 g = 23.38 Proc. Antimonoxyd.

Antimonoxid läst sich nicht durch Chromsäure bestimmen, weil sich in derselben Flüssigkeit ein Oxyd (\(Cr_2O_3 \)) und eine Säure (\(SbO_4 \)) bilden sollen. (Vergl. S. 241.)
Zinn.

Zinn.

1 cbem Zehntel-Jodlösung $= 0,0059$ g Zinn.

1) Pogg. 110, 634.
handene Basis erhöhten Affinität der arsenigen Säure zum Sauerstoff, um Arsenik säure zu bilden, zugeschrieben werden, gerade wie auch das Zink das Wasser nicht zersetzt, wenn nicht eine Säure vorhanden ist. Später hat Lenessen 1) diesen Satz auch auf die Bildung von Oxyden in Säuren angewendet. Wenn durch die Oxydation eine Säure entsteht, z. B. Arsenik säure aus arseniger, so muss die Lösung neutral oder alkalisch sein, weil Anwesenheit von Alkali die Bildung von Säuren befördert; entsteht durch den Vorgang ein Oxyd, wie aus Uebermangan säure das Manganoxydul, so muss die Flüssigkeit sauer sein. Will man z. B. Zinnoxydul in saurer Lösung mit Jod bestimmen, so entsteht Zinn säure und Jodwasserstoffsäure oder Zinnjodid, was selbst eine Säure ist. Es wird aber die Gegenwart alkalischer Körper die Bildung von Zinn säure befördern, während die Gegenwart saurer Körper sie vermindert, und es geht deshalb in saurer Lösung die Bildung der Zinnsäure nicht bis zu Ende. Bei den meisten dieser Zersetzungsspiele verschiedene Affinitäten zugleich, und die Reaction hört auf, wenn die entgegenstehenden Affinitäten sich gerade das Gleichgewicht halten. Bei den guten und brauchbaren Methoden ist eine Reihe der Affinitäten so vor waltend, dass die Zersetzung jedesmal bis zu Ende geht. Als Beispiele gelten: Uebermangan säure gegen Eisenoxydul, wo Manganoxydul und Eisenoxyd entstehen, zwei basische Körper, welche freie Säure verlangen; oder Chromsäure gegen Eisenoxydul mit demselben Grunde; ferner arsenigsäures Natron und Chlor oder Jod, wobei Arsenik säure und eine Wasserstoffsäure entsteht, zwei Körper, die die Gegenwart von Alkali verlangen, um sich bis zu Ende zu bilden. Diese Vorbedacht war notwendig, um das Weglassen des in der ersten Auflage vorhandenen grossen Kapitels „Chromsäures Kali gegen Zinchnatrium“ zu erklären.

Die Zinndetermination durch Jod legt aber alle ihre Fehler ab, wenn sie in einer alkalischen Lösung geschieht. Das Zinchnatrium ist in einfach- und doppelt-kohlensaurem Natron loslich, wenn eine genügende Menge eines weinsteinsauren Salzes vorhanden ist. Als solches wendet man am besten den Natronweinstein (Tartarus natronatus) an.

Um sich gegen jede Unrichtigkeit der Atomgewichte zu sichern, kann man in gleicher Weise den Titel mit reinem Zinn nehmen. Ein

Die Wechselwirkung zwischen Zinnchlorür und Eisenoxydsalzen schien eine Zeit lang sich zur Bestimmung des Zinns zu eignen, bis eine genauere Prüfung zeigte, dass dabei dieselben Unregelmässigkeiten, wie zwischen Chromsäure und Zinn stattfanden. Wenn nämlich Zinnchlorür das Eisenchlorid vollkommen zersetzte, so hätte man in der nachherigen Bestimmung des Eisenoxyduls durch Chamäleon oder chromsaures Kali ein Massa des Zinnchlorurs.

Der Versuch zeigte, dass in konzentrierten stark sauren Lösungen die Zersetzung so vollständig war, dass nur 1 oder 2 Tropfen Jodlösung die blaue Farbe hervorbrachten. In vorläufig sehr verdünnter Zinnlösung blieb aber neben der rothen Farbe des Schwefelcyanisens so viel Zinnchlorür übrig, dass nun über 10 cm Jodlösung angewandt werden mussten. Bringt man in grosser Verdünnung Zinnchlorür und Eisenchlorid zusammen, so kann man mit dieser Flüssigkeit beide Reaktionen, das Verschwinden der Jodstarkfarbe und die Röthung durch Schwefelcyanalkalium zeigen. Sie können also unter Umständen neben einander ohne Zersetzung bestehen, und die Methode ist nicht zu gebrauchen.

Um die Richtigkeit der Methode zu prüfen, wurden 0,2 g reines aus Zinnchlorür durch Zink gefälltes Zinn in einem Platintiegel gelöst,
V. Jod gegen unterschwefligsaures Natron.

mit weinsaurem Kali-Natron und kohlensaurem Natron alkalisch gemacht und dann mit Zehntel-Jodlösung ausgemessen. Es wurden 33.8 cbcm verbraucht. Diese mit 0.0059 multiplicirt geben 0.19942 g Zinn statt 0.2 g, also sehr nahezu dieselbe Zahl, und es stellt sich als sehr günstig heraus, dass die Zahlen im System richtig sind, während nach der Streg'schen Methode ein viel zu hohes Atomgewicht des Zinns herauskam.

Kaliumeisencyanid.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85. Kaliumeisen-cyanid . .</td>
<td>3 KFe₃ N + Fe₃ + 3 C₃ N</td>
<td>329.33</td>
<td>3.293 g</td>
<td>0.0832933 g</td>
</tr>
</tbody>
</table>

Es hat sich jedoch bei genauer Prüfung gezeigt, dass diese Zersetzung sehr von dem Grade der Verdünnung abhängig ist, und dass bei ungleichen Verdünnungen sehr abweichende Zahlen erhalten werden. Die Zersetzungsgleichungen sind:

1) \(2(\text{FeCy}_3 2 \text{K}) + \text{J} = \text{Fe}_2 \text{Cy}_6 3 \text{K} + \text{JK} \).

2) \(\text{Fe}_2 \text{Cy}_6 3 \text{K} + \text{JK} = 2(\text{FeCy}_3 2 \text{K}) + \text{J} \).

Die Bedingungen dieser beiden Zersetzungen sind von C. Mohr in einer besonders Arbeit ² über die Einwirkung des Jodkaliums auf Kaliumeisencyanid nachgewiesen. In sehr verdünnten Lösungen kann

¹ Liebig's Annalen der Chemie und Pharmacie Bd. 91, S. 240.
² Liebig's Annalen der Chemie und Pharmacie Bd. 105, S. 60.

4 g Kaliumeisencyanid wurden in 100 cbcm Wasser gelöst und je 10 cbcm, enthaltend 0,4 g Salz, in ein Becherglas auslaufen gelassen, und 0,5 g Jodkali um, in 5 cbcm Wasser gelöst, hinzugefügt. Nachdem die verdünnende Menge Wasser und wenige Tropfen konzentrierter Salzsäure hinzugegeben waren, wurde die jodometrische Prüfung mit 1/10-unterschweiflsaurer Natronlösung ausgeführt.

<table>
<thead>
<tr>
<th>cbcm Wasser</th>
<th>cbcm 1/10 S_4O_6²⁻, NaO</th>
<th>Gefundenes Gewicht Fe_2C_7, 3K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) —</td>
<td>10,2</td>
<td>0,3359</td>
</tr>
<tr>
<td>2) —</td>
<td>10,1</td>
<td>0,3326</td>
</tr>
<tr>
<td>3) 10</td>
<td>3,1</td>
<td>0,102</td>
</tr>
<tr>
<td>8) 20</td>
<td>1,5</td>
<td>0,0461</td>
</tr>
</tbody>
</table>

Wenn man aber eine gewogene Quantität Kaliumeisencyanid mit Jodkali um in möglichst wenig Wasser löst und Salzsäure zugibt, so kann man die Flüssigkeit reichlich verdünnen, ohne die Fehlerquelle zu berühren, die sich bei der vorhergehenden Versuchsreihe ausgesprochen hat.

Es liess sich jedoch nach Carl Mohr aus dem Verhalten des Zink-
eisencyanür's zu Jod und dem des Zinkeisencyanids in salzsaurer Lösung
V. Jod gegen unterschwefligsauras Natron.

Die vom unterschwefligsauren Natron entbläutete Flüssigkeit enthält einen rein weissen Niederschlag (Zinkeisencyanür) ohne die geringste Beimischung von Gelb. Die Endreaction erscheint mit der grössten Schärfe und verschwindet nicht wieder.

<table>
<thead>
<tr>
<th>Fe₃Cy₆, 3K.</th>
<th>cbcm ¥_{10} S₂O₅, NaO.</th>
<th>Gefunden.</th>
<th>Procente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 0·478 g</td>
<td>14·51</td>
<td>0·4808</td>
<td>100·58</td>
</tr>
<tr>
<td>2) 0·9785 „</td>
<td>29·43</td>
<td>0·97803</td>
<td>99·95</td>
</tr>
<tr>
<td>3) 0·5645 „</td>
<td>17·22</td>
<td>0·5670</td>
<td>100·45</td>
</tr>
<tr>
<td>4) 0·182 „</td>
<td>5·492</td>
<td>0·18146</td>
<td>99·70</td>
</tr>
<tr>
<td>5) 0·2715 „</td>
<td>8·28</td>
<td>0·2726</td>
<td>100·4</td>
</tr>
</tbody>
</table>

Mittel: 100·21

Es ist demnach hierdurch eine direkte leicht auszuführende und sehr sichere Methode zur Bestimmung des Kaliumeisencyanids gefunden.
Das umgekehrte Verfahren, das Zink mit Kaliumeisencyanid und Jodkalium zu bestimmen, zeigte eigenthümliche Unregelmässigkeiten, welche es bis jetzt vom Gebrauche ausschlossen.

Quecksilber.

1 ccem Zehntel-Jodlösung = 0.020 g Quecksilber,
1 ccem " " " " = 0.027102 " Quecksilberchlorid.

Hat man Quecksilberoxydul oder Chlorid, so muss dies erst in Quecksilberchlorür übergeführt werden. Im Falle die Flüssigkeit kein Chlor enthält, muss man etwas Kochsalzlösung zusetzen. Man löst nun in der Flüssigkeit eine genügende Menge Eisenwtritol auf und setzt Natronlange bis zur alkalischen Reaction zu. In dieser alkalischen Lösung verwandelt das Eisenoxydul das Quecksilberchlorid in Chlorür. Nachdem öfters umgeschüttelt, fügt man verdünnte Schwefelsäure hinzu und digerirt, bis der anfangs schwärmliche Niederschlag ganz weiss geworden ist, d. h. bis alles gefällte Quecksilberoxydul in Quecksilberchlorür übergegangen ist. Man sammelt auf einem Filtrum, wäscht aus und verfährt nun wie oben.
Kupfer.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm 1/10 unterschwefliges Natron</th>
<th>1 cbcm zehntel unterschwefliges Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>86. 2 At. Kupfer</td>
<td>2 Cu</td>
<td>63·32</td>
<td>0·6332 g</td>
<td>0·006332 g</td>
</tr>
<tr>
<td>87. 2 At. Kupferoxyd</td>
<td>2 CuO</td>
<td>79·32</td>
<td>0·6932</td>
<td>0·007932</td>
</tr>
</tbody>
</table>

Versetzt man eine Lösung eines Kupferoxydsalzes mit Jodkalium, so scheidet sich Kupferjodür (Cu₂J) als ein schmutzig weisses Pulver ab und freies Jod löst sich in dem im Überschusse zugesetzten Jodkalium:

\[2(CuO + SO_2) + 2 KJ = Cu_2 J + 2(KO + SO_2) + J.\]

Die Methode ist nicht exact und hat auch noch nirgendwo praktische Anwendung gefunden. Hat man das Kupfer einmal gefällt, so kann man es sicherer wägen, oder nach S. 201 mit Chamäleon messen.

Fr. Weill) hat vorgeschlagen, das Kupfersalz durch Versetzen mit Salzsäre in Kupferchlorid zu verwandeln, wie es der Farbenwechsel aus Blau in Grün anzeigt, zum Kochen zu erhitzen und durch Zufüßenlassen von Zinnc chlorür das Kupferchlorid in das farblose Chlorür zu verwandeln. Der Vorgang ist:

\[2 \text{CuCl} + \text{SnCl}_2 = \text{Cu}_2\text{Cl}_2 + \text{SnCl}_2. \]

Die Wirkung des Zinncchlorürs ist nicht augenblicklich, sondern tritt erst nach einiger Zeit ein und findet nur in der Siedhitze vollständig statt, wobei leicht auch Oxydation in der nothwendig offenen Flasche

1) Fresenius' Zeitschr. f. analyt. Chem. 9, 297.
Mohr's Titritbubch.
V. Jod gegen unterschwefligsäures Natron.

Eintritt. Auch ist die gelbe Farbe zu licht, um das Ende ganz bestimmt erkennen zu lassen.

E i s e n.

1 cbcm zehntelunterschwefligsäures Natron $= 0\cdot0056$ g Fe,
1 cbcm " " " $= 0\cdot0072$ " FeO,
1 cbcm " " " $= 0\cdot0080$ " Fe$_2$O$_3$.

1) Durch Jodkalium und unterschwefligsäures Natron.

Wenn ein saures Eisenoxydalsalz mit Jodkalium zusammenkommt, so zersetzen sich die Jodwasserstoffsaure und das Eisenxyd:

$$Fe_2O_3 + JH = 2FeO + J + H_2O.$$

Das zu bestimmende Eisen muss als Oxyd oder Chlorid vorhanden sein und darf kein Oxydul enthalten und die freie Säure darf nur Salz-

2) Ebendas. Bd. 113, S. 258.

Die salzsäure Eisenchloridlösung der gewogenen Substanz bringt man in die mit einem gut schliessenden Glasstopfen verschliessbare Flasche (Fig. 105) von 300 bis 400 obem Inhalt, setze Salzsäure, einiges Stückchen doppelt kohlensaures Natron, um die Luft zu vertreiben, zu und eine günstige Menge Jodkalium. — Man verstopfe und setze das Glas längere Zeit einer Temperatur von 50 bis 60° C. aus, indem man es auf warmem Wasser schwimmen lässt. Man lässt vollständig abkühlen, bis sich die Jodkämpfe verdichtet haben, öffnet den Stopfen, setzt etwas Stärke zu und gibt nun zehnteil-unterkohlensaures Natron zu bis zum Entfärben. Man erwärmt noch einmal, um zu sehen, ob eine Nachbläue stattfindet. Auch diese nimmt man mit der Massflüssigkeit hinweg, bis bei fernerem Erwärmen die Flüssigkeit ganz farblos bleibt. Bei genügender Digestion ist die Zersetzung in 1/2 Stunde vollständig.

Die Resultate sind sehr übereinstimmend und im System richtig.

Um die Methode auf die Konstanz ihrer Resultate zu prüfen, und auch als Titersubstanz bei Analysen, bereitet man sich eine Lösung, welche im Liter 10 g Eisen als Chlorid enthält. Eine solche stellt man am leichtesten und sichersten aus reinem Eisenoxyd dar, welches durch Glühen von oxalsaurem Eisenoxydul, dem schönen gelben Salze, in offener Platinschale gewonnen wird. Um 10 g Eisen in Oxyd zu haben, muss man

\[
\frac{10 \times 80}{56} = 14.286 \text{ g Eisenoxyd nehmen, und diese werden aus}
\]

V. Jod gegen unterschweißsaures Natron.

mit Salzsäure in einem Becherglas auf und füllt in die Literflasche ein, bis alles gelöst ist, und ergänzt zuletzt das Volum mit Wasser bis an die Marke. Aus Vorsicht kann man noch vorher eine Probe machen, ob Kaliumcyanid damit keine blaue Farbe erzeugt, in welchem Falle man mit etwas Chlorwasser erhitzen muss, bis diese Probe Stich hält.

Will man diese Flüssigkeit aus metallischem Eisen darstellen, so hat man statt 10 g desselben 10'04 g abzuwägen, unter der Voraussetzung, dass das beste Draht Eisen eine Reinheit von 99'6 Proc. hat, die auf den nie fehlenden Gehalt von Kohlenstoff, Silicium etc. zu beziehen ist. Man löst in Salzsäure in einem Kolben auf, und bedeckt diesen mit einem Trichter, in dessen Inneres man Asbest legt, um die feinen Bläschen aus der Gasentwicklung festzuhalten. Nach geschehener Lösung spritzt man den Asbest aus und oxydirt das Eisenchlorür durch eingeworfenes chlor-saures Kali, zuletzt durch Wegkochen des freien Chlors, wenn kein Oxydul mehr angesagt wird.

Von kristallisierter Eisenoxyd-Ammoniakalaun würde man 86'071 g in Salzsäure lösen und zu 1 Liter verdünnen müssen, um eine gleich starke Lösung zu erhalten.

Unabhängig vom System und von der Richtigkeit der Zehntel-Lösung des unterschweißsauren Natrons kann man mit dieser Flüssigkeit den Werth der Maassflüssigkeit in Grammen von reinem Eisen bestimmen. Man pipettirt 20 oder 40 cbcm in eine Stöpselflasche, setzt etwas Salzsäure und Jodkalium zu, erwärmt bei verschlossener Flasche und nimmt nun die Bestimmung in bekannter Weise vor. Man erfährt dadurch, wie viel der unterschweißsauren Natronflüssigkeit gleich 0'2 oder 0'4 g reinen Eisens sind, also wie viel Eisen jeder einzelne Cubikzentimeter vorstellt, wenn man 0'2 oder 0'4" durch die Zahl der verbrauchten dividirt.

10 cbcm der Eisenlaugelösung = 0'10 g Eisen erforderten 17'85 cbcm Zehntel-Flüssigkeit = 0'09996 g Eisen statt 0'1 g; 20 cbcm erforderten 35'65 cbcm = 0'1996 g statt 0'2 g.

0'250 g Eisen draht abgewogen in Salzsäure gelöst und mit Manganhydroyd oxydirt erhielten 44'9 cbcm = 0'251 g Eisen.

1 cbcm der Eisenlösung verbrauchte 17'8 cbcm 1/100-unterschweißsaures Natron = 0'009968 g Eisen statt 0'010 g.

Wendet man eine unzureichende Menge Jodkalium an, so erscheint die blaue Farbe der Jodstärke ebenfalls, und wird auch durch unterschweißsaures Natron weggewonnen, allein man erkennt dann noch daneben die gelbe Farbe des Eisenchlorids. Nach einiger Zeit überläuft die ganze Flüssigkeit mit der blauen Farbe wieder, und nimmt man diese wieder weg, so wiederholt sich dieser Vorgang so oft, bis zuletzt alles Eisenoxyd in Oxydul übergegangen ist, und die Flüssigkeit farblos erscheint. Man sieht also, dass zu der Umsetzung zwischen Eisenoxyd und Jodwasserstoff eine gewisse Zeit nothwendig ist, und zwar eine um so längere, je verdünnter die Flüssigkeit ist. Durch Wärme wird diese Zeit zwar abgekürzt, allein in der Wärme tritt auch die blaue Farbe der Jod-
stärke weniger rasch hervor als in der Kälte und es ist eine Einwirkung der freien Salzsäure auf die gebildete Tetrathiogensäure zu befürchten.

Die kurz vorher beschriebene Erscheinung hängt mit einer Bestimmungsmethode zusammen, welche Scherer vorgeschlagen hatte. Er lässt das unterschwelligsaure Natron in die Eisenchloridlösung einfließen, wodurch eine dunkle violette Färbung entsteht, die allmählich, in der Wärme etwas rascher, verschwindet. Das Ende der Operation sollte daran erkannt werden, dass keine violette Färbung mehr durch das Hyposulfit enträfte. Der Versuch hat jedoch gezeigt, dass in diesem Falle schon viel von dem letzteren im Ueberschuss vorhanden ist, und dass man eine ansehnliche Menge Jodlösung rückwärts gebrauchen muss, um mit Stärke die blaue Farbe zu erzeugen. Kremmer und Landolt1) haben wirklich dies Rückmessen vorgeschlagen, und um die Wirkung der freien Säure auf die gebildete Tetrathiogensäure zu mildern, stumpfen sie erst die freie Säure mit Natron ab, setzen aber dann überflüssiger Weise essigsaurer Natron zu, und nehmen die rothe Farbe des essigsauren Eisenoxyds wieder mit Salzsäure weg. Da die ganze Einwirkung nur zwischen Eisenoxyd und Jodwasserstoffsaure stattfindet, so kann eine Säure, welche Jodkalium nicht zersetzt, auch hier keine Anwendung finden, und wirklich wird essigsaurer Eisenoxyd weder von Jodkalium, noch von unterschwelligsaurem Natron zersetzt oder verändert. Es ist also auch ganz urrichtig, wenn einige Lehrbücher der Titrirmethode die Sache so darstellen, als wenn die schwachsaure Natur des essigsauren Eisenoxyds den richtigen Verlauf der Umsetzung bedinge. Wenn man die Eisenchloridlösung durch kohlensaures Natron in die basische tiefroth gefärbte verwandelt, so wird durch Zusatz von unterschwelligsaurem Natron sehr bald eine Menge Eisenoxyd gefällt, und wenn man diese durch vorschüssigen Zusatz von Salzsäure nur eben wieder löst, so zeigt sich nach der Entfärbung häufig eine Trübung von ausgeschiedenem Schwefel und dann ist die Analyse verloren. Die Reduction geht nach Fleischer, welcher diese Methode sehr empfiehlt, am besten bei einem etwas grossen Ueberschuss von unterschwelligsaurem Natron vor sich, in welchem Falle man auch wieder viel Jodlösung zu verwenden hat, was die Genauigkeit beeinträchtigt. Sehr starke Verdünnung schützt noch am besten gegen

1) Fresenius' Zeitschr. f. analyt. Chem. 1, 214.
Ausscheidung von Schwefel. Die Kremer-Landolt'sche Methode würde also einfach darin bestehen, dass man mit kohlensaurem Natron den Ueberschuss der zur Lösung nöthigen Salzsäure abstumpfte, dann mit gemessenem Ueberschuss von $\frac{1}{10}$ unterschwefligsaurem Natron eingege, und zuletzt mit $\frac{1}{10}$-Jodlösung zurückmasse. Damit bliebe die Bestimmung immer eine Restmethode und bei kleinen Mengen Eisen gar nicht anzuwenden, weil sich Differenzen zwischen grösseren Mengen auch gleichgestellter Flüssigkeiten immer ergeben, während die Messung des ausgeschiedenen Jods eine directe Methode ist, die nur eine Flüssigkeit erfordert und bei Abwesheit von Eisenoxyd auch gar keine blau Farbe erzeugt.

Eine spätere Rechtfertigung der Methode von Seiten Oudemans' 2) läuft darauf hinaus, dass man beim Zufügen von Kaliumrhodanid und Kupfersalz "gewisse Grenzen" nicht überschreiten dürfe, „weil das

1) Fresenius' Zeitschr. f. analyt. Chem. 6, 129.
2) Ebendas. 9, 343.
Gelingen der Operation wesentlich von der Menge der benutzten Reagenzien abhängt.⁴ Das ist ein schlechter Trost, und so findet auch der Verfasser später, dass es besser ist, etwas Kupfersalz und viel weniger Kaliumrhodanid zuzusetzen. Er beruft sich auf die zustimmende Ausserung von Carl Balling¹), während dieser gerade soviel Ausstellungen macht und Ebelstade bezeichnet, dass er besser gethan hätte, sich nicht darauf zu berufen.

Cl. Winkler⁵) hat empfohlen, das Eisenchlorid durch eine Lösung von Kupferchlordrür zu messen, bis die röthliche Färbung von einigen Tropfen Rhodan-Kaliumlösung verschwindet. Die Einwirkung geht schon in der Kälte vor sich, allein die geringe Haltbarkeit der Kupferchlorürlösung, die man kaum ohne bläue Färbung in die Bürette eingenissen kann, dürfte dieser Methode im Wege stehen. Das Titernehmen macht ungefähr so viele Mühe, wie eine Eisenbestimmung, und dies würde bei Eisenhütten als ein grosser Nachtheil angesehen werden.

2) Durch Zinnchlorür und Jodlösung.

¹) Fresenius' Zeitschr. f. analyt. Chem. 9, 99.
²) Journ. f. prakt. Chem. 95, 417; Fresenius' Zeitschr. f. analyt. Chem. 4, 423.
Zinnchlorürlösung vom Boden auch in die Steigröhre, und aus ihrem herabgehenden Schenkel in die Bürette. Auch dient dazu sehr gut die Flasche mit Kautschukkugel, Fig. 107, mit PetroleumSchicht.

Die Zinnlösung ist hier die eigentliche Massflüssigkeit und die Jodlösung hat eine unbekannte, aber gegen die Zinnlösung festgelegte Stärke. Der Werth der Zinnlösung wird gegen eine titirte Eisenchlorid-
lösung festgestellt.

1) Drahtnetze von Messingdraht mit 8 bis 9 Drähten auf den Centimeter schützen sehr gegen das Bersten der Glasgefässe, da sie die Stichflamme weit besser vertheilen, wie eiserne Drahtnetze, und niemals durchbrennen.
O z o n.

1 cbcm $\frac{1}{10}$-unterschwefligsaures Natron $= 0.0008$ g Ozon.

Das Ozon oder der erregte Sauerstoff scheidet Jod aus Jodkalium aus, und dies kann mit $\frac{1}{10}$- oder $\frac{1}{100}$-unterschwefligsaurem Natron gemessen werden. Man fängt das Ozon in einer Lösung von reinem Jodkalium auf, indem man die ozonisirte Luft aus einer dünnen Spitze einer Glaseöhre in den feinsten Blasen durch die Jodkaliumflüssigkeit durchgehen lässt. Man kann sich dazu einer in einen stumpfen Winkel gebogenen Glaseöhre bedienen oder eines Liebig'schen Kugelapparates. Vulkansirte Kautschukröhren sind natürlich zu vermeiden, und die Verbindungen können mit gebranntem Gyps hergestellt werden. Zu dem zer setzten Jodkalium fügt man etwas klare Stärkelösung und dann die $\frac{1}{100}$-Maassflüssigkeit bis zur Entfärbung.

Jodkalium wird durch Ozon in freies Jod und reines Kali umgesetzt. Allein beide wirken auf einander, indem daraus jodsaures Kali und Jodkalium entsteht. Um dies zu verhindern, muss das Kali mit einer schwachen Säure gesättigt werden, welche nicht im Stande ist, Jodwasserstoff säure zu bilden; eine solche ist die Kohlensäure. Man setzt bei der Ozonmessung immer kleine Mengen eines mit Kohlensäure gesättigten Wassers, sogenannten Sodawassers, hinzu, und misst zuletzt mit frisch bereititem $\frac{1}{100}$-unterschwefligsaurem Natron aus.

Chlorsäure

Substanz	Formel	Atomgewicht	Abzuwägend
88. 1/4 At. Chlorsäure	ClO₅⁻/₆	12.577	0.1258 g
89. 1/6 At. chlorsaures Kali	ClO₅⁺ + KO⁻/₆	20.428	0.2043 g

Chlorsäure wird durch Erhitzen mit concentrirter Salzsäure vollständig zersetzt, und es entstehen aus 1 Atom Chlorsäure immer 6 Atome Chlor:

\[
\text{ClO}_5^- + 5 \text{ClH} = 6 \text{Cl} + 5 \text{H}_2\text{O}.
\]

Ob sich hier Zwischenstufen von unterchloriger oder chloriger Säure zuerst bilden, ist für das Endresultat ganz gleichgültig.

Bei überschüssiger Salzsäure tritt immer die letzte Zersetzung ein. Man bringt starke rauchende Salzsäure in das Zersetzungskölbchen des mehrfach erwähnten Destillationsapparates (Fig. 97, S. 251), wirft das gewogene chlorsaure Salz hinzu, verschliesst augenblicklich und leitet die Zersetzung durch Erwärmen ein. Zuletzt wird vollständiges Kochen gegeben, um alles Chlor überzutreiben.

Da das chlorsaure Salz 6 Atome Chlor ausgibt, unsere Normalflüssigkeit aber nur 1/10 Atom disponibeln Sauerstoff im Liter enthält, so tritt jedes Cubikecentimeter unterschweiflissaures Natron in der Tabelle mit dem sechsten Theil von 1/10000 Atom auf.

Die chlorsauren Salze zersetzen sich durch Digestion mit starker Salzsäure und Jodkalium in dem Digestionsglase (Fig. 100, S. 253) vollständig.

Es wurde 0.1 g reines chlorsaures Kali in dieser Art behandelt und das ausgeschiedene Jod erhielt erst 50.4 cbcm 1/10-unterschweiflissaures Natron und dagegen 1.4 cbcm 1/100-Jodlösung. Diese machen 0.14 cbcm 1/10-Jodlösung und von 50.4 cbcm abgezogen, lassen sie 50.26 cbcm zu verrechnen. Diese mit 0.0020448 multiplicitätsb. 0.10267 g chlorsaures Kali statt 0.1 g.
Jodsäure

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm 1/10-unterschweiflsgaures Natron = 1 Pre.Subst.</th>
<th>1 cbcm 1/10-unterschweißgaures Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>90. 1/6 Atom Jod-säure . . .</td>
<td>$\frac{JO_5}{6}$</td>
<td>27.83</td>
<td>0.2783 g</td>
<td>0.002783 g</td>
</tr>
<tr>
<td>91. 1/6 Atom jodsaures Kali . .</td>
<td>$\frac{JO_5 + KO}{6}$</td>
<td>35.68</td>
<td>0.3568</td>
<td>0.003568</td>
</tr>
</tbody>
</table>

Versetzt man ein jodsaures Salz mit Jodkalium und dann mit Salzsäure, so scheiden sich 6 Atome Jod aus, welche in dem überschüssigen Jodkalium gelöst bleiben und mit 1/10-unterschweiflsgaurem Natron gemessen werden können:

$$JO_5 + 5 JK = 6 J + 5 KO,$$

oder $$JO_5 + 5 JH = 6 J + 5 HO.$$

Die Zersetzung geht nach Lösung der Substanzen und Vermischung augenblicklich vor sich und unmittelbar darauf kann schon die Bestimmung vorgenommen werden. Man kann aber immer die Stöpselflasche eine Zeit lang stehen lassen.

0.1 g jodsäures Kali mit Jodkalium, Stärke und Salzsäure versetzte erforderten 28.3 cbcm 1/10-unterschweißgaures Natron. Diese mit 0.003568 multiplicitart geben 0.10097 g jodsäures Kali statt 0.1 g.

Eine andere Methode ist von Bunsen angewendet worden. Sie besteht darin, dass man das jodsaure Salz mit einem Überschuss starker Salzsäure destilliert und das übergehende Chlor in Jodkalium auffängt. Bei dieser Zersetzung gehen für jedes Atom Jodsäure 4 Atome Chlor über, während 1 Atom Jodchlorür in der rückständigen Flüssigkeit bleibt:

$$JO_5 + 5 ClH = JCl + 4 Cl + 5 HO.$$

Da hier 4 Atome Jod durch die 4 Atome Chlor in dem vorgeschlagenen Jodkalium frei werden, so werden auch 4 mal so viel Cubikcentimeter 1/10-unterschweißgaures Natron gebracht werden, als dem einen Atom Jod in der Jodsäure entspricht. Es muss deshalb der Werth eines Cubikcentimeters Zehntellösung zu 1/4 eines zehntausendstel Atoms genommen werden. Wenn Jodsäure $JO_5 = 167$ ist, so ist bei dieser Zersetzung
1 cbcm $\frac{1}{10}$-unterschweifigsaures Natron $= 0'00417 \text{ g } \text{JO}_5$,

$\text{n} \quad \text{n} \quad \text{n} = 0'005353 \text{ g } \text{JO}_5 + \text{K}O$.

Das gebildete Jodchlorür ist aber immer ein flüchtiger Körper, der sich durch einen penetranten Geruch bemerklich macht. Wenn davon mit überdestillirt, so werden die Resultate falsch. Hier ist die Destillation nicht nur entbehrlich, sondern geradezu unsicherer als die Digestion, welche auch mehr Massflüssigkeit gebraucht und dadurch schärfer misst.

Rammelsberg1) scheint diese Stelle in der zweiten Auflage des Titirbuchs nicht gekannt zu haben, indem er die von ihm verworfene Destillationsmethode ebenfalls durch eine Digestion mit Jodkalium und Schwefelsäure ersetzt. Die Wahl der Schwefelsäure ist aber gegen die von mir vorgeschlagene Salzsäure ein Fehler, da bekanntlich Schwefelsäure und Jodkalium sich schon bei ziemlicher Verdünnung in Jod und schweflige Säure umsetzen. Es war dies ja der Grund, warum Bunsen bei seiner Methode mit schwefriger Säure eine so starke Verdünnung der schwefigen Säure bis zu $\frac{1}{100}$ Procent vorschrieb. Man vermische nur eine Lösung von Jodkalium mit einigen Tropfen koncentrirter Schwefelsäure und Stärkelösung, und man wird die blaue Farbe der Jodstärke erzeugen, während dies bei Jodkalium und Salzsäure niemals eintreten kann, als nach längerer Zeit durch atmosphärischen Sauerstoff. Dass Rammelsberg die Titirung des Jods mit unterschweifigsaurem Natron statt mit schwefriger Säure ebenfalls bewährt gefunden hat, kann nach den zahlreichen Belegen in den früheren Auflagen dieses Werkes nicht auffallen.

Bromsäure.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm $\frac{1}{10}$-unterschweifigs. Natron $= 1 \text{ Proc. Subst.}$</th>
<th>1 cbcm $\frac{1}{10}$-unterschweifigs. Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>92. $\frac{1}{6}$ At. Bromsäure ...</td>
<td>$\text{BrO}_5 \div 6$</td>
<td>20</td>
<td>0.2 g</td>
<td>0.002 g</td>
</tr>
<tr>
<td>93. $\frac{1}{6}$ At. bromsaurer Kali</td>
<td>$\text{BrO}_5 + \text{KO} \div 6$</td>
<td>27.85</td>
<td>0.2785</td>
<td>0.002785</td>
</tr>
</tbody>
</table>

$^1)$ Pogg. 135, 494.
V. Jod gegen unterschweifigsaures Natron.

Die Zersetzung und Berechnung ist zuverlässig ebenso, wie bei Jod-säure, und da auch ein Bromchlorür existirt, so ist die Digestion der Destillation entschieden vorzuziehen.

Chromsäure.

<table>
<thead>
<tr>
<th>Substanz.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abwägend Menge für 1 cbcm $\frac{1}{10}$-unterschweffigs. Natron $=1$ Prc. Subst.</th>
<th>1 cbcm $\frac{1}{10}$-unterschweffigs. Natron ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>94. $\frac{3}{5}$ At. Chrom.</td>
<td>$2 \frac{Cr}{3}$</td>
<td>17.493</td>
<td>0.1749 g</td>
<td>0.0017493 g</td>
</tr>
<tr>
<td>95. $\frac{1}{5}$ At. Chromoxyd</td>
<td>$\frac{Cr_2O_8}{3}$</td>
<td>25.49</td>
<td>0.2549</td>
<td>0.002549</td>
</tr>
<tr>
<td>96. $\frac{3}{5}$ At. einfach-chroms. Kali</td>
<td>$\frac{2(CrO_8 + KO)}{3}$</td>
<td>64.9</td>
<td>0.649</td>
<td>0.00649</td>
</tr>
<tr>
<td>97. $\frac{1}{5}$ At. doppelt-chroms. Kali</td>
<td>$\frac{2CrO_8 + KO}{3}$</td>
<td>49.19</td>
<td>0.492</td>
<td>0.004919</td>
</tr>
</tbody>
</table>

Wird ein chromsaures Salz, z. B. saures chromsaures Kali, mit einem Überschusse rauender Salzsäure gekocht, so entweichen auf je 2 At. Chromsäure 3 At. Chlor:

$$2CrO_3 + 6CIH = 3Cl + Cr_2Cl_3 + 6HO.$$

Diese 3 At. Chlor machen in der Vorlage 3 At. Jod frei, welche gemessen werden. Es muss also für jeden Cubikcentimeter $\frac{1}{10}$-unterschweißigsaueren Natrons der dritte Theil eines $\frac{1}{10000}$ Atoms in Anrechnung gebracht werden für eine Verbindung, welche 2 At. Chrom enthält. Enthält die Verbindung nur 1 At. Chromsäure, so wird nur halb so viel Chlor und beziehungsweise Jod frei. Es muss also dann der Cubikcentimeter doppelt so hoch oder $\frac{3}{2}$ eines $\frac{1}{10000}$ Atoms berechnet werden. Daraus erklärt sich die Rubrik. Die Berechnung auf metallisches Chrom und Chromoxyd ist zulässig, wenn man diese Körper erst durch eine chemische Operation in Chromsäure verwandelt und dann nach der Methode bestimmt hat.
Baryt.

Übrigens besitzen wir auch in den Eisenoxydulsalzen ein Mittel, diese Bestimmungen mit der größten Schärfe und auf reine chromsaure Salze bezogen auszuführen. Die Zersetzung der chromsauren Salze durch Jodkalium in salzsaurer Lösung gibt keine konstanten Zahlen, und die Methode ist zu verwerfen. Hat man die Chromsäure durch Blei- oder Barytsalze gefällt, so ist ebenfalls nur die Eisenmethode anzuwenden.

B a r y t.

1 cbcn $\frac{1}{10}$-unterschwefligsaures Natron $= 0,0051$ g Baryt (BaO).

Man fällt das neutrale Barytsalz, oder eine neutrale Baryt enthaltende Flüssigkeit in der Siedhitze mit einer Lösung von einfach chromsaurem Kali. Der Niederschlag, der sich leicht absetzt, wird auf einem Filtrum ausgewaschen, und noch feucht in eine Stöpselflasche gebracht, darin mit Jodkalium und Salzsäure versetzt, und die verschlossene Flasche längere Zeit in warmem Wasser digerirt und öfter umgerüttelt. Es ist auch vortheilhaft, die Luft aus der Flasche durch Kohlensäure auszutreiben, sei es durch einen Strom aus einer permanenten Entwicklung nach Art des Schwefelwasserstoffapparates, oder dass man vor dem Verschliessen eine kleine Menge doppelt kohlensaures Natron hinein wirft. Nach der Digestion und dem Erkalten öffnet man die Flasche und misst das freie Jod mit unterschwefligsaurem Natron.

Der chromsaure Baryt ist BaO, CrO₃. Die Hälfte des Sauerstoff der Chromsäure wird reduziert, weil das Chromoxyd Cr₂O₃ ist. Man hat also $1\frac{1}{2}$ At. Sauerstoff gemessen, während das unterschwefligsaure Natron auf 1 At. Sauerstoff berechnet ist. Da man im Verhältniss von 3 : 2 zu viel Natronsalz gebraucht, so muss vom Baryt nur $\frac{2}{3}$ eines $\frac{1}{10000}$ Atoms in Rechnung kommen. Es schliesst sich daran im Prinzip eine Bestimmung der Schwefelsäure auf jodometrischem Wege.

Wenn man eine $\frac{1}{10}$-Chlorbaryumlösung (mit 12·2 g ClBa, 2HO im Liter) mit einem gleichen Volum $\frac{1}{10}$ einfach chromsaurem Kali (mit 9·735 g CrO₃, KO im Liter) vermischt, so zersetzen sie sich vollständig. Das Filtrat ist weder gelb gefärbt von Chromsäure, noch gibt es mit Chlorbaryum einen Niederschlag. Ist aber durch ein neutrales schwefelsaures Salz zuerst ein Theil Baryt ausgefällt, und kommt nun die Lösung eines gleichen Volumes $\frac{1}{10}$ einfach chromsaures Kali hinzu, so wird nur ein Theil der Chromsäure als chromsaurer Baryt gefällt, und genau so viel Chromsäure in Lösung bleiben, als der vorhanden gewesenen Schwefelsäure äquivalent ist. Man hat also dann eine Flüssigkeit, in welcher alle
V. Jod gegen unterschwefligsäures Natron.

Schwefelsäure verschwunden und eine äquivalente Menge Chromsäure vorhanden ist. Filtrirt man, so lässt sich im Filtrat die Chromsäure durch Jodkalium, und Salzsäure in Jod umsetzen, und dies mit \(\frac{1}{10} \)-unterschwefligsäurem Natron messen. Es greift aber auch derselbe Vorwurf Platz, der im vorigen Artikel gegen die Bestimmung der Chromsäure durch Jodkalium erhoben wurde.

Manganoxide.

1 cubic \(\frac{1}{10} \)-unterschwefligsäures Natron \(= 0,0008 \) g freier Sauerstoff.

Bei Mn\(_3\)O\(_4\) 1 cubic \(= 0,00825 \) g Manganmetall.

Bei Mn\(_3\)O\(_4\) 1 cubic \(= 0,01065 \) g Manganoxydul.

Bei MnO\(_2\) 1 cubic \(= 0,0435 \) g Mangangyperoxyd.

Das Mangan hat folgende Oxyde:

- Manganoxydul \(\ldots \) MnO \(= 35,5 \)
- Manganoxyd \(\ldots \) Mn\(_2\)O\(_3\) \(= 79,0 \)
- Manganoxydoxydul \(\ldots \) Mn\(_3\)O\(_4\) \(= 114,5 \)
- Mangangyperoxyd \(\ldots \) MnO\(_2\) \(= 43,5 \).

Von diesen enthalten die drei letztgenannten je 1 Atom freien Sauerstoff in einem Atom Oxyd, und geben mit starker Salzsäure gekocht 1 Atom Chlor aus, während das Oxydul MnO mit Salzsäure kein Chlor gibt, sondern einfach Manganchlorür bildet. Es können demnach die drei letztgenannten Oxyde mittelst der Destillation mit Salzsäure auf ihren Gehalt an freiem Sauerstoff geprüft werden. Man bringt eine gewogene Menge der Verbindung in das Destillationskolbchen (Fig. 97, S. 251), setzt rauchende Salzsäure zu, und treibt das entwickelte Chlor durch starkes Kochen in eine vorgeschlagene Jodkaliumflüssigkeit, nach dem oben beschriebenen Verfahren. Man misst das ausgeschiedene Jod mit zehntel-unterschwefligsäurem Natron, und multiplizirt die Cubikcentimeter mit 0,0008, um den freien Sauerstoff in Grammen zu erhalten.

Um das Manganmetall zu bestimmen, muss man eine Verbindung haben, in welcher der Sauerstoff ein bestimmtes Verhältniss zum Metall hat. Eine solche Verbindungsstufe ist in dem Manganoxydoxydul, Mn\(_3\)O\(_4\), gegeben, welche man durch heftiges Glühen aus jedem anderen Oxyde darstellen kann.

Man wäge also von dem zu untersuchenden Oxyd eine gleiche Menge wie oben ab, bringe sie in einen kleinen Platintiegel, und erhitzte denselben so stark es die angeblasene Weingeist- oder Gasflamme leisten kann, also bis zur Weissgluth. Das erhaltene Oxyd, welches jetzt die Verbindung Mn\(_3\)O\(_4\) enthält, bringe man mit Salzsäure in das Destillations-
Kobalthyperoxyd 1).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>98. 2 At. Kobalt</td>
<td>2 Co</td>
<td>58.98</td>
<td>0.59 g</td>
<td>0.0059 g</td>
</tr>
<tr>
<td>99. 2 At. Kobaltoxyd</td>
<td>2 CoO</td>
<td>74.98</td>
<td>0.75</td>
<td>0.0075</td>
</tr>
<tr>
<td>100. 1 At. Kobalthyperoxyd</td>
<td>Co₂O₃</td>
<td>82.98</td>
<td>0.83</td>
<td>0.0083</td>
</tr>
</tbody>
</table>

1) Die Gewohnheit der neueren Chemie Namen zu verändern, hat auch bei Kobalt und Nickel eine rechte Verwirrung veranlasst. Das unterste Oxyd, was mit Recht Kobaltoxyd genannt wurde, weil es mit Zinkoxyd, Kupferoxyd, ganz übereinstimmt, Mohr's Titirbuch.
V. Jod gegen unterschweifigsaures Natron.

Das Hyperoxyd, auch wohl Kobaltoxyd genannt, hat die Zusammensetzung \(\text{Co}_2\text{O}_3 \). Mit überschüssiger Salzsäure erhitzt, zerfällt es in 2 At. Chlorür und 1 At. Chlor:

\[
\text{Co}_2\text{O}_3 + 3 \text{Cl} \text{H} \rightarrow 2 \text{CoCl} + \text{Cl} + 3 \text{HO}.
\]

Nickelhyperoxyd.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>101. 2 At. Nickel</td>
<td>2 Ni</td>
<td>59</td>
<td>0·59 g</td>
<td>0·0059 g</td>
</tr>
<tr>
<td>102. 2 At. Nickel-</td>
<td>2 NiO</td>
<td>75</td>
<td>0·75</td>
<td>0·0075</td>
</tr>
<tr>
<td>oxyd . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103. 1 At. Nickel-</td>
<td>Ni₂O₃</td>
<td>83</td>
<td>0·83</td>
<td>0·0083</td>
</tr>
<tr>
<td>hyperoxyd . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Nickelhyperoxyd hat dieselbe Zusammensetzung wie das Kobalthyperoxyd, und es gilt auch von seiner Zusammensetzung mit Salzsäure dasselbe, was vom Kobalthyperoxyd gesagt wurde. Man kann leichter die Zusammensetzung des Oxydes durch die Analyse feststellen, als sie zu seiner quantitativen Bestimmung verwenden. Denn hat man einmal

wurde als Oxydul bezeichnet, und das Hyperoxyd als Kobaltoxyd. Nun sind die Hyperoxyde eine besondere Klasse von Körpern, welche sich durch gemeinschaftliche Eigenschaften auszeichnen, dass sie schwarz sind, weder Säure noch Basis, dass sie mit Salzsäure Chlor geben, und es ist zweckmässig diese Qualitäten durch die Partikel Hyper zu bezeichnen, während jetzt Kobaltoxyd mit Kuperoxid in einen Topf kommt, mit dem es keine Aehnlichkeit als die Farbe hat.
das Nickeloxyd so ausgeschieden, dass man es in Hyponydr wird verwandeln könnte, so lässt es sich leichter durch die Wage bestimmen.

Eine Bestimmung des Nickelhyponydrdes durch Einwirkung auf arsenige Säure nach Wicke 1) bietet keine Vorteile dar, im Gegenteil hat sie den Nachteil, dass die überschüssige arsenige Säure mit dem Nickel- oxyd eine in alkalischer Lösung unlösliche Verbindung bildet, während die arsenige Säure nur in alkalischer Lösung gemessen werden kann. Es ist deshalb von allen Reduktionsmitteln die arsenige Säure die am wenigstens passende, und unbedenklich dem Jodkalium mit Salzsäure nachzustellen.

Ceroxyd.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>104. 3 At. Cer . . .</td>
<td>3CeO</td>
<td>138</td>
<td>1.38 g</td>
<td>0.0138 g</td>
</tr>
<tr>
<td>105. 3 At. Ceroxydul</td>
<td>3CeO</td>
<td>162</td>
<td>1.62</td>
<td>0.0162</td>
</tr>
<tr>
<td>106. 1 At. Ceroxyd- oxydul . . .</td>
<td>$\text{CeO} + \text{Ce}_2\text{O}_3$ $= \text{Ce}_3\text{O}_4$</td>
<td>170</td>
<td>170</td>
<td>0.0170</td>
</tr>
</tbody>
</table>

Wird Ceroxydul in Kali verheilt und Chlorgas hineingeleitet, so verwandelt es sich in Oxydul von der Formel Ce_3O_4. Wird dieses Oxyd mit starker Salzsäure gekocht, so löst es sich zu Cerchlorür, indem sich 1 Atom Chlor auf 1 At. Ceroxydul entwickelt. Da aber dieses Oxyd 3 At. Cer enthält, so sind für 1 At. Chlor 3 At. Cer in Ansatz zu bringen. Ist das Oxydul von irgend einer anderen Cerverbindung entstanden, welche nur 1 At. Cer enthält, so sind auch hier 3 At. Cer in Berechnung zu bringen.

Das Atomgewicht des Cers ist in Bunsen's 2) Laboratorium bestimmt worden; die erhaltene Zahl weicht sehr bedeutend von der früher angenommenen ab. Während sie früher zu 58.216 (H = 1) angenommen wurde, ist sie nun zu $\frac{575.8}{12.5} = 46$ festgestellt worden.

1) Zeitschr. f. Chem. 8, 86; Fresenius' Zeitschr. f. analyt. Chem. 4, 424.
V. Jod gegen unterschweflighaures Natron.

Wenn man oxalsaures Ceroxyl dul bei Luftzutritt in einem Platin-
tiegel glüht, so bleibt nicht Oxyd, sondern Oxydoxydul zurück, welches
weise ist und einen kaum bemerkbaren Stich in das rein Zitronengelbe
hat, das nur bei Tageslicht bemerkbar ist. Erhitzt färbt sich dieses
Oxyd tief orangeroth und nimmt nach dem Erkalten wieder unverändert
seine ursprüngliche Farbe an. Das durch Glühen erhaltene Oxydoxydul
wird von Salzsäure und Salpetersäure selbst beim Kochen wenig an-
gegriffen. Dagegen wird es von Jodwasserstoffsäure unter Jodausschei-
dung leicht zersetzt. Man kann sich deshalb zu seiner Analyse, so wie
auch des durch Chlorgas erzeugten, des Digestionsverfahrens mit Jod-
kali um und Salzsäure bedienen.

Salpetersäure.

1 cbcm $\frac{1}{10}$ unterschweflighaures Natron $= 0.0018$ g NO₃.

$=$ 0.00283 " NO₃, NaO.

$=$ 0.00337 " NO₃, KO.

Nachdem die Bestimmung des Eisenoxydes durch Jodkali um und
unterschweflighaures Natron gegeben war, lag es sehr nahe, die Salpeter-
säure durch das von ihr gebildete Eisenoxyd zu bestimmen. Es ent-
stand dadurch eine direkte Bestimmung, während die Methode von
Pelouze nur eine Restbestimmung war, welche bei kleinen Mengen un-
sicher wurde.

Die Salpetersäure, NO₃, wird von Eisenoxydul in der Art zersetzt, dass
3 At. Sauerstoff an 6 At. Eisenoxydul treten und damit 6 At. Eisenoxyd
bilden, während 1 At. Salpetergas, NO₂, entweicht. Zur Zersetzung von
1 At. Salpetersäure gehören also 6 At. eines Eisenoxydulsalzes, weil die
Salpetersäure 3 At. Sauerstoff abgibt und das Eisenoxydul nur $\frac{1}{2}$ At.
Sauerstoff aufnimmt. Als Eisenoxydulsalz dient am besten das bereits
bekannte schwefelsaure Eisenoxydul-Ammoniak, und es würden für 1 At.
Kalisalpeter ($= 101.11$) $6 \times 196 = 1176$ Gewichtsteile dieses Salzes
nöthig sein. Dies beträgt die $11\, 63$ fache Menge des Kalisalpeters, also
im höchsten Falle die 12 fache Menge. Da ein Ueberschuss des Eisen-
oxydulsalzes vorhanden sein muss, dieser aber das Wegkochen des Sal-
petergases erschwert, so hat man diesen Ueberschuss in allen Fällen
möglichst klein zu nehmen. Die Zersetzung muss wegen des nachher
anzuwendenden Jodkaliums mit Salzsäure bewirkt werden, während man
bei der Rückmessung mit Chamäleon nach Pelouze besser Schwefelsäure
anwandte.
Die Operation wird in folgender Weise ausgeführt. Das abgewogene zu prüfende salpetersaure Salz bringe man in eine kleine Kochflasche (Fig. 108) von 100 bis 150 cbcm Inhalt, welche mit einem Kautschukventil versehen ist. In den einmal durchbohrten Stopfen von Kautschuksetzt man eine nicht unter 6 mm weite Glasröhre, die unten scharf abgeschliffen ist, und am äusseren Ende mit einem Kautschukrohr von etwa 50 mm Länge versehen ist. Diese Röhre ist oben mit einem massiven Glasstabe geschlossen; sie muss wenigstens eine Wandstärke von 3 mm haben. In den mittleren Theil macht man mit einem scharfen und mit Speichel befeuchten Messer einen Längsschnitt von 7 bis 8 mm Länge, indem man die Röhre über den Finger legt und nun die eine Seite der Wand durchschneidet. Es bildet dieser Schnitt ein sehr gut schliessendes Ventil, indem er Dämpfe von innen nach aussen entweichen lässt, dagegen keine Luft eindringen lässt, weil sich die beiden Schnittflächen fest aufeinander drücken. Es muss auch die Röhre deshalb so dick von Wand sein, damit sie den Druck der Atmosphäre tragen kann, ohneselbst platt gedrückt zu werden. Es eignet sich dazu das schwarze Kautschuk nicht gut, weil es auf der Schnittfläche wieder so stark adhärirt, dass sich der Schnitt schliesst, wodurch nachher ein Platzern der Kochflasche einetreten kann. Das vulkanisirte Kautschuk dient besser zu diesem Zwecke, und in jedem Falle untersucht man vor dem Gebrauche den Schnitt, ob er noch offen ist.

Nachdem die Substanz, die genügende Menge Eisenoxydulsalz, einige Magnesitstücke und eine bedeutende Menge Salzsäure in der Flasche ist, beginnt man mit der Zersetzung auf einer kleinen Flamme. Beim Erwärmen färbt sich die Flüssigkeit grünlich braun, und unter heftigem Kochen treibt man das Stickoxydgas vollständig aus, was man daran erkennt, dass die Flüssigkeit die rein gelbe Farbe des Eisenchlorids ohne Stich ins Grün angenommen hat. Man lässt im Allgemeinen etwa die Hälfte der Salzsäure wegkochen. Nachdem man die Flamme entfernt hat, dauert das Kochen noch eine Zeit lang fort, und wird durch Einsetzen der Flasche in kaltes Wasser noch einmal wegen des Vacuums sehr stürmisch. Nach einigem Abkühlen entfernt man den Stopfen mit Gewalt und wirft eine entsprechende Menge Jodkalium in die Flasche, und bedeckt die Flasche mit einem Glastrichter, welcher unten zugeschmolzen ist und mit kaltem Wasser gefüllt ist, um Verdunstung von Jod zu verhindern. Das Ganze lässt man einige Zeit
warm stehen, um die Umsetzung zwischen Eisenchlorid und Jodwasserstoff zu vollenden. Nach vollständigem Erkalten hebt man den Trichter ab, spritzt seine Spitze ab, fügt Stärkelösung hinzu, und titirt das freie Jod mit $\frac{1}{10}$-unterschweisflegsaures Natron auf farbloso. Nachdem dies eingetreten, lässt man noch eine Zeit lang in gelinder Wärme stehen, um zu sehen, ob die bläue Farbe zurückkehrt, und nimmt sie mit einigen Tropfen der Maassflüssigkeit wieder weg.

Sehr gut gelingt die Bestimmung der Salpetersäure, wenn man die Zersetzungen mit Salzsäure und Eisendoppelsalz in einem Kochkolbchen vornimmt, durch welches man einen Strom kohlensaures Gas durchgehen lässt. Die Vertreibung des Stickoxydsgases geschieht dadurch viel leichter als durch blosses Kochen. Man lässt die Flüssigkeit im kohlensauren Gasstrom erkalten, bringt sie dann in eine Stöpselflasche (Fig. 109), in welcher man sie unter Verschluss mit dem Jodkalium digeriren kann. Auch diese Flasche füllt man rasch mit Kohlensäure, indem man den Hahn des Entwicklungsapparates weit öffnet, dann die Röhre herauszieht und den Stopfen aufsetzt. Ein Vorzug dieser Methode besteht darin, dass man die grüne Färbung des Eisenoxydulsalzes sicht und dadurch von der Gegenwart der Salpetersäure überzeugt sein kann.

Da die Salpetersäure 3 At. Sauerstoff abgibt, die Lösung des unterschweisflegsauren Natrons aber auf 1 At. Jod gestellt ist, so hat 1 cbcm dieser Flüssigkeit nur den Werth von $\frac{1}{3}$ eines $\frac{1}{10000}$ Atoms Salpetersäure, ist also $0\cdot0054 = \frac{0\cdot0054}{3}$

$= 0\cdot0018$ g NO_3 und ebenso, wenn man das salpetersaure Salz selbst berechnen will, $\frac{1}{30000}$ Atom des salpetersauren Salzes.

Es wurden $0\cdot390$ g Kalisalpeter mit Eisenvitriol und Salzsäure gekocht und mit Jodkalium zersetzt und dann zuletzt mit $117\cdot3$ cbcm $\frac{1}{10}$-untergeschweiflgesaures Natron entsättigt. Das Atomgewicht des Kalisalpers zu $101\cdot11$ macht 1 cbcm der Flüssigkeit $\frac{101\cdot11}{30000} = 0\cdot00337$ g Kalisalpeter, und diese mit $117\cdot3$ multiplicirt geben $0\cdot395$ g Kalisalpeter statt $0\cdot390$ g.

Ebenso erforderten $0\cdot270$ g Kalisalpeter $80\cdot4$ cbcm der Maassflüssigkeit, und diese Menge entspricht $80\cdot4 \times 0\cdot00337 = 0\cdot270948$ g Kalisalpeter.

$0\cdot5$ g salpetersaurer Baryt enthalten nach der Formel $0\cdot206$ g Salpetersäure. Es wurden $111\cdot6$ cbcm S_2O_3, $\text{NaO} +$ aq. verbraucht. Diese entsprechen $111\cdot6 \times 0\cdot0018 = 0\cdot20088$ g Salpetersäure.

Diese Resultate sind sehr befriedigend und haben den Vorzug, directe Messungen und keine Restbestimmungen zu sein.
Salpetrigsaure Verbindungen in natürlichen Wässern.

2) Die Burtscheider Thermen; Fresenius' Zeitschr. f. analyt. Chem. 1, 244.
Traubenzucker.

Der Traubenzucker hat in alkalischer Lösung eine reduzierte Kraft, wie schon aus seiner Anwendung zur Versilberung bekannt ist. Alle seine Bestimmungsmethoden gründen sich auf die Anwendung eines Körpers, welcher Sauerstoff abgeben kann. In der Fehling'schen Methode wird Kuperoxid zu Oxydul reduziert, und das Verschwinden der blauen Farbe der alkalischen Kupferlösung ist das Zeichen der beendigten Operation.

Von anderen Körpern mögen noch die folgenden erwähnt werden.

1) Chamäleon in alkalischer Lösung wird reduziert, da aber andere organische Körper dasselbe thun, so lässt sich darauf keine Bestimmung gründen.

Man hat kein deutliches Zeichen der beendigten Reduction, welche überhaupt langsam und nur durch Kochen vor sich geht.

4) Kaliumeisencyanid.

Dieser letztgenannte Körper ist von Gentele (Dingler's polyt. Journ. Bd. 152, S. 68 und 130) zur Bestimmung des Traubenzuckers und indirekt des Rohrzuckers vorgeschlagen und mit analytischen Belegen unterstützt worden. Er fand, dass 1 g Rohrzucker, durch Erwärmen mit Salzsäure in Traubenzucker übergeführt, 10980 g Kaliumeisencyanid zu reduciren im Stande ist. Er lässt deshalb eine Flüssigkeit bereiten, die in 100 cbcm 10980 g Kaliumeisencyanid und 5 1/2 g Kalihydrat enthält, von welcher Flüssigkeit jeder Cubikcentimeter 0'01 Traubenzucker anzeigt. Giesst man von dieser Flüssigkeit eine kleine Menge in eine Lösung von Traubenzucker, welche auf 60° C. erwärmt ist, und schüttelt dann um, so verschwindet die gelbe Färbung nach einiger Zeit, bei 80° C. fast augenblicklich. Wenn die gelbe Färbung, die durch Reduction in das sehr wenig gefärbte Blutlängensalz übergeht und anfänglich ganz unsichtbar ist, nicht mehr verschwindet, so ist die Operation beendet.

Das Kaliumeisencyanid hat die Eigenschaft, in sehr verdünnter Lösung lebhaft gelb zu färben, in konzentrirter Lösung aber nicht merklich tiefere Färbung hervorzurufen. Löst man es in einer Porzellananschale mit Hälfte von Wärme auf, so bemerkt man niemals, dass am Boden eine tiefer gefärbte Flüssigkeitsschichte sich bildet.
Traubenzucker.

Die zweite Bedingung ist die, dass die Zahlen bei gleichen Verhältnissen gleich, bei ungleichen proportional seien. Zu diesem Zwecke wurde eine einprozentige Stärkezuckerlösung aus reinem, trocknen Stärkezucker, den ich der Gefälligkeit des Herrn Anthon in Prag verdanke, angefertigt, und andererseits eine Kaliumeisencyanidlösung von 100 g auf das Liter.

20 cbcm Zuckerlösung = 0.2 Zucker mit Aetzkali versetzt und dann nach Zusatz von Kaliumeisencyanidlösung in einer Porzellan schale bis zum Entfärben erwärmt, erforderten bei fortschreitendem Zusatze des Reagens 16 cbcm Kaliumeisencyanid = 1.6 g Salz, woraus 1 g Stärkezucker = 8 g Kaliumeisencyanid.

40 cbcm Zuckerlösung = 0.4 g Zucker waren = 35.4 cbcm = 3.54 g Kaliumeisencyanid.

1 g Stärkezucker = 8.85 g Kaliumeisencyanid.

Es wurden nun umgekehrt 5 g Kaliumeisencyanid in verdünntem Aetzkali gelöst und Zuckerlösung bis zu Entfärbung zugegeben. Es wurden verbraucht 38 cbcm = 0.38 g Zucker.

1 g Stärkezucker = 13.15 g Kaliumeisencyanid
5 " Kaliumeisencyanid = 36 cbcm = 13.8 " "
5 " = 35.4 " = 14.1 " "
5 " = 32.8 " = 15.2 " "
5 " mit starkem Aetzkali = 27.6 " = 18.1 "

0.5 g Stärkezucker wurden in verdünntem Aetzkali gelöst, dann etwas Kaliumeisencyanidlösung zugesetzt und bis zur Entfärbung erwärmt. Nun wurde immer in kleinen Mengen zugesetzt, um die Temperatur möglichst niedrig zu halten. Gegen Ende geht die Entfärbung immer langsamer vor sich, und bei einem Zusatze von 50.2 cbcm = 5.02 g blieb die Flüssigkeit schwach gelb gefärbt. Danach wäre

1 g Stärkezucker = 10.04 g Kaliumeisencyanid.

Man ersieht aus obigen Resultaten, dass die Verhältnisse zwischen Stärkezucker und dem Kaliumeisencyanid keine feste unveränderbare sind, dass bei umgekehrter Behandlung auch ganz andere Zahlen erhalten werden. Dies ist allerdings bei der Fehling'schen Methode auch etwas der Fall, und es scheint die Gentele'sche Methode wenigstens hierin keinen Vorzug zu besitzen.

Wenn aber die zu untersuchenden Flüssigkeiten gefärbt sind, so werden sie meistens durch die Wirkung des freien Alkali noch tiefer gefärbt, und in diesem Falle ist es unmöglich, das Ende der Erscheinung
V. Jod gegen unterschwefligsaures Natron.

wahrzunehmen. So z. B. war die Zuckerbestimmung in einem Malzextrakt geradezu unmöglich, während sich nach der Kupfermethode ganz leicht der Gehalt an Zucker ermitteln liess.

Alle diese Stoffe und andere ähnlich zusammengesetzte, wenn sie mit Salzsäure Chlor entwickeln, können entweder durch die Destillation mit Salzsäure, oder durch die Digestion mit Jodkalium und Salzsäure bestimmt werden. Es kann wenigstens ihre Zusammensetzung genau ermittelt werden. Zu der Berechnung gibt immer die Zersetzungsf ormel den Anhaltpunkt. Es sind für jedes Cubikcentimeter \(\frac{1}{10}\)-unterschwefligsaures Natron so viele zehntausendstel Atome des mit dem Sauerstoff verbundenen Körpers zu berechnen, als in der Substanz auf 1 Atom entwickeltes Chlor Atome dieses Körpers enthalten sind.

Überjodsäure \((J\text{O}_7)\).

\[
1 \text{ obcm} \frac{1}{10}\text{-unterschwefligsaures Natron} = 0.00229 \text{ g Überjodsäure,}
\]
\[
1 \text{ } = 0.003465 \text{ g überjodsäures Kali.}
\]

Die Überjodsäure wird durch Jodkalium und Salzsäure bei gewöhnlicher Temperatur vollständig zersetzt:

\[
J\text{O}_7 + 7 \text{KJ} = 7 \text{KO} + 8 \text{J}.
\]

Es scheidet sich also auf 1 At. Überjodsäure 8 At. Jod aus, und es müssen deshalb bei der Berechnung auch die Atomgewichte durch 8 dividirt werden, da unsere Flüssigkeiten auf 1 At. Sauerstoff oder freies Jod gestellt sind.

Die Überjodsäure \((J\text{O}_7 = 183)\) wird also für 1 obcm \(\frac{1}{10}\)-unterschwefligsaures Natron mit \(\frac{1}{10000}\) von \(183/8\) oder mit 0.00229 g berechnet und das überjodsäure Kali \((J\text{O}_7, 2 \text{KO} = 277.22)\) kommt mit 0.003465 g für jeden Cubikcentimeter Zehntelflüssigkeit in Ansatz.
Jodometrische Säuremessung.

0,1 g überjodsäures Kali wurde in einer Digeriflasche (S. 253) mit überschüssigem Jodkalium und Salzsäure versetzt. Vor dem Zusatz von Salzsäure war keine Wechselwirkung zu sehen. Die Flüssigkeit wurde tief braun, und erforderte, nach einiger Zeit gemessen, 29,1 ccm 1/10-unterschwegsäures Natron, und diese × 0,003465 geben 0,10083 g überjodsäures Kali statt 0,1 g.

Ohne Zweifel wird Ueberbromsäure in gleicher Weise zersetzt, doch habe ich den Versuch nicht angestellt.

Jodometrische Säuremessung.

Wenn man 1 At. jodsäures Kali und 5 At. Jodkalium zusammen auflöst, so erhält man eine Flüssigkeit von der grössten Empfindlichkeit gegen Säuren. Selbst die schwächsten Säuren, welche Jodkalium für sich nicht zersetzen, wirken in dieser Kombination jodausscheidend, weil die Verwandtschaft des Sauerstoffs in der Jodsäure zu dem Kalium im Jodkalium sehr leicht das Uebergewicht erlangt, sobald das zu bildende Kali durch irgend eine Säure selbst beschäftigt wird.

Aus JO₃KO + 5JK = 6Acid entsteht 6J = 6KO Acid.

Essigsäure, Ameisensäure, selbst nach einiger Zeit Kohlensäure treibt unter diesen Bedingungen 6 At. Jod aus, und da auch 6 At. Säure gesättigt werden, so ist das ausgeschiedene Jod das Acquivalent der frei gewesenen und nun gebundenen Säure. Mengt man die obige Mischung mit Stärkelsolution, so findet nicht die geringste Reaction statt, kommt aber dazu die kleinste Menge Säure, etwa dass man einen Glasstab in verdünnten Essig taucht und abschleudert und eintaucht, so wird die ganze Flüssigkeit blau.

V. Jod gegen unterschwefligsaures Natron.

Ich habe nicht die Absicht das Prinzip zur Acidimetrie vorzuschlagen oder zu empfehlen, wozu neben dem Barytwasser keine Veranlassung vorliegt.

Karbolsäure.
(Phenol, Phenylsäure.)

\[C_{12}H_{6}O_2 = 94. \]

Karbolsäure wird durch überschüssiges Brom in Tribromphenol umgesetzt:

\[C_{12}H_{6}O_2 + 6 \text{ Br} = C_{12}H_{3}Br_3O_2 + 3 \text{ BrH}. \]

Landolt\(^1\) hat dies Verhalten zur Entdeckung kleiner Mengen Phenol benutzt und zur Gewichtsanalyse vorgeschlagen und angewendet. Das Tribromphenol ist farblos, in Wasser und neutralen Flüssigkeiten fast unlöslich.

Koppeschaaar\(^2\) hat diese Thatsache zu einer maßanalytischen Bestimmung verwendet, indem er mit einer gemessenen und überschüssigen Menge Bromwasser fällt, und den Rest des Broms durch Jodkalium und \(\frac{1}{10}\)-unterschwefligsaures Natron zurück misst. Da aber Bromwasser durch Umgessen immer Bromdämpfe verliert, so hat er nascirendes Brom in Anwendung gebracht, welches aus einem Salzgemenge von 5 At. Bromkalium und 1 At. bromsaurem Kali besteht. Dasselbe wird erhalten, wenn man reines Aetzkali mit Brom versetzt bis zur leichten Färbung und die Flüssigkeit zur Trockne abdampft. Es wird dann eine gewogene jedenfalls überschüssige Menge dieses Salzgemisches in der phenolhaltigen Flüssigkeit aufgelöst, und durch Zusatz von Salzsäure das Brom entwickelt, und Jodkaliumlösung zugefügt, wodurch Jod statt Brom in Freiheit gesetzt wird. Durch Rückmessen des freien Jods resp. Broms erfährt man das gebundene Brom, und da auf 1 At. Karbolsäure 3 At. Brom gebunden, also auch gemessen werden, so muss 1 ccm \(\frac{1}{10}\)-unterschwefligsaures Natron mit \(\frac{1}{3}\) von \(\frac{1}{10000}\) des Atomgewichtes in Ansatz gebracht werden, also 1 ccm \(\frac{1}{10}\)-unterschwefligsaures Natron ist \(= 0.000313\) g Karbolsäure oder Phenol. Die Bestimmung hat einen praktischen Werth bei Ankauf oder Verarbeitung roher Kreosotole, vorin noch andere Kohlenwasserstoffe vorhanden sind. Bis jetzt schied man diese Stoffe durch Schütteln mit Aetzkali ab, worin Karbolsäure

\(^1\) Berichte d. deutsch. chem. Ges. IV, 770.
\(^2\) Fresenius' Zeitschr. f. analyt. Chem. 15, 233.
Alkaloïde.

löslich ist. Die nicht sauren Öle schwimmen oben auf und werden in einem zylindrischen Gefäss nach der Höhe ihrer Schicht gemessen; also auch eine Maßanalyse. Es dürfen natürlich keine anderen Stoffe vorhanden sein, welche Brom aufnehmen oder binden.

A l k a l o ï d e.

Die genannten Basen sollen das Jod aus der Lösung so vollständig fällen, dass in dem Filtrat durch Stärkelslösung kein Jod mehr angezeigt wird.

Der Niederschlag soll das Jod in konstanter Menge enthalten, was allerdings der Angelpunkt der ganzen Methode wäre.

Die mitgetheilten Beläge genügen noch nicht, um die Methode vollkommen zu begründen, insbesondere ist der Umstand nicht untersucht, ob freie Säure oder Mineralsäure das Resultat nicht ändern.

Um vorläufig die Konstanz der Resultate zu prüfen, wurden folgende Versuche angestellt:

1) 0·1 g Strychnin in Salzsäure gelöst und nach der Vorschrift behandelt, erhielt 6·867 cbem 1/10-Jodlösung (durch Korrektion berechnet) und dagegen 0·79 cbem 1/10-unterschwefligsaures Natron; also 0·1 g Strychnin = 6·077 cbem 1/10-Jodlösung.

2) 0·1 g Strychnin ebenso behandelt, erhielt 9·472 cbem 1/10-Jodlösung und 2·368 cbem unterschwefligsaures Natron; also 0·1 g Strychnin = 7·104 cbem 1/10-Jodlösung.
V. Jod gegen unterschwefligsaures Natron.

3) 0.2 g Strychnin in Essigsäure gelöst, erhielten 15.51 cbcm 1/10-Jodlösung und 3.651 cbcm unterschwefligsaures Natron; danach 0.1 g Strychnin = 5.929 cbcm 1/10-Jodlösung.

Danach wäre der Gehalt des Jodstrychnins an Jod nicht so konstant, als es die jodometrische Analyse erfordert.

Die Filtrate vom Jodstrychnin gaben mit Ammoniak keine Fällung, enthielten also kein Strychnin mehr. In einem neutralen Strychninsalz bringt der erste Tropfen Jodlösung eine Fällung hervor; enthält die Lösung aber freie Salzsäure, so löst sich der Niederschlag von mehreren Tropfen Jodlösung wieder auf.

Man wird deshalb von dem Entdecker erwarren können, dass er die Methode nach allen Richtungen hin ausarbeite und sicher stelle.
Sechster Abschnitt.

Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.

(Clorometrie.)

Die arsenige Säure \(\text{AsO}_3 = 99 \) hat eine sehr schwache Verwandtschaft zu Sauerstoff, Chlor, Jod. In reiner Lösung und bei vorwaltenden Säuren oder Alkalien nimmt sie keinen Sauerstoff auf; in saurer Lösung wird sie von Chlor, Brom und Jod nur teilweise in Arsensäure übergeführt, dagegen in alkalischer Lösung wird sie von diesen Haloiden leicht und vollständig in Arsensäure verwandelt. Darauf beruht die Anwendbarkeit der arsenigen Säure als chlorometrisches Mittel, dass sie in alkalischer Lösung gegen Sauerstoff ganz unempfindlich ist, dagegen von den Haloiden in Arsensäure verwandelt wird:

\[
\text{AsO}_3, \text{NaO} + 2 \text{Cl} + 2 \text{NaO} \rightarrow \text{AsO}_3, \text{NaO} + 2 \text{ClNa}.
\]

An Stelle des Natrons kann Kali stehen, und an Stelle des Chlors auch Brom und Jod. Umgekehrt wird Arsensäure in saurer Lösung von Jodwasserstoffsäure teilweise in arsenige Säure und freies Jod, von Salzsäure weit weniger in arsenige Säure und Chlor umgesetzt:

\[
\text{AsO}_3 + 2 \text{JH} \rightarrow \text{AsO}_3 + 2 \text{J} + 2 \text{H}_2\text{O}.
\]

Im ersten Falle wird die schwache Affinität der arsenigen Säure durch zwei andere Affinitäten unterstützt, nämlich 1) durch die Affinität des Chlors zu Natrium, welche Sauerstoff in Freiheit setzt, und 2) durch die Affinität des Alkalis zu der sich bildenden Arsensäure, wodurch die arsenige Säure veranlasst wird, den vom Natron ausgeschiedenen Sauerstoff aufzunehmen; keine von diesen Beziehungen würde allein die Zersetzung bewirken können, aber beide vereinigt bringen die Veränderung zu Stande. Da nun das Ende der Erscheinung immer an dem Eintreten
VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.
der blauen Farbe der Jodstärke erkannt wird, so müssen die Alkalien im
doppelt kohlensauren Zustande sein, damit sie nicht selbst auf die Jod-
stärke wirken. Die Einwirkung der Alkalihydrate auf die Verwandlung
der arsenigen Säure in Arsensäure ist zwar im reinen kohlensaurefreien
Zustande stärker und rascher, aber auch noch im doppelt kohlensauren
Zustande kräftig genug, um dem Zwecke zu entsprechen.
Es ist nur zu bemerken, dass Chlor viel rascher und kräftiger wirkt
als Jod, wie das aus seiner chemischen Natur einleuchtend ist, da es aus
allen salzartigen Verbindungen das Jod austreibt. Dagegen darf man
Chlor nicht mit Stärkelslösung zusammenbringen, weil es diese angreift,
was Jod nicht thut.
Tröpfelt man eine Jodlösung in das basisch arsenigsäure Kali oder
Natron, die mit Kochsalzstärkelösung versetzt ist, so erscheint an der
Einfallsstelle die blaue Farbe der Jodstärke, verschwindet aber durch Um-
schütteln anfangs rasch, später aber immer langsamer, so dass das Ende
der Erscheinung, nämlich das Stehenbleiben der blauen Farbe, spät und
unsicher eintritt, wenn nicht das kohlensaure Alkali sehr stark vorwaltet.
Ich fand erst jetzt, dass arsenigsäures Kali kräftiger und rascher wirkt
als das entsprechende Natronsalz, dass aber das anderthalb kohlensauren
Ammoniak beide merklich übertrifft, und der Analyse eine Schärfe gibt,
wie sie das unterschwefligsäure Natron gegen Jod besitzt. Ich hatte
zu erst die Methode mit arsenigsäurem Natron in grosser Allgemeinheit
empfohlen, bin aber später wegen dieses langsamen Verlaufes der Zer-
setzung davon abgekommen, und habe dem arsenigsäurem Natron nur
mehr die eigentliche Chlorometrie, wie sie von Penot 1) empfohlen wurde,
übri g gelassen. Nachdem ich jetzt die ausserordentliche Wirkung des
kohlensauren Ammoniaks beobachtet, habe ich von neuem die Methode
für fast alle Fälle, wobei das unterschwefligsäure Natron angewendet
wurde, geprüft und anwendbar gefunden. Die Erscheinung ist in Be-
stimmtheit und Kürze der Entscheidung dem unterschwefligsauren Natron
gleich, und würde dadurch allein keinen Vorzug verdienen, jedoch die
Titerbeständigkeit des arsenigsäuren Kalis ist eine absolute, während das
zehntel unterschwefligsaure Natron nach längerem Stehen nicht mehr zu-
verlässig ist.
Es ist für ein Laboratorium unschätzbar, wenn man eine titirte
Flüssigkeit ohne Weiteres brauchen kann, während man bei nicht halt-
baren jedesmal neue Flüssigkeit bereiten oder den Titer stellen muss.

Bereitung der Massflüssigkeiten.

Wir haben zwei Massflüssigkeiten:
1. Zehntel-arsenigsaures Kali.

Man prüft reine arsenige Säure auf einen Schwefelgehalt, indem man sie in einer Porzellananschale, auf die eine andere passende umgekehrt gestürzt ist, stark erhitzt, bis Sublimation anfängt, und dann erkalten lässt. Ist der erste Anflug weiss, so ist die Säure frei von Realgar und Oerment, im anderen Falle setzt man die Sublimation unter einem Glaskasten fort, bis die rothe Schicht mit einer weissen bedeckt ist, wechselt dann die erste Schale gegen eine bereit gehaltene frische und setzt die Sublimation fort. Auch lässt sich die Reindarstellung in einem Kolben, der im Sandbade sitzt, vornehmen. Dass man sich gegen Dämpfe und beim Ausnehmen gegen Staub zu hüten habe, bedarf wohl kaum gesagt zu werden.

In gleicher Weise müssen die Alkalien frei von Schwefelverbindungen sein, was aber jedesmal der Fall ist, wenn sie als Bicarbonate zur Anwendung kommen.

Das Atomgewicht des Arsens ist 75, dazu kommen 3 At. Sauerstoff mit 24, so dass die arsenige Säure das Atomgewicht 99 hat. Da diese aber, um in Arsenäsäure überzugehen, 2 At. Sauerstoff aufnehmen, so muss für 1 At. Sauerstoff die Hälfte oder 49.5 zu einer normalen Lösung Mohr's Titriibuch.
322. VI. Arsenigsaueres Natron oder Kali gegen Chlor, Brom, Jod.

genommen werden. Bei der grossen Schärfe der Jodreaction ist aber
eine Zehntel-Lösung vorzuziehen, also 4.95 g reiner arseniger Säure.
Diese werden im fein geriebenen Zustande genau abgewogen, in eine
kleinere Kochflasche mit 5 bis 10 g doppelt kohlensauren Kalis und etwa
200 cbm Wasser gebracht und längere Zeit unter öfterem Umschütteln
digerirt, bis sich der grössste Theil gelöst hat. Die klare Flüssigkeit
wird in die Literflasche abgegossen und der Rest mit Zusatz von kleinen
Mengen doppelt kohlensauren Kalis in Lösung gebracht, alles vereinigt
und noch 20 bis 25 g doppelt kohlensauren Kalis zugefügt, und schliess-
lich bis an die Marke angefüllt.

Das Stärkepräparat.

So lange die Reaction der Flüssigkeit selbst beobachtet wird, was
überall der Fall ist, wo freies Jod gebraucht wird, dient die oben (S. 249)
beschriebene mit Kochsalz gesättigte Stärkelösung.

Zu der chlorometrischen Operation will man aber in den Fabriken
nicht zwei Flüssigkeiten anwenden, sondern nur eine, und hier wird die
Stärkeresolution durch Betupfen eines Jodkaliumstärkepapiers wahrgenom-
men. Am besten bedient man sich eines mit Stärke bereiteten recht
weissen Schreibpapiers, welches man mit Jodlösung auf Stärkegehalt
prüft. Dies bestreicht man vor dem Versuche mit einem in Jodkalium
getauchten und noch eben feuchten Pinsel. Ex tempore mischt man
Stärkelösung und Jodkaliumlösung auf einem flachen Teller und legt
weisses Filtrirpapier hinein. Oder um das Papier immer fertig vor-
rätig zu haben, taucht man Streifen von stärkehaltigem weissen
Schreibpapier in Jodkaliumlösung, lässt dasselbe sich vollsaugen und
trocknet dasselbe an einem Orte, wo chemische Dämpfe nicht hinkommen.
Das Papier erhält beim Trocknen leicht einen violetten Schimmer von
der Wirkung des atmosphärischen Ozons. Nach dem Trocknen bringt
man die violetten Streifen in ein trocknes Glas, in welchem man einige
Schwefelhölzchen verbrannt hat. Die violette Farbe verschwindet und
das wieder weisse Papier hält sich trocken in einem mit Glasstopfen ver-
schlossenen Glase längere Zeit ganz gut.
Die chlorometrische Operation.

Wir haben zwei Formen derselben.

1) Entweder lässt man das arsenigsäure Kali direct auf Chlor und die unterchlorigsauren Salze wirken, und findet das Ende der Zersetzung durch Betupfung von Jodkaliumstärkepapier, wodurch kein blauer Fleck mehr entstehen darf. Es wird also hier mit nur einer Flüssigkeit gemessen, und es ist dies die von Penot angegebene Chlorometrie; oder 2) man nimmt das Chlor in eine gemessene aber überschüssige Menge von arsenigsäurem Kali auf, setzt dann kohlensaures Ammoniak zu, und misst den Ueberschuss des arsenigsäuren Kalis mit titrirter Jodlösung zurück. Des Chlor kann bei saurerstoffhaltigen Körpern durch Kochen mit Salzsäure entwickelt werden, und auch mit kohlensaurem Alkali aufgefangen werden. Man lässt dann aber aus der Bürette zehntel arsenigsäures Kali einlaufen, bis Jodkaliumstärkepapier keinen blauen Fleck mehr gibt, verdünnt und setzt kohlensaures Ammoniak zu, und misst dann den Rest der arsenigen Säure mit Jodlösung zurück.

Die Grundlage dieser Messung ist das arsenigsäure Kali und die Jodlösung wird auf dasselbe gestellt, wenn sie nicht frisch bereitet von selbst damit stimmt. Man kann auch hier der Jodlösung eine grössere Verdünnung geben, wodurch die Schärfe der Analyse gewinnt. Man pipettirt 10 oder 20 cbcn Arsenlösung in ein Becherglas, setzt Stärkelösung, kohlensaures Ammoniak und etwa 150 bis 200 cbcn Wasser zu, und titrirt nun mit der Jodlösung auf blau, im letzten Augenblicke vorsichtig, bis die durchsichtig lichtblaue Färbung stehen bleibt. Man bestimmt den Factor der Jodlösung nach dem Versuch. Gesetzt, man habe auf 10 cbcn ⅛ arsenigsäures Kali 40 cbcn Jodlösung gebraucht, so ist 40 x = 10, also der Factor 0·25, oder man dividirt die Cubikcentimeter der Jodlösung durch 4, um sie als Zehntel-Lösung zu berechnen. Wenn die Zahl nicht so einfach ist, bleibt eine Multiplication leichter als eine Division. Wenn die blaue Farbe der Jodstärke eingetreten ist, hat man zu versuchen, ob dieselbe durch Zusatz von kohlensaurem Ammoniak nicht wieder verschwindet, und erst wenn das nicht mehr geschieht, ist der Versuch als beendet anzusehen.
VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.

So war in einem besonderen Falle auf Blau:

1) 5 cbcm $\frac{1}{10}$ arsenigs. Kali $= 5\cdot2$ cbcm Jodlösung,
2) 10 $\quad = 10\cdot4$ \quad
3) 15 $\quad = 15\cdot6$ \quad
4) 20 $\quad = 20\cdot8$ \quad

Hier waren 1 und 3 concentrirt, 2 und 4 stark verdünnt und mit mehr kohlensaurem Ammoniak versetzt.

Zur Chlordestillation eignet sich am besten der Apparat aus Fig. 110, der schon an einer anderen Stelle beschrieben ist. Die Flasche enthält einfach kohlensaures Natron; die seitliche Röhre links enthält den Stoff und Salzsäure. Die gerade Röhre rechts ist mit Glassplittern oder Glasperlen gefüllt, durch welche die kohlensaure Natronlösung eingegossen wird. Am Ende der Operation verbindet man die schiefen Röhren rechts mit einem Aspirator und nimmt links den Quetschhahn weg. Es geht dann ein Strom Luft durch das Kochgefäss, welcher die letzten Spuren Chlor in die Flasche überführt. Die Glasstücke enthalten fast niemals Spuren von Chlor, so vollständig ist die Absorption im kohlensauren Natron.

** Ars enige Säure.**

($\text{As}_3\text{O}_3 = 99.$)

1 cbcm Zehntel-Jodlösung $= 0\cdot0045$ g arseniger Säure.

Die arsenige Säure oder ein Salz derselben wird mit kohlensaurem Ammoniak in Lösung gebracht, Stärkelösung zugesetzt, die Flüssigkeit ansehnlich verdünnt und mit Zehntel-Jodlösung auf lichtblau titriert:

$$\text{As}_3\text{O}_3,\text{K}O + 2\,\text{J} + 2\,\text{KO} = \text{As}_2\text{O}_5,\text{K}O + 2\,\text{JK}.$$

In saurer Lösung geht diese Zersetzung nur theilweise vor sich, abnehmend bei starker Verdünnung.
Arsenige Säure.

¹) Dessen Massanalyse S. 77.
VI. Arsenigsauleres Natron oder Kali gegen Chlor, Brom, Jod.

Das Arsen wird meistens als AsS₃ aus seinen Salzen gefällt, und es ist deshalb eine Methode wünschenswerth, dasselbe in dieser Verbindung zu bestimmen, was gewichtsanalytisch mit viel Mühe verbunden ist. Es kann dies geschehen, wenn man das Schwefelarsen wieder in arsenige Säure verwandeln kann. Dies geschieht am besten durch salpetersaures Wismuthoxyd. Man löst das Schwefelarsen mit verdünntem und erwärmtem Ammoniak vom Filter weg, säusst aus und kocht die ammoniakalische Lösung mit nass gefälltem basisch salpetersaurem Wismuthoxyd, indem man die freie Säure durch kohlensaures Ammoniak wegnimmt.

Wenn man einmal das Arsen als Schwefelarsen auf dem Filtrum hat, so ist nichts einfacher, als dasselbe in Ammoniak vom Filtrum zu lösen und in einem Uhrglas oder Porzellan schale zur Trockne zu bringen. Ich habe mich davon überzeugt, dass trocknes Schwefelarsen in einer Platinschale gewogen, dann in Ammoniak gelöst und wieder zur Trockne verdampft, ganz genau dasselbe Gewicht wiedergab. Von 0,243 g AsS₃ erhielt ich 0,243 g, von 0,643 g kamen 0,642 g. Es ist ja bloss das Filtrum, welches das Wägen und Austrocknen verhindert, und das ist hier beseitigt.
Chlor.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>1 cbcm Arseniklösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlor</td>
<td>Cl</td>
<td>35.46</td>
<td>0.003546 g</td>
</tr>
</tbody>
</table>

1000 cbcm Chlorgas (bei 0° und 760 mm Bar.) wiegen 3.17 g
1 g Chlor füllt 315.547 cbcm

Chlorwasser wird aus der Pipette in kohlensaures Natron einlaufen gelassen und dann mit arsenigsäurem Natron durch Betupfen in einer Operation bestimmt oder man setzt arsenigsäures Kali in gemessener Menge zu, schüttelt um, und misst den Überschuss mit Jodlösung und Stärke zurück.

Die Zahlen sind dieselben, wenn man das Chlorwasser direct mit der Arseniklösung titriert, oder wenn man dasselbe in kohlensaures Natron hat einlaufen lassen und nun titriert. Ebenfalls sind die Zahlen gleich, wenn man Chlorwasser in Jodkaliumlösung bringt und mit \(\frac{1}{10} \) unter- schweifigsäurem Natron titriert; man erhält aber ganz andere und durchaus unbrauchbare Zahlen, wenn man Chlorwasser in kohlensaures Natron bringt, Jodkalium zusetzt und mit unterschweifigsäurem Natron aus- misst.
Unterchlorigsaure Salze.

(Bleichsalze, Labarraque'sche Flüssigkeit, *Eau de Javelle*, Chlorkalk.)

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägend Menge für 1 cbcm Arsenlösung = 1 Proc. Substanz.</th>
<th>1 cbcm Arsenlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>108. Bleichsalze als freies Chlor betrachtet . . .</td>
<td>Cl</td>
<td>35-46</td>
<td>0-3546 g</td>
<td>0-003546 g</td>
</tr>
</tbody>
</table>

Das wichtigste der Bleichsalze ist der Chlorkalk. Derselbe hat für sich die Formel ClO + CaO. Er wird bereitet, indem Chlorgas in Kalkhydrat hineingeleitet wird, bis keins mehr aufgenommen wird. Es entsteht dadurch 1 Atom Chlorcaldium und 1 Atom unterchlorigsaurem Kalk:

\[
2 \text{CaO} + 2 \text{Cl} = \text{CaOClO} + \text{CaCl}.
\]

Es kann also in der Wirklichkeit der Chlorkalk niemals ohne 1 Atom Chlorcaldium vorkommen.

Die bleichende Wirkung des Chlorkalks ist gleich seinem Gehalt an unterchloriger Säure ClO, und zwar wirkt das Chlor eben so stark wie der Sauerstoff, oder die bleichende Wirkung ist doppelt so gross als die des Chlors, welches in der unterchlorigen Säure enthalten ist.

Für die Technik ist es ganz gleichgültig, ob die Bleichkraft von diesem oder jenem Stoffe herkommt, und da wir einen conventionellen Ausdruck für die Stärke des Chlorkalks annehmen müssen, so ist es am zweckmässigsten, denselben auf den Gehalt an wirksamem oder freiem Chlor zu stellen. In der That ist aber auch diese Wirkung genau gleich jener Menge Chlor, welche bei der Bereitung des Chlorkalks in den Kalk hineingeleitet wurde, indem das eine Atom Chlor, welches mit dem Calcium zu dem ganz unwirksamen Chlorcaldium vereinigt ist, den Sauerstoff des Atomes Kalk auf das andere Atom Chlor übertragen hat. Es ist also die Wirkung von ClO = 2 Cl, welche zur Bereitung des Chlorkalks verwendet wurden. Wir haben also hierin ein Mittel, den höchsten möglichen Gehalt an wirksamem Chlor zu berechnen.

Der theoretisch reine Chlorkalk, zuzüglich des zum Löschen des Kalkes nöthigen 1 Atoms Wasser, ohne dessen Gegenwart sich kein Chlor-
unterchlorigsäure Salze.

Kalk bildet, würde nach der Formel ClO + CaO + CaCl + HO zusammengesetzt sein, und das Atomgewicht 135.92 haben. Hierin sind 2 At. wirksames Chlor = 70.92 enthalten. Dies beträgt \[\frac{70.92 \times 100}{135.92} \]
or 52.17 Procent.

Ein Chlorkalk, welcher 52.17 Procent wirksames Chlor enthielt, wäre der absolut reine, wie er in der Wirklichkeit gar nicht vorkommt, da sich kein Chlorkalk vollkommen in Wasser löst. Es bietet uns aber diese Zahl den Anhaltepunkt für die Beurtheilung eines jeden Chlorkalkes.

Die Analyse der Bleichsalze mit arseniger Säure ist ungenaue einfach und zuverlässig. Nachdem man die Flüssigkeit, wenn sie bereits in Lösung sind, abgemessen hat, lässt man Arseniklösung hinzu, bis das Betupfen eines Jodkaliumstärkepapiers keine blaue Flecken mehr erzeugt.

Bei Chlorkalklösung entsteht anfänglich ein Niederschlag, der aber durch ferneren Zusatz von Arseniklösung wieder verschwindet. Das Resultat ist ganz dasselbe, wenn man die Chlorkalklösung erst mit kohlensaurem Natron zersetzt und dadurch unterchlorigsaures Natron erzeugt.

An der nun dauernd getrübten Flüssigkeit erkennt man die Stärkeraction mit der grössten Leichtigkeit.

Fester Chlorkalk bedarf einer besonderen Behandlung, um vollständig aufgeschlossen zu werden. Er bildet nämlich mit Wasser einen zähen Schlamm, von dem sich Theile sehr leicht aller Wirkung entziehen. Es muss also eine vollkommene Vertheilung des Chlorkalks vorausgehen.

Man zerreibt gewöhnlich 10 g Chlorkalk erst mit wenig Wasser, dann mit mehr, zu einem zarten Schlamm, bringt diesen in eine Literflasche, füllt auf bis an die Marke, schüttelt um und lässt absetzen. Von der überstehenden klaren Flüssigkeit werden zweimal hinter einander 100 cbcm = 1 g Chlorkalk mit der Arsenlösung titrirt. Dies Verfahren wäre vorwurflos, wenn die Flüssigkeit genau dieselbe Stärke hätte, wie der Bodensatz. Dies ist nicht der Fall. Als in dieser Weise 5 g Chlorkalk zu 500 cbcm aufgeschlammten wurden, brauchten die vier ersten klaren 100 cbcm 52.7; 52.4; 52.6 und 52.6 cbcm \(\frac{1}{10} \) arsenigsäures Kali, die letzten 100 cbcm gebrauchten dagegen 58.4 cbcm. Wurde nun 1 g Chlorkalk für sich als Ganzes aufgeschlammten ausgemessen, so wurden 54.1 und 54.2 cbcm \(\frac{1}{10} \) arsenigsäures Natron verbraucht. Es geben also die klaren Flüssigkeiten einen zu geringen, der Schlamm einer grösseren Menge Chlorkalk einen zu hohen Gehalt. Es bleibt also nicht übrig, als eine grössere Menge Chlorkalk in einem Mörser innig zu vermischen, und davon einzelne Gramme abzuwägen, diese vorsichtig zu vertheilen, und als Ganzes auszumessen.

Schon früher hatte Fresenius 1) dieselbe Beobachtung gemacht.

1) Liebig’s Annal. der Chemie u. Pharm. 118, 324.
VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.

Die Betupfungsmethode nach Penot ist nicht so umständlich und zeitraubend, als man glauben sollte. Die abnehmende Tiefe der blauen Farbe auf dem Jodkaliumpapier ist ein sicheres Zeichen der Annäherung an den entscheidenden Punkt, ganz ähnlich wie bei der Eisenbestimmung durch chromsaures Kali und Betupfung von Kaliumersencyanidlösung. Um eine Ueberstürzung zu vermeiden, stellt man eine kleine Menge der zu prüfenden Flüssigkeit, etwa 1 bis 2 cbcm, zur Seite, die man zuletzt, oder nachdem die Reaction schon aufgehört hat, zusetzt und dann vorsichtig zu Ende misst; oder man fractionirt die zu messende Flüssigkeit in der 300-cbcm-Flasche, wo dann die erste Probe ungefähr die Grenze angibt, die man bei den zweiten 100 cbcm vorsichtig erreicht, oder man setzt 1 cbcm einer unterchlorigsauren Natronlösung zu, deren Werth man in gleicher Weise gegen die Arsenlösung ausgemessen hat.

Nach dem titrimetrischen System sind die verbrauchten Cubikcentimeter nur dann Procente, wenn man die Substanz im Atomgewicht abwägt. Der Fabrikant liebt das nicht, sondern wägt lieber ein ganzes Gramm ab. Damit hier die Cubikcentimeter Procente an Chlor seien, muss die Arsenlösung 495/3546 oder 1396 g arseniger Säure mit etwa 80 g doppelt kohlensauren Kalis auf 1 Liter enthalten.

Der Chlorkalk wird meistens im Handel nach Gay-Lussac'schen Graden verkauft. Der 100 procentische Chlorkalk ist nach Gay-Lussac ein solcher, der 31,8 Procent Chlor enthält. Man kann deshalb die Grade leicht in Procente Chlor verwandeln, wenn man die Zahl der Grade mit 0,318 multiplizirt, und umgekehrt kann man die Procente in Gay-Lussac'sche Grade verwandeln, wenn man die Procente durch 0,318 dividiert. So würde ein 24538 procentischer Chlorkalk 7716 Gay-Lussac'sche Grade haben. Eine dies für alle 100 Grade berechnende Tabelle ist von Dr. L. Müller in Dingler's polytechnischem Journal Bd. 129, S. 287 mitgetheilt worden. Mit den Crelle'schen Rechentafeln kann man diese Berechnung nur eben abschreiben, wenn man die Zahl 318 aufschlägt. Allein auch durch Addition kann man diese Berechnung leicht ausführen, wenn man nur die Tabelle für die ersten neun Zahlen hat, die hier folgen mag:
Unterchlorigsäure Salze.

<table>
<thead>
<tr>
<th>Zahl</th>
<th>Mal 0.318</th>
<th>Dividiert durch 0.318</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.318</td>
<td>9.1446</td>
</tr>
<tr>
<td>2</td>
<td>0.636</td>
<td>6.2892</td>
</tr>
<tr>
<td>3</td>
<td>0.954</td>
<td>9.4338</td>
</tr>
<tr>
<td>4</td>
<td>1.272</td>
<td>12.5784</td>
</tr>
<tr>
<td>5</td>
<td>1.590</td>
<td>16.7230</td>
</tr>
<tr>
<td>6</td>
<td>1.908</td>
<td>18.8676</td>
</tr>
<tr>
<td>7</td>
<td>2.226</td>
<td>22.0122</td>
</tr>
<tr>
<td>8</td>
<td>2.544</td>
<td>25.1568</td>
</tr>
<tr>
<td>9</td>
<td>2.862</td>
<td>28.3014</td>
</tr>
</tbody>
</table>

Wenn man $\frac{1}{0.318}$ oder 3.145 g Chlorkalk abwägt, so sind die verbrauchten Cubikcentimeter $\frac{1}{10}$-Arseniklösung unmittelbar Gay-Lussac'sche Grade.

Die Analyse mit arsenigsaurer Natron, wenn man das Chlor in kohlensaurem Natron aufnimmt, gibt genau dieselben Zahlen, wie das unterschwefligsaurer Natron, wenn man das Chlor in Jodkalium auffängt.

Diese Zahlen sind die richtigen, und es folgt daraus, dass das unterschwefligsaurer Natron bei Gegenwart von kohlensauren Alkalien unrichtige Zahlen gibt.

Die Zusammensetzung der unterchlorigen Säure selbst kann ebenfalls nach diesem Verfahren bestimmt werden. Da man dieselbe nicht wägen kann, so leitet man eine unbestimmte Menge unterchlorigsaureres Gas in eine gemessene Menge Arseniglösung hinein. Die unterchlorige Säure wird am leichtesten entwickelt, wenn man eine verdünnte ganz
VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.

Die zweiten 100 cbcm sättigt man knapp mit Salpetersäure und misst den Chorgehalt durch Zehntel-Silberlösung. Man erhält so den wirklich Chorgehalt aus der Menge des zur Fällung verbrauchten Silbers. Auch kann man das Chlorsilber in bekannter Art anschwässen und wägen.

Es zeigt sich nun, dass der mit Silber bestimmte Chorgehalt nur halb so gross ist, als der chlorometrisch bestimmte.

Es wurde nun noch einmal die oben erwähnte Gay-Lussac'sche Methode mit Anwendung von schwefelsaurer Indiglösung vorgenommen. Es würde dadurch die Tüpfelanalyse in eine auf Augenschein verwandelt.

B r o m.

\[1 \text{ cbcem} \frac{1}{10}\text{-arsenigsäures Kali} = 0\cdot008 \text{ g Brom}. \]

Freies Brom wird sehr leicht und sicher mit arsenigsäurem Kali gemessen.

Von einem gesättigten Bromwasser wurden 25 cbcem in eine größere Menge destillirtes Wasser gelassen. Die stark gelb gefärbte Flüssigkeit wurde unter die Bürette gebracht und die Arsenlösung zulaufen gelassen, bis die Farbe ziemlich ausgebleicht war. Nun wurde Stärkeflüssigkeit und etwas Jodkalium zugesetzt, wodurch die Flüssigkeit stark blau wurde, dann Arsenlösung bis zur Entfärbung, im Ganzen 65:2 cbcem Arsenlösung. Zur Hervorrufung der blauen Farbe genügten 0:2 cbcem \(\frac{1}{10} \)-Jodlösung. Ebenso gehörten zusammen:

Arsenlösung Jodlösung
\[66 \text{ cbcem} - 1 \text{ cbcem} = 65 \text{ cbcem} \frac{1}{10}\text{-Arsenlösung}. \]
\[67\cdot4 \text{ cbcem} - 2\cdot4 \text{ cbcem} = 65 \text{ cbcem} \frac{1}{10}\text{-Arsenlösung}. \]

Es enthielten also die 25 cbcem Bromwasser \(65 \times 0\cdot008 = 0\cdot520 \text{ g} \)
\(= 2\cdot08 \text{ Proc. Brom}. \)
Jod.

1 cbcm $\frac{1}{10}$ arsenigsäures Kali = 0.0127 g Jod.

Das Jod wird in Jodkalium gelöst, unter der Arsenbürette grösstenteils entfärbt, Stärke zugesetzt und nun vollends die Entfärbung bewirkt. Wegen der Sicherheit des Arsentiters bedarf man hier keiner Kontrolle.

0.539 g reines Jod wurden in Jodkalium gelöst, und zur Entfärbung 42.6 cbcm $\frac{1}{10}$ arsenigsäures Kali verbraucht. Dies gibt $42.6 \times 0.0127 = 0.54102$ g Jod statt 0.539 g. Wenn man gegen Ende der Operation jedesmal etwas Zeit gibt, so kann man mit einer Flüssigkeit sehr scharf messen. Der erste Tropfen Jodlösung macht dann wieder lichtblau. Es entwickelt sich während des Mischens Kohlensäure aus dem Kalibiscarbonat. Auch festes Jod kann man mit Arsenlösung ohne vorherige Lösung in Jodkalium titrieren, nur dauert die Operation unter der Bürette länger. So lange die Flüssigkeit farblos ist, kann man sie ohne Gefahr erwärmen, und erst wenn sie wieder blau überläuft, setzt man Arsenlösung zu.

Schwefelwasserstoff.

1 cbcm $\frac{1}{10}$ arsenigsäures Kali = 0.00255 g SH.

1 At. arsenige Säure und 3 At. Schwefelwasserstoff zersetzen sich in 1 At. Schwefelarsen und 3 At. Wasser:

$$\text{AsO}_3 + 3 \text{SH} = \text{AsS}_3 + 3 \text{HO}.$$

Man lässt aus der Bürette eine bestimmte Menge der Zehntel-Arsenlösung in ein Glas einfließen, und lässt das mit der Pipette gemessene Schwefelwasserstoffwasser direct hinzuspeißen. Man bemerkt meistens gar keine Farbenveränderung, bei concentrirtem Schwefelwasserstoffwasser eine schwach gelbe Färbung. Man schüttelt tüchtig um, erwärmt etwas, und gibt einige Tropfen reiner Salzsäure hinzu, so dass die Flüssigkeit
Schwefelwasserstoff.

335

schwach aber entschieden sauer wird, was man mit blauem Lackmuspapier feststellt. Es entsteht sogleich ein Gerinnsel von gefälltem Schwefelarsen und die Flüssigkeit wird vollkommen farblos. Sie darf nicht nach Schwefelwasserstoff riechen. Man filtrirt, setzt dem Filtrat kohlsaures Ammoniak in einigem Überschusse sowie Stärkelösung zu, und misst die überschüssige arsenige Säure mit Jodlösung zurück. Der Unterschied der zuerst gewonnenen Menge der Arsenlösung und der zurückgemessenen ist das Maass des Schwefelwasserstoffs.

Ein Versuch, ob die Messung der arsenigen Säure ohne Abscheidung des Schwefelarsens geschehen könne, gab die bestimmte Antwort, dass dies nicht geschehen könne. Das Schwefelarsen löst sich nach und nach in der nothwendigen alkalischem Flüssigkeit auf und gibt falsche Resultate.

Die Berechnung der Resultate nach dieser Methode gibt zu einer Erläuterung der diesem Kapitel vorangestellten Zahl Veranlassung.

Wenn arsenige Säure (AsO₃ = 99) oxydirt wird, wie in allen anderen Analysen dieses Abschnitts, so nimmt sie 2 At. Sauerstoff auf, da Arsen säure AsO₃ ist. Es ist deshalb nicht der zehnte Theil des Atomgewichts, sondern die Hälfte des zehnten Theils oder 4,95 g arsenige Säure zu einem Liter gelöst worden. Wenn hingegen arsenige Säure durch Schwefelwasserstoff zersetzt wird, so gibt sie 3 At. Sauerstoff ab; sie wirkt also 1 1/2 mal so stark, als im ersten Falle, nämlich wie 3 : 2; folglich muss auch das Atomgewicht des Schwefelwasserstoffs anderthalb mal in Anrechnung gebracht werden. 1 1/2 × 0,0017 ist aber 0,00255.

Es liegt die mit Fällung von Schwefelarsen erhaltenen Zahl inmitten der mit directer Bestimmung durch 1/10-Jodlösung nach Dupasquier erhaltenen Resultate. Im Allgemeinen gibt die directe Bestimmung des Schwefelwasserstoffs mit Jodlösung etwas höhere Resultate, als die Fällung mit arseniger Säure, ohne Zweifel durch die Wirkung des fein verteilten Schwefels auf das freie Jod.

Vergleichen wir den inneren Werth beider Methoden, so beruht jene von Dupasquier auf einer Voraussetzung; jene durch Fällung von Schwefelarsen beruht auf einer Gewichtsanalyse, da die arsenige Säure der Normalflüssigkeit abgewogen ist, und jede Bestimmung von arseniger

Von besonderem Nutzen ist die Methode bei Bestimmung gasförmigen Schwefelwasserstoffs, weil die alkalische Arsenlösung dieses Gas sehr vollständig bindet. Man kann jedoch auch das Gas von verdünntem ätzendem Kali absorbieren lassen und nachher die Arsenlösung hinzufügen.

Um den Schwefelwasserstoffgehalt des gewöhnlichen Leuchtgases quantitativ nach dieser Methode zu bestimmen, wurde der Apparat Fig. 111 und das zu beschreibende Verfahren angewendet.

Flasche fallen. Nachdem man 3 bis 4 Liter Wasser hat ausfließen lassen, unterbricht man die Operation und geht an die Bestimmung.

Man öffnet zuerst die letzte Flasche b', lässt 5 cbm zehntelarsenigsäure Natronlösung zufliessen und übersättigt schwach mit Salzsäure. Bleibt die Flüssigkeit ungefärbt und ungetrübt, so ist kein Schwefelwasserstoff in dieser Flasche. Man öffnet dann die erste Flasche b, lässt

10 cbm Arsenlösung hinzu und übersättigt mit Salzsäure. Es wird in den entsprechenden Fällen ein Gerinnsel von gelbem Schwefelarsen entstehen. War auch in der zweiten Flasche b' eine Trübung bei zu raschem Durchgehen des Gases, so vereinigt man beide Flaschen, notirt aber auch die in beiden zugesetzten Mengen der Arsenlösung. Man filtrirt, setzt kohlensaures Ammoniak bis zur alkalischen Reaction und Stärkelösung zu, und misst den Rest der arsenigen Säure mit Jodlösung zurück.

Die Differenz der ganzen vorgeschlagenen Menge Arsenlösung und der rückgemessenen gibt das Mass des Schwefelwasserstoffs in Cubik-

Mohr's Titraturbuch.
338 VI. Arsenigsäures Natron oder Kali gegen Chlor, Brom, Jod.

centimetern $\frac{1}{10}$-arsenigsäuren Kalis, und diese mit 0'00255 multiplicit

gibt denselben in Grammen. Will man ihn auf Volum des Gases be

ziehen, so sind 1000 cbem Schwefelwasserstoffgas bei 0° C. und

760 mm Druck = 1'52503 g oder 1 cbem = 0'00152503 g.

Ammoniak

durch bromirtes unterchlorigsäures Natron.

Eine von Krocker und Dietrich 1) angegebene Methode besteht
darin, dass das Ammoniaksalz durch eine mit Brom versetzte Lösung von
unterchlorigsaurer Natron vollständig bis zur Entbindung von Stickgas
zersetzt wird, und der Rest des Oxydationsmittels durch arsenigsäures
Natron zurückgemessen wird.

Die bromirte Flüssigkeit wurde in der Weise dargestellt, dass man
1 Theil krystallisirtes kohlensaures Natron in 14 Thln. Wasser löste und
so lange Chlor einleitete, bis es nicht mehr aufgenommen wurde. Die
Flüssigkeit wurde mit so viel einer 25 procentigen Ätznatronlösung ver

setzt, bis sie beim Reiben zwischen den Fingern die Haut sogleich schlüpfrig

machte. Zu dieser Laugen wurde so viel Brom gesetzt, bis die Lösung

eine citronengelbe Farbe angenommen hat. Es ist also ein Gemenge

von unterbromig- und unterchlorigsaurem Natron und etwas freies

Brom. Die bromirte Lauge zersetzt sich leichter, als die blass gechlorte,

weshalb man den Bromzusatz eben nur vor dem Gebrauche macht. Die

arsenigsäure Kalilösung kann die bereits (S. 321) beschriebene Zehntel-
Flüssigkeit sein.

Man hat nun zuerst den Titer der bromirten Lösung festzustellen.
Man nimmt mit der Pipette 10 cbem heraus, und lässt das zehntel-ar

senigsäure Natron aus der Bürette einfließen, bis ein mit einem Glasstab

herausgenommener Tropfen auf Jodkalium-Stärkepapier keinen blauen
Fleck mehr hervorbringt. Nach diesem Titer berechnet man die ver

brauchte Menge der bromirten Flüssigkeit auf die Zehntel-Lösung des

arsenigsäuren Natrons. Letztere Flüssigkeit ist auf 1 At. Sauerstoff ge

stellt, da aber das Ammoniak 3 At. Wasserstoff abgibt, so sind 8 cbcm

arsenigsäures Natron = $\frac{1}{10000}$ Atom Stickstoff oder Ammoniak; und folg

lich ist jedes Cubikcentimeter der arsenigsäuren Natronlösung = $\frac{0'0014}{3}$

= 0'0004666 g Stickstoff und gleich $\frac{0'0017}{3}$ = 0'0005666 g Ammoniak.

1) Fresenius' Zeitschr. f. analyt. Chem. 3, 64.
Die mitgetheilten Probeanalysen gaben zwar sehr befriedigende Zahlen, allein die Methode ist nicht sicher. Der Zusatz von Brom ist nicht nöthig, indem dadurch die wasserstoffbindende Kraft nicht erhöht, sondern viel mehr geschwächt wird. Ich fand bei basischem unterchlorigsaurerem Natron allein weder constante Zahlen noch im System richtige. Ein Zusatz von Aetzkali ist also nothwendig, um das Ammoniak in Freiheit zu setzen, denn Salmiak wird nur zum kleinsten Theil von Chlor- natron zersetzt. Das ätzende Alkali hindert aber wieder die Stärkereaction auf dem Jodkaliumpapier, muss also zuerst mit Kohlensäure gesättigt werden, was sehr umständlich ist. Wenn man Fundamentalversuche anstellt, um eine Methode zu prüfen, so weiss man voraus, was man zu erhalten hat, und nimmt die Mengen so, dass nur kleine Ueberschüsse zu messen sind. Bei Analysen weiss man das aber nicht, also auch nicht, wie viel Aetzkali man zu nehmen hat, und ob genüg davon genommen ist. Man kann der Flüssigkeit nicht ansehen, ob sie noch unzersetzetes Ammoniak enthält. 3 At. Chlor (Brom) zersetzen 1 At. Ammoniak in der Art, dass 3 At. Chlorammonium (Bromammonium) und 1 At. freier Stickstoff entstehen. Ist Aetzkali vorhanden, so wird alles Ammoniak zersetzt. Dieser Fall soll hier eintreten. Dagegen würde die alkaimetrische Bestimmung des Ammoniaks viel leichter auszuführen sein, und grössere Sicherheit gewähren.

Salpetersäure

durch Umsetzung in Ammoniak und dann nach der vorigen Nummer.

Da sich die Salpetersäure auf verschiedene Weise in Ammoniak umsetzen lässt, so lag es nahe, auch diese Säure auf dem eben beschriebenen Wege volumetrisch zu bestimmen. Die Anwendung eines Zinkeisenelementes in alkalischer Lösung verlangt eine lange Zeit; es empfiehlt sich deshalb besser die Verwandlung in freier Säure, welche auch zuerst angewendet worden ist. Es ist auch ganz zweckmässig, Stücke Platin hinzufügen, wodurch ein galvanischer Strom entsteht und die Zersetzung um so rascher fortschreitet, oder wenn man eine grosse Platinschale zur Verfügung hat, so kann man die ganze Operation darin vornehmen. Es ist nothwendig, dass sich immer noch Wasserdampf entwickle. Die Zersetzung ist in einigen Stunden beendet. Die Flüssigkeit wird nun mit kohlensaurem Natron alkalisch gemacht, und nach Anleitung des vorigen
Manganhyperoxyd.

(Braunstein.)

1 cbcm zehntel arsenigsaures Kali = 0.00435 g MnO₂.

Man berechnet die verbrauchte Menge der Arsenlösung auf die ganze Menge, und erhält dadurch Procente an Manganhyperoxyd.

Zur Absorption des Chlorgases kann man verschiedene Flüssigkeiten anwenden. 1) Jodkaliumlösung, 2) kohlensaures Natron, 3) das arsenigsäure Kali selbst, 4) Boraxlösung. Ich ziehe das kohlensaure Natron vor. Die Verschlickung ist so vollständig, dass niemals eine Spur von Chlorgeruch wahrgenommen wird, und dass wenn man zwei Flaschen hinter einander
vorlegt, die zweite niemals eine Spur von Chlor enthält. Das arsenigsäure Kali verschluckt zwar auch sehr gut, allein es muss gemessen angewendet werden, und da man die nötige Menge nicht voraus wissen kann, so hat man leicht zu viel zurückzumessen. Jodkalium verschluckt sehr kräftig, allein das frei werdende Jod ist bei dem nachfolgenden Umiessen viel flüchtiger, als die unterchlorige Säure am Kali.

0.435 g Braunstein wurden mit Salzsäure destillirt und das Chlor in doppelt kohlensaurem Natron aufgenommen. Die Flüssigkeit wurde auf 300 cbcm verdünnt, und davon 100 cbcm nach Penot durch Jodkaliumpapier gemessen. Verbraucht 25.6 cbcm $\frac{1}{10}$ Arsenlösung; 100 cbcm erhielten 28 cbcm $\frac{1}{10}$ As. Kali, dagegen 21 cbcm $\frac{1}{10}$ Jodlösung. Verbrauch 25.89 cbcm As; 100 cbcm mit 29 cbcm As, dagegen mit sehr dünner Jodlösung (Factor 0.2463) 13.6 cbcm $\frac{1}{10}$ Jod. Verbrauch 52.651 cbcm As. Addiren wir diese drei Messungen zusammen, so erhalten wir 77.141 als Procentgehalt an Manganhyperoxyd. Bei der Ausführung macht man natürlich nur eine Messung.

Hyperoxyde

Chromsäure.
Die Constanten sind dieselben wie oben S. 302.

Alle chromsauren Verbindungen entwickeln, mit überschüssiger Salzsäure destillirt Chlor, entsprechend der Hälfte des Sauerstoffgehaltes, wie
schon oben (S. 302) entwickelt wurde. Man führt die Destillation in dem Apparate Fig. 97, S. 251, oder mit Aspiration in dem Apparate Fig. 102, S. 261, aus, und misst das überdestillirte Chlor mit $\frac{1}{10}$-arsenigsaurem Kali.

Es wurden 0.4 g doppelt chromsaures Kali mit Salzsäure destillirt und das Chlor in kohlensaurem Natron aufgenommen. Es wurden 83.4 cbcm $\frac{1}{10}$-arsenigsaures Kali zugesetzt, wobei der blaue Fleck auf Jodkalumpapier verschwunden war; nun wurde Kochsalzstärke zugesetzt und mit $\frac{1}{10}$-Jodlösung auf lichtblau titirt, wovon 2.1 cbcm verbraucht wurden. Das Chlor entspricht also 83.4 weniger 2.1 = 81.3 cbcm $\frac{1}{10}$-arsenigsaurem Kali. Nach Nr. 97 der Tabellen (S. 302) ist 1 cbcm $= 0.004919$ g doppelt chromsaurem Kali, also die gefundenen 89.3 cbcm $= 0.3999$ g doppelt chromsaurem Kali statt 0.4 g.
Siebenter Abschnitt.

Fällungsanalysen.

Allgemeines.

Die Fällungsanalysen umfassen solche Arbeiten, wo aus der Massflüssigkeit und der zu bestimmenden Substanz durch doppelte Zersetzung ein unlöslicher Körper ausgeschieden wird. Bei vollständiger Fällung ist das Ende der Operation eingetreten, wenn durch einen fernen Zusatz der Massflüssigkeit keine Fällung mehr stattfindet. Dies wird entweder dadurch gefunden, dass im günstigsten Falle in der durch Schütteln abgeklärten Flüssigkeit durch einen Tropfen der Massflüssigkeit keine sichtbare Trübung mehr veranlasst wird, wie bei der Bestimmung des Silbers durch Chlormetalle und umgekehrt, oder dass das Fällungsmittel durch eine Reaction als im Ueberschusse vorhanden nachgewiesen wird, wie bei der Fällung der Phosphorsäure durch essigsaueres Uranoxyd (Reagenz: Blutlaugensalz), bei der Fällung des Zinkoxydes durch Schwefelsalz (Reagenz: Nitroprussidnatrium oder alkalische Bleilösung). Alle Fällungsanalysen dieser Art haben das Unangenehme, dass man mit einer trüben Flüssigkeit zu schaffen hat. Wenn der Niederschlag die Eigenschaft hat, sich zu ballen, so kann die Flüssigkeit zuweilen durch Schütteln geklärt werden. Es sind aber überhaupt nur solche Fällungen bis zu Ende zu führen, wo der Niederschlag diese Eigenschaft besitzt, wie Chlorsilber, Cynasilber. Sind die Niederschläge pulverig, setzen sie sich langsam ab, und sind sie krystallinisch durchsichtig, so kann die Fällung gar nicht zur Massanalyse verwendet werden; wir müssen deshalb mehrere der schärfsten Fällungen, wie der Schwefelsäure durch Barytsalze und umgekehrt, des Kalkes durch Oxalsäure und ähnliche, für unsere Zwecke verloren geben, weil wir das Ende der Operation nicht erkennen können.

Im Ganzen sind unsere Mittel in diesem Felde noch sehr beschränkt.

Ein ganz besonders günstiges Verhältnisse findet statt, wenn der gebildete Niederschlag sich mit der zu zersetzenden Substanz in einem Atomverhältnisse zu einer löslichen Substanz verbindet. In diesem Falle wird das Fällungsmittel nur bis zur erscheinenden und bleibenden Trübung, aber nicht bis zur vollständigen Fällung zugesetzt. Liebig hat diesen Umstand zur Bestimmung des Cyans durch Silber benutzt. Das gebildete Cyansilber ist in Cyankalium löslich, bis die Doppelverbindung Cyansilberkalium gebildet ist. Setzt man mehr Silber zu, so entsteht ein Niederschlag von Cyansilber, welcher sich nicht mehr löst. Wäre Chlorsilber in Chlornatrium ebenso löslich, so würde auch die Chlorbestimmung auf dasselbe Prinzip zu gründen sein. Da dies aber nicht der Fall ist, so muss hier vollständige Fällung eintreten.
Cyan.

(Cyanwasserstoff. Cyanmetalle.)

a. Durch Silberlösung.

Massenflüssigkeit: Zehntelsilberlösung zu \(\frac{1}{10} \) At. = 10'797 g reines metallisches Silber, oder 16'997 g geschmolzenes reines salpetersaures Silberoxyd in Wasser zu 1 Liter gelöst.

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägendene Menge für 1 cbcm (\frac{1}{10})-Silberlösung = 1 Pk. Substanz.</th>
<th>1 cbcm (\frac{1}{10})-Silberlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>109. 2 At. Cyan</td>
<td>(2 \text{CN})</td>
<td>52</td>
<td>0.52 g</td>
<td>0.0052 g</td>
</tr>
<tr>
<td>110. 2 At. Cyanwasserstoffsäure</td>
<td>(2 \text{CNH})</td>
<td>54</td>
<td>0.54 g</td>
<td>0.0054</td>
</tr>
<tr>
<td>111. 2 At. Cyankali um</td>
<td>(2 \text{CNK})</td>
<td>130.22</td>
<td>1.302 g</td>
<td>0.013023</td>
</tr>
</tbody>
</table>

Wenn man eine blausäurehaltige Flüssigkeit mit einer Aetzkali-lösung bis zur stark alkalischen Reaction versetzt und eine verdünnte Lösung von salpetersaurem Silberoxyd langsam zugießt, so entsteht ein Niederschlag, der bis zu einer gewissen Grenze beim Umschütteln sogleich wieder verschwindet, bis auf einmal die Silberlösung bei fernerem Zusatz eine nicht mehr verschwindende Trübung veranlasst. Hat man vorher einige Tropfen Kochsalzlösung zugesetzt, so erscheint an der Grenze der Fällung ebenfalls eine Trübung, die aber dann Chlorsilber ist.

Die mit Kali versetzte blausäurehaltige Flüssigkeit enthält Cyankali um, in welchem Silberoxyd oder Chlorsilber bis zu dem Punkte löslich sind, wo sich die bekannte, aus gleichen Äquivalenten Cyankali um und Cyansilber (C\(\text{yAg} + \text{CyK} \)) bestehende Doppelverbindung gebildet hat, welche durch überschüssiges Alkali keine Zersetzung erfährt.
Wenn man demnach den Gehalt der Silberlösung an Silber kennt,
und die bis zum Bleiben einer leichten Trübung nöthige Menge dem
Maasse nach ermittelt, so hat man damit den Cyan- oder Blausäure-
gehalt der Flüssigkeit bestimmt, denn ein Atom des verbrauchten Silbers
in der Silberlösung entspricht genau 2 Atomen Blausäure.

Unsere Silberlösung hat die systematische Stärke von 1/10 Atom Sil-
ber im Liter. Dieselbe Flüssigkeit wird auch zur Chlorbestimmung ver-
wendet. Es enthält jeder Cubiccentimeter derselben 1/10000 Atom Silber,
und stellt 9/10000 Atom Cyan oder Blausäure dar, wie dies in der Rubrik
des Paragraphen aufgenommen ist.

Der Beweis der Richtigkeit der Methode ist bereits von Liebig an
der angeführten Stelle geführt worden, indem das durch vollständige
Fällung erhaltene Cyansilber gewogen und daraus der Blausäuregehalt
bestimmt wurde. Derselbe wurde dann mit dem auf maassanalytischem
Wege erhaltenen Resultate zusammengestellt. Der Blausäuregehalt, wel-
cher sich aus der Wägung des Cyansilbers zu 0'067 Proc. ergab, stellte
sich nach der Massmethode 1. zu 0'068, 2. zu 0'067 Proc. heraus. Ein
andermal wurde eine noch verdünntere Blausäure durch Wägen des Cyan-
silbers zu 0'0466 Proc. Blausäure bestimmt, dann nach der Massmethode
bis zur beginnenden Trübung zu 0'0476 Proc., und durch vollständiges
Ausfällen und Messen der Silberlösung zu 0'0469 Proc. bestimmt. Es
ergibt sich aus diesen Zahlen, dass das Verfahren den besten Methoden,
welche hierzu in Anwendung gekommen sind, an Sicherheit und Zuver-
lässigkeit gleichsteht, während es dieselben an Schnelligkeit und leichter
Ausführbarkeit weit übertrifft.

Es ist einleuchtend, dass, wenn man kein Aetzkali zusetzt und die
Blausäure vollständig mit der filtrirten Silberlösung ausfällt, gerade dopp-
elt so viel Silberlösung angewendet werden muss, als bis zur beginnenden
Trübung mit Aetzkali. Dies hat sich auch durch den Versuch be-
stätigt. Das gebildete Cyansilber hat die Eigenschaft, sich flockig zu
ballen, und durch heftiges Schütteln die fein vertheilten Körnchen Cyansil-
bren an sich festzukleben, wodurch die Flüssigkeit so klar wird, dass
man die Wirkung eines ferneren Silberzusatzes deutlich wahrnehmen
kann. Es ist dann die Methode ganz gleich jener der Fällung der Chlor-
metalle durch Silberlösung.

Bei Liebig waren in alkalischer Lösung 27 cbcm, in nicht alkali-
scher 53'5 cbcm Silberlösung, ein andermal 15 und 29'5 cbcm gebraucht
worden; bei meinen Versuchen wurden 17'3 und 34'4 cbcm Silberlösung
verbraucht. Der Vorzug der halben Fällung besteht darin, dass man
leichter einen entstehenden Niederschlag in einer klaren Flüssigkeit, als das
Nichtmehrentstehen eines Niederschlages in einer trüben Flüssigkeit wahr-
nehmen kann. Im letzteren Falle ist das Aufhören der Bildung eines
Niederschlages, im ersteren Falle das Anfangen derselben zugleich das
Ende der Massoperation.
Zur eigenen Prüfung der Methode wurde eine frisch destillierte Blausäure stark mit Wasser verdünnt und davon zu den verschiedenen Operationen mit der Pipette gleiche Mengen abgestoßen. Um dies gefahrlos zu thun, wurde eine Pipette am oberen Ende mit einem Kautschukrohre und Quetschhahn, und darüber, in der Kautschukrohre steckend, mit einem Glaubersalzkalkrohrchen versehen (Fig. 113). Indem man den Quetschhahn öffnet, saugt man an bis über die Marke, lässt durch passendes Öffnen des Hahnes bis an den Nullpunkt der Theilung zurückschauen, und lässt nun in ein passendes Gefäß die ganze Menge ablaufen. Man hat dies an den Griffblättchen des Quetschhahns ganz in seiner Gewalt bis auf die Breite eines Haares. Statt einer Vollpipette musste man hier eine graduirte anwenden.

Aus der Rubrik dieses Paragraphen geht hervor, dass 0.54 g, oder wenn wir eine so verdünnte Blausäure mit reinem Wasser im specifischen Gewichte gleichstellen, 0.54 cbcm abzumessen sind, wenn 1 cbcm Silberlösung 1 Proc. Blausäure vorstellen soll. Da jedoch die Blausäure nicht viele Procente halten konnte, so wurde die zehnfache Menge oder 5.4 cbcm Blausäure ablaufen gelassen. Sie forderte bis zur leichten Trübung

9.1 cbcm Silberlösung = 0.91 Proc. Blausäure.

Nun wurden 10.8 cbcm Blausäure ablaufen gelassen, sie forderten

18.2 cbcm Silberlösung = 0.91 Proc. Blausäure.

Jetzt wurden 10 cbcm Blausäure ablaufen gelassen, ganz mit Silberlösung gefüllt und das Cyansilber auf einem Filtrum gesammelt, dem ein anderes an Gewicht gleich gemacht war. Nach dem Auswaschen wurden beide Filter nebeneinander in einem warmen Raume getrocknet bis keine Gewichtsveränderung mehr stattfand. Das Cyansilber wog 0.454 g.

1 At. Cyansilber (133.97) entspricht 1 At. Blausäure (27); folglich sind 0.454 g Cyansilber = \[\frac{0.454 \cdot 27}{133.97} = 0.0915 \] g Blausäure. Da diese in 10 cbcm enthalten waren, so sind sie = 0.0915 Proc. Blausäure. Es ist also auch hier die vollkommenste Uebereinstimmung zwischen Mass- und Gewichtsmethode, nur dass das erste Resultat in ungefähr 5 Minuten gewonnen ist.

In gleicher Art, wie die wässerige Blausäure, kann auch das officine Bittermandelwasser und Kirschchlorbeerrwasser auf seinen Gehalt an Blausäure geprüft werden. Häufig ist jedoch dieses Wasser trüb, was die Beurtheilung des Endes der Operation etwas erschwert. Man setzt deshalb so viel starken Weingeist zu, bis die Trübung verschwunden ist.
Im Falle das Wasser klar ist, hat man diesen Zusatz nicht nötig. Bei der wässerigen Blausäure fanden wir 5 4 ccm als eine passende Größe zur Probe. Die Cubikcentimeter Silberlösung werden dann durch 10 dividirt, oder das Komma um eine Stelle zur Linken gerückt.

Bei Bittermandelwasser nimmt man wegen seines geringen Gehaltes die 100fache Menge von 0 54 g oder 54 ccm und rückt das Komma nachher um zwei Stellen links.

54 ccm *Ag. Amygdal. amar.* mit Aetzkali und Weingeist versetzt, erforderten in zwei Proben

1. 9 8 ccm,
2. 9 85 ccm 1/10- Silberlösung.

Dies entspricht also einem Gehalte von Blausäure:

1. 0 098 Proc.
2. 0 0985

Da das *Ag. Amygdal. amar.* mit Weingeistzusatz bereitet wird, so ist sein specif. Gewicht meistens 0 9856, und um 54 g abzupipettieren, müsste man 54 / 0 9856 = 54 8 ccm abmessen. Es würde dies den oben gefundenen Gehalt auf 0 099 Proc. erhöhen, wenn man auf Gewicht bezicht. Die *Pharm. boruss. ed. VI.* verlangte einen Gehalt von 2/3 Gran wasserleerer Blausäure auf die Unze oder 0 139 Proc. Es ist aber erfahrungsmässig, dass, wenn man genau nach der Vorschrift arbeitet, diese Stärke äusserst selten erreicht wird. Die Messung dieses destillirten Wassers gibt im Erkennen nicht die Schärfe, wie reine destillirte Blausäure.

Um seine Methode auch den Pharmaceuten zugänglich zu machen, welche in der Mehrzahl nicht mit Grammgewicht und Cubikecentimeter-büretten versehen waren, hat Liebig die Probefüssigkeit auf Unzen und Grane gestellt; doch hat dies jetzt kein Interesse mehr, wo das Grangewicht abgeschafft ist. Besitzt der Apotheker keine Bürette, so kann er auch die verbrauchten Mengen nach Gewicht bestimmen, wozu die oben (S. 58) gezeichnete Flasche sehr bequem ist.

Ebenfalls zur Bestimmung des Cyans im Cyankalium wird die Methode mit Erfolg angewendet. Man lässt in diesem Falle den Zusatz von Aetzkali weg.

Man wägt 5 g des Salzes ab, löst zu 500 ccm auf, in welchem Falle jeder Cubikecentimeter 0 010 g des rohen Salzes enthält. Nimmt man von dieser Lösung mit der Pipette 10 ccm, so enthalten diese 0 100 g des Salzes.

Man bringt die klare, nöthigenfalls filtrirte Lösung unter die Bürette und lässt Silberlösung bis zur erscheinenden Trübung einlaufen.

Es ist zu bemerken, dass, wenn das Cyankalium Spuren von Schwefelkalium enthält, welches von dem Gehalte der Pottasche an schwefel-
saurem Kali herstammt, die Flüssigkeit sich etwas färbt und trübt. Man
cann dies beseitigen, wenn man der ganzen Lösung vorher einige Tropfen
Zinkvitrillösung zusetzt und dann filtrirt.

Nach der Rubrik wären 1:302 g Salz aufzulösen, wenn die Cubikcentimeter Silberlösung direct die Prozente von Cyankalium anzeigen sollen. Da unsere Flüssigkeit nur 1/100 Salz enthält, so müsste man 130:2 cbcm abmessen, damit ebenfalls die verbrauchten Cubikcentimeter direct Prozente anzeigen.

Würde man 13 cbcm abmessen, so hätte man die Cubikcentimeter mit 10 zu multiplizieren, um den Prozентgehalt zu erhalten.

Von einem käuflichen Cyankalium wurden 5 g abgewogen, zu
500 cbcm gelöst, und von dieser Flüssigkeit mit der Pipette abgemessen.

1. 10 cbcm = 3:8 cbcm \(\frac{1}{10} \) Silberlösung.

2. 20 " = 7:6 " " " "
3. 30 " = 11:5 " " " "
4. 40 " = 15:2 " " " "
5. 13 " = 4:95 " " " "
6. 130 " = 49:4 " " "

Die übereinstimmenden
Nummern 1, 2 und 4 geben 49:4836 Proc.
Nummer 5 gibt 49:5 "
6 " 49:4 "

Es zeigte dies Cyankalium also noch nicht einmal die Hälfte seines Ge-
wichtes an reiner Substanz.

Die Bestimmung des Cyangehaltes der löslichen Cyanide von Metall-
en, wie Quecksilbercyanid, und der löslichen Doppelcyanäure kann nicht
direct nach der Methode ausgeführt werden, sondern es muss der Blau-
säuregehalt erst durch eine Destillation isolirt werden. Da aber die Blau-
säure durch Gegenwart freier Säuren leicht theilweise in Ameisensäure
übergang, so ist es nothwendig, dass zu keiner Zeit der Destillation über-
schüssige Säure vorhanden sei. Es wird dies leicht durch einen Appa-
rat bewirkt, welchen Carl Mohr 1) zu diesem Zwecke angegeben hat
(Fig. 114). Der kleine Destillationskolben trägt einen doppelt durch-
bohrten Stopfen, durch dessen eine Öffnung die Destillationsröhre, durch
die andere eine mit reiner Salzsäure gefüllte, in eine lange Spitze aus-
gezogene Glasmöhre geht. Diese ist oben mit einem Kautschukrohrchen
verbunden, welches mit Quecksilber geschlossen ist, und ein kleines
gläsernes Sangröhrchen trägt. Nachdem man die zu analysierende Sub-
stanz abgewogen und in das Kölbcchen gebracht hat, saugt man die Pi-
pettenröhrche voll reiner Salzsäure von gewöhnlicher Stärke, und befestigt
das Kölbcchen an den Kork. Man erhitzt die Flüssigkeit zum gelinden

Kochen, und lässt nun Salzsäure tropfenweise hineinfallen. Dieselbe wird von dem Uebermaasse der Cyanverbindung gebunden und die Blausäure destillirt mit Wasser über. Man erreicht in dieser Art, dass während der Destillation niemals freie Salzsäure vorhanden ist, und dass
Man erhält den ganzen Cyangehalt in Gestalt von Blausäure an Kali gebunden, also als Cyankalium, dessen Gehalt man in bekannter Weise mit Silberlösung bestimmt.

b. Durch Kupferslösung.

Eine dieser Bestimmungsmethode ganz parallel laufende ist von Carl Mohr 1) angegeben worden.

Die Bildung des Harnstoffs oder des cyansauren Ammoniaks setzt natürlich die gleichzeitige Entstehung von Blausäure voraus, gerade wie bei der Einleitung von Chlorgas in Kali Chlorsäure und Chlorwasserstoff, resp. Chlorkalium entsteht. Es ist einleuchtend, dass die Bildung der selben auf die Methode der Blausäurebestimmung von Einfluss sein muss. Liebig hat gefunden, dass die Menge der verbrauchten Kupferlösung für eine und dieselbe Menge Blausäure sich nicht gleich bleibe, sondern mit der Menge und Konzentration des Ammoniaks ändere. Mit der Silbernemethode verglichen zeigte die Kupferlösung immer etwas mehr Blausäure in der Lösung an, als ursprünglich darin vorhanden war. So wurden zu 40 cbcm Blausäure verbraucht:

<table>
<thead>
<tr>
<th>Silberlösung</th>
<th>Kupferlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 cbcm</td>
<td>12.8 cbcm</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>12.2</td>
<td>13.4</td>
</tr>
<tr>
<td>11.9</td>
<td>12.9</td>
</tr>
<tr>
<td>Mittel: 11.05 cbcm</td>
<td>13.02 cbcm</td>
</tr>
</tbody>
</table>

Bei gewissen Konzentrationen und in Fällen, wo sich das Cyan und die Blausäure in Ameisensäure und Ammoniak zersetzen, gibt Liebig zu, dass sie eben so genaue Resultate wie die Silberlösung geben könne. Die Analysen der zusammengesetzten Cyanverbindungen (Annal. d. Chem. u. Pharm. Bd. 95, S. 110), welche Carl Mohr mittheilt, gaben ausgezeichnet stimmende Zahlen.

Die Kupfermethode hat demnach wegen Möglichkeit abweichender Zersetzung einen Nachtheil gegen die Silbernemethode, dagegen ist die Beurtheilung des Endes der Operation in trüben Flüssigkeiten, wie bei Bittermandelwasser, schärfere als bei der Silbernemethode. Beide Methoden aber sind nicht für sich selbst in ihren Angaben ganz konstant, denn die blaue Kupferfarbe bleicht oft nach einiger Zeit wieder aus, und ein
beginnender weisser Niederschlag löst sich oft nach einiger Zeit wieder auf, nachdem man schon das Resultat notirt hat.

VII. Fällungsanalysen.

C h l o r.

a. Durch Silberlösung.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Silberlösung = 1 Pc. Subsz.</th>
<th>1 cbcm Silberlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>112. Chlor</td>
<td>Cl</td>
<td>35-46</td>
<td>0-3546 g</td>
<td>0-0003546 g</td>
</tr>
<tr>
<td>113. Chlorkalium</td>
<td>Cl K</td>
<td>74-57</td>
<td>0-7457</td>
<td>0-007457</td>
</tr>
<tr>
<td>114. Chlornatrium</td>
<td>Cl Na</td>
<td>58-46</td>
<td>0-5846</td>
<td>0-005846</td>
</tr>
<tr>
<td>115. Chlorammo-</td>
<td>Cl NH₄</td>
<td>58-46</td>
<td>0-5346</td>
<td>0-005346</td>
</tr>
<tr>
<td>nium . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jede Chlorverbin-</td>
<td>Gewöhnliche</td>
<td>Gewöhnl.</td>
<td>1/100 Atom</td>
<td>1/100000 Atom</td>
</tr>
<tr>
<td>dung mit 1 At.</td>
<td>Formel</td>
<td>At.-Gew.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlor . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Silberlösung, welche zu diesen Fällungen dient, ist die gewöhnliche zehntelnormale mit \(\frac{1}{10} \) Atom = 10,797 g Silber im Liter. Zu der folgenden Methode muss sie neutral sein, und es ist deshalb zweckmäßig, dass man die ganze Menge neutral darstelle. Das gewalzte und genau abgewogene Silber wird in reiner Salpetersäure gelöst, wobei das Gefäss mit einem concaven Glase bedeckt ist, um Verlust durch Spritzen zu vermeiden. Nachdem die Lösung vollständig stattgefunden, spritzt man das Deckglas mit destilliertem Wasser in die Flüssigkeit ab, und lässt ohne Kochen an einem warmen Orte oder im Sandbade zur Trockene verdampfen und erhitzt bis zum anfangenden Schmelzen. Man löst in destilliertem Wasser auf und spült mit reichlichem Abwaschen in die Literflasche, die man bis an die Marke anfüllt und dann den Inhalt durch Umschütteln innig mischt.

Als Gegenflüssigkeit bereitet man sich eine Kochsalzlösung, welche \(\frac{1}{10} \) Atom = 5,846 g trocknes Kochsalz im Liter enthält. Das Nähere zur Bereitung dieser Flüssigkeit wird später unter Silberanalyse mitgeteilt werden.

Die Atomgewichte des Silbers und des Chlor's sind diejenigen, welche mit der grössten Schärfe bekannt sind. Sie sind sogar durch Fällungen geprüft und festgestellt worden, also durch dieselbe Operation, womit wir sie in Anwendung ziehen. Wenn man reine Substanzen anwendet, so sind die richtig bereiteten Probelösungen ganz gleichwerthig, d. h. sie zersetzen sich zu gleichen Volumen.

Man löst in einem Stöpselglase die gewogene Chlorverbindung in destilliertem Wasser auf, setzt etwas reine Salpetersäure zu, und lässt aus der bis Null gefüllten Bürette Silberlösung einlaufen, indem man fortwährend umschüttelt. So lange man an der Oberfläche der Flüssigkeit deutliche weisse Niederschläge sich bilden sieht, fährt man mit Eingiessen fort. Es tritt jedoch bald ein Zeitpunkt ein, wo man den sich bildenden Niederschlag nicht mehr von dem bereits schwebenden unterscheiden kann,

Mohr's Titirbuch.

b. Durch Silberlösung mit neutralem chromsaurem Kali als Indicator, vom Verfasser.

unter Beachtung der rothen Färbung mit Silberlösung gemessen. Nachdem eine Operation vollendet war, wurden beide Röhren abgelesen und notirt, und die neue Flüssigkeit in die bereits gebrauchte hineingelassen.

\[
\begin{array}{cc}
\frac{1}{10} \text{ Kochsalzlösung} & \frac{1}{10} \text{ Silberlösung} \\
4 \cdot 2 \text{ cbcm} & 4 \cdot 3 \text{ cbcm} \\
6 \cdot 7 \text{ } & 6 \cdot 8 \text{ } \\
11 \text{ } & 11 \cdot 1 \text{ } \\
12 \text{ } & 12 \cdot 1 \text{ } \\
17 \cdot 75 \text{ } & 17 \cdot 75 \text{ } \\
18 \cdot 2 \text{ } & 18 \cdot 3 \text{ } \\
25 \cdot 85 \text{ } & 25 \cdot 95 \text{ } \\
26 \text{ } & 26 \cdot 1 \text{ }
\end{array}
\]

Es waren also konstant von der Silberlösung \(\frac{1}{10}\) cbcm mehr verbraucht worden, und dies war diejenige Menge, welche über den eigentlichen Fällungsprozess hinaus nothwendig war, um die Anzeige zu geben. Wenn man von der Kochsalzlösung einen Tropfen in die geröthete Flüssigkeit einlaufen liess, um die canariangelbe Farbe wieder herzustellen, so standen beide Büretten vollkommen gleich. Jede der obigen in einer Horizontallinie stehenden zwei Zahlen sind eine vollständige Analyse und, wegen der Gleichheit der Zahlen, mit richtigen Resultaten. Es konnte nach solchen Vorgängen gar nicht mehr zweifelhaft sein, dass die Methode zu directen Analysen anwendbar sei.

Wenn salpetersaures Silber mit neutralen chromsaurem Kali zusammenkommt, so entsteht chromsaures Silberoxyd, ein in Wasser fast unlösliches Salz von lebhaft rother, dem Blute ähnlicher Farbe. Wird aber das chromsaure Silberoxyd mit einer Auflösung eines Chlormetallcs übergossen, so setzt es sich sogleich in Chlorsilber und ein lösliches chromsaures Salz um. Das chromsaure Silberoxyd ist in freien Säuren löslich, kann also in sauren Lösungen gar nicht entstehen, und es ist dies der Grund, warum die Silberlösung neutral sein muss. Dagegen findet die Umsetzung auch in alkalischen Lösungen, welche überschüssiges kohlen saures Natron enthalten, statt, jedoch dürfen diese aus einem anderen Grade nicht viel von diesem Salze enthalten. Es entsteht nämlich alsdann kohlen saures Silberoxyd, welches sich zwar auch mit Chlormetallen umsetzt, da es aber keine besonders auffallende Farbe hat, unseren Zwecken nicht entspricht. Daraus geht denn hervor, dass die zu prüfenden Flüssigkeiten sowie die Silberlösung möglichst neutral sein müssen. Die Silberlösung wird ein- für allemal neutral dargestellt. Hat man ein lösliches Chlormetall unter Händen, welches neutral ist, so bleibt die Flüssigkeit auch durch die Zersetzung neutral, und man kann ruhig bis zu Ende fortgehen. Ist die zu untersuchende Flüssigkeit alkalisch, wie Pottasche, Soda, so muss der grösste Theil des kohlen sauren Alkalis durch eine unschädliche Säure, Salpetersäure oder Essigsäure, weggenommen werden,

Die Menge des zuzusetzenden chromsauren Kalis wurde niemals ganz gleich genommen, und dennoch übereinstimmende Resultate erhalten. Man nehme im Allgemeinen nur 4 bis 5 Tropfen einer kalt gesättigten Lösung von reinem einfach chromsaurem Kali. Bei stärkerem Chlorgehalt erscheint anfänglich gar keine rothe Färbung, gegen Ende aber um so deutlicher, da der Abstich gegen das farblose Chlorsilber sehr deutlich ist. Hat man zuviel chromsaures Kali genommen, so ist der Farbenwechsel von roth gegen gelb nicht so deutlich. Bei Lampen- oder Gaslicht sind die Versuche sehr scharf, weil dann die gelbe Farbe, aber nicht die rothe, verschwindet. Wenn man zuviel Silber hinzugelassen und eine stark rothe Färbung erzeugt hat, so kann man den Versuch wieder durch $\frac{1}{10}$-Kochsalzlösung in Ordnung bringen. Man lässt tropfenweise aus der in Zehntel-Cubikcentimeter geteilten Quetschhahnbürette die Kochsalzlösung eintröpfeln, bis die rothe Farbe auf einmal wieder weicht oder bis ein neuer Tropfen keine hellgelbe Färbung mehr in der Flüssigkeit wahrnehmen lässt. Die verbrauchten Cubikcentimeter Kochsalzlösung zieht man der Silberlösung als gleichwertig geradezu ab.

Um die Genauigkeit der Resultate zu prüfen, wurden die folgenden Versuche angestellt.

0.2 g chemisch reines abgekristallisiertes Kochsalz erhielten 34.4 cbem Silberlösung, und dagegen 0.1 cbem Kochsalzlösung. Dies macht 34.3 cbem Silberlösung = 0.2005178 g Kochsalz.

0.2 g reines Chlorkalium, zweimal in gerade richtiger Färbung ausgefällt, erforderten:

1. 26.8 cbem Silberlösung.
2. 26.8

Dies gibt jedesmal 26.8 \times 0.007457 = 0.19985 g Chlorkalium.

0.2 g Salmiak erforderten 37.35 cbem Silberlösung.

0.2 g Salmiak von 37.35 bis 74.6 cbem = 37.25 cbem Silberlösung.

Der erste Versuch gibt 0.19945 g; der zweite 0.199138 g Salmiak.

Gehalt zu machen, wurden Pottasche, rohes Glaubersalz, Harn, Brunnenwasser, Mineralwasser und ähnliche Gegenstände mit dem besten Erfolge untersucht.

Die konzentrierte Kochsalzlösung.

Als Mittel von vier Versuchen, die mit jenen von Fuchs und Fehl ing übereinstimmten, gab Liebig den Gehalt von 10 cbccm zu 3'184 g Kochsalz an.

Auf einer im Gleichgewichte stehenden Wage wurden 5 cbccm aus einer Pipette in ein kleines Glas laufen gelassen und dann abgewogen. Sie wogen 6'021 g. Dies gibt das spezifische Gewicht zu \(\frac{6'021}{5} = 1'2042 \), als sehr nahe übereinstimmend mit den obigen Angaben. Diese 5 cbccm wurden mit destilliertem Wasser zu 500 cbccm verdünnt, umgeschüttelt, und daraus die Proben herausgezogen. Sie wurden mit chromsaurem Kali versetzt und mit Zehntelsilberlösung bis zum Erscheinen der rothen Farbe gefällt.

1. 25 cbccm erforderten 13'6 cbccm Silberlösung;
2. 100 cbccm erforderten 54'5 cbccm Silberlösung.
VII. Fällungsanalysen.

Nro. 1 gibt für die 500 ccm 20 mal 13.6 = 272 ccm Silberlösung und Nro. 2 gibt 5 mal 54.5 = 272.5 ccm.

Nehmen wir von beiden Versuchen das Mittel zu 272.25 ccm Silberlösung, so geben diese, auf Kochsalz berechnet, 1.59157 g Kochsalz in 5 ccm; also in 10 ccm 3.18314 g, welches mit obigen Angaben sehr genau übereinstimmt. Die Messung des Kochsalzes durch Fällung mit Silber ist weit leichter, schneller und sicherer auszuführen, als die Eindampfung der Lösung und vollständige Entwässerung des Salzes durch Erhitzen.

Um mit dieser gesättigten Lösung Zehntelflüssigkeit zu bereiten, würde man die eben erhaltenen Resultate benutzen. 5 ccm der konzentrierten Salzlösung zersetzen 272.26 ccm Silberlösung; die Frage ist, wie viel zersetzen 100 ccm?

\[
272.25 : 5 = 1000 : x; x = \frac{5000}{272.25} = 18.37 \text{ ccm.}
\]

c. Durch Quecksilberoxydlösung.

Diese Chlorbestimmung ist von Liebig\(^1\) angegeben und vorzugsweise für die Bestimmung des Kochsalzgehaltes im Harn empfohlen und angewendet worden. Sie gründet sich darauf, dass salpetersaures Quecksilberoxyd in einer Harnstofflösung einen dicken weissen Niederschlag erzeugt, Quecksilberchlorid aber mit Harnstoff keine Fällung gibt. Wenn man eine Chlorverbindung der Alkalimetalle mit salpetersaurem Quecksilberoxyd vermischt, so setzen sich diese Salze in Quecksilberchlorid und in ein salpetersaures Salz der alkalischen Base um. Eine gesättigte Lösung von Kochsalz mit einer konzentrierten Lösung von salpetersaurem Quecksilberoxyd vermischt erstarrt zu einer blätterigen Masse von Kristallen von Quecksilberchlorid. Versetzt man eine Harnstofflösung mit Kochsalz und giesst langsam in kleinen Portionen eine verdünnte Lösung von salpetersaurem Quecksilberoxyd hinzu, so entsteht an dem Orte, wo beide Flüssigkeiten sich berühren, eine weisse Trübung, die aber beim Umschütteln sogleich wieder verschwindet, so dass die Flüssigkeit so hell und durchsichtig ist, wie zuvor; ohne das Kochsalz würde sie bleibend trüb geblieben sein. Dies dauert so lange, bis das zugesetzte salpetersaure Quecksilberoxyd genau hinreicht, sich mit dem Kochsalz in Subli-

mat umzusetzen; über diese Grenze hinaus bringt ein einziger Tropfen des Quecksilbersalzes eine bleibende weise Trübung hervor. Es ist demnach einleuchtend, dass wenn man die Quecksilbermenge in der Lösung des salpetersauren Quecksilberoxyds kennt, welche man zu einer ein alkalischs Chlorzinn enthaltenden Flüssigkeit zusetzen muss, um eine bleibende Trübung zu erhalten, man daraus die Menge des Chlors oder Chlorzinn's bestimmen kann, da 1 At. Quecksilberoxyd genau 1 At. Chlor oder Chlorzinn entspricht. Der Harnstoff des Harnes dient hierbei als Indicator. Da wir aber jetzt eine viel bessere und ganz sichere Bestimmung des Chlors im Harn haben, so hat diese zu ihrer Zeit ganz brauchbare Methode jedes Interesse verloren. Es wird dies Verfahren im angewandten Theil unter „Harn“ mitgetheilt werden.

Über die Löschlichkeit des chromsauren Silberoxyds in Wasser.

Da die Löschlichkeit des chromsauren Silberoxyds von Einfluss auf das Resultat obiger Analyse ist, so wurde dieser Punkt einer besonderen Untersuchung unterworfen. Reines neutrales chromsaures Kali wurde in destilliertem Wasser gelöst und mit neutralem salpetersaurem Silberoxyd gefällt, aber so, dass chromsaures Kali im Ueberschuss blieb, was an der gelben Farbe des Filtrats zu erkennen war. Dieses wurde mit einigen Tropfen Kochsalzlösung versetzt, wodurch eine schwache Opalisation entstand. Die Flüssigkeit wurde warm gestellt, allein es schied sich doch kein Chlorzinn in Flocken ab.

Das Abwasserschlamm hatte immer einen schwachen Stich ins Gelbe. Als das Pulver vollkommen ausgesüsset war, erzeugte das ablaufende Wasser mit Kochsalzlösung eine etwas stärkere Trübung, als anfangs die konzentrierte Salzslange. Es wurde ein Theil des vollkommen ausgewaschenen Salzes mit destilliertem Wasser zusammengebracht und häufig geschüttelt, dann noch 24 Stunden stehen gelassen. Es wurden 100 cm³ mit einer Pipette herausgenommen und in einem leichten Porzellantiegel verdampft. Der Rückstand wog 0,015 g. Demnach ist 1 Thl. chromsaures Silberoxyd bei 14° R. löslich in 6666,6 cm³ oder 6 Wasser.

Es wurde nun von dem nassen ausgewaschenen chromsauren Silberoxyd eine Quantität mit destilliertem Wasser vermischt, zum Kochen erhitzt und 10 Minuten im Kochen erhalten, die heisse Flüssigkeit auf ein Filtrum gegossen und das Durchgelaufene in die Kochflasche zurückgegossen, bis Trichter und Filtrum kochend heiss waren. Nun wurden 100 cm³ ablaufen gelassen und das Glas mit der deutlich gelb gefärbten Flüssigkeit in kaltes Wasser gesetzt. Es setzte dabei einen geringen Niederschlag von chromsaurem Silberoxyd ab. Die 100 cm³ hielt 0,027 g chromsaures Silberoxyd. Es ist demnach das chromsaure
Silberoxyd in 3704 Thln. siedenden Wassers löslich. Für die Silberanalyse mit chromsaurem Kali geht daraus die Anwendung hervor, dass man nicht überflüssig verdünnen soll, dass man sehr verdünnte Flüssigkeiten (Brunnenwasser, Flusswasser) erst durch Eindampfen konzentrieren soll, und dass man warme Flüssigkeiten nicht messen soll.

Chlor, Brom und Jod in salzartigen Verbindungen zusammen.

1 cbcm Silberlösung = 0.014343 g Chlorsilber.

Wenn diese drei Salzbilder alle zusammen oder je zwei zusammen in einer Verbindung vorkommen, so kann man, wegen der grossen Ähnlichkeit des chemischen Verhaltens derselben, eigentliche Trennungsmethoden in den meisten Fällen nicht anwenden, sondern die Bestimmung geschieht auf indirektem Wege.

Man kann Chlor und Jod annähernd durch die Löschlichkeit des Chlorsilbers in Ammoniak und die Unlöslichkeit oder Schwierlöslichkeit des Jodsilbers trennen. Die Resultate gehören aber nicht zu den sichersten.

Ausserdem lässt sich Jod durch sein Verhalten zu neutralem Eisenchlorid von Chlor und Brom trennen. Da ein eigentliches Eisenjodid nicht zu existieren scheint, oder sich wenigstens durch bloss die Erhitzung in Eisenjodür und Jod trennt, so kann man aus einer Jodverbindung durch Destillation mit überschüssigem Eisenchlorid die ganze Menge des Jods als solches ausscheiden, in Jodkalium auffangen und mit unterschweisigsaurer Natron bestimmen.

Es bleibt auch in der Flüssigkeit eine dem Jod entsprechende Menge Eisenchlorür, welche mit Chamäleon bestimmt werden kann. Wenn demnach alle drei Salzbilder zugleich vorhanden sind, so kann man das Jod durch die genannte Methode isoliren und allein bestimmen. Wollte man im Rückstande der Destillation noch das Chlor und Brom bestimmen, so müsste man statt des Eisenchlorids schwefelsaurese Eisenoxyd anwenden. Im Rückstand würde dann Chlor und Brom mit gemessenen Mengen 1/10-Silberlösung genau gefällt, das Gewicht des Niederschlages bestimmt und nach dem folgenden Paragraphen weiter verfahren. Im Allgemeinen kommen aber die drei Salzbilder sehr selten zusammen vor, und der häufigste Fall ist jener, wo viel Chlor mit wenig Brom (Mutterlaugen der Salinen, viel Chlor mit wenig Jod (Kelp, Varse), oder viel Jod mit wenig
Chlor und Brom.

Eine Modification besteht darin, dass man den gemischten Niederschlag ganz und gar in einer Kugelröhre mit Wasserstoffgas reducir, und aus dem Gewichte des trocknen Niederschlages und jenem des darin enthaltenen metallischen Silbers das Brom berechnet, oder endlich, dass man den Niederschlag mit Zink reducir, was jedoch Rose als ungenau verwirft.

Alle diese Operationen sind sehr mühsam; sie erfordern ein mehrere Stunden dauerndes Glühen und Entwickeln des Chlorgases, sowie viele Wägungen, und dürfen nur mit kleinen Mengen Substanz ausgeführt werden, wenn die Operation nicht Tage lang dauern soll. Dabei wird von einem Theile auf das Ganze geschlossen und der Fehler in jedem Falle multiplicirt.

Eine wesentliche Verbesserung hat die Methode durch Fehling erhalten, welcher fand, dass bei theilweiser Fällung der Chlor- und Bromverbindung mit Silber der ganze Bromgehalt in dem ersten Niederschlage enthalten sei. Denn obschon Chlor grössere Affinität zu den Erd- und Alkalimetallen und in der Glühhitze auch zum Silber hat, als das Brom, so veranlasst dennoch bei gewöhnlicher Temperatur die grösere Unlöslichkeit des Bromsilbers gegen das Chlorsilber einen allmählichen Austausch, bis alles Brom gefällt ist.

Es gehört deshalb zur vollständigen Fällung eine längere Digestion des Niederschlages und öfteres Umschütteln, damit alles Brom wirklich in den Niederschlag komme. Warum Fehling eine Erwärmung des Niederschlages in der Flüssigkeit vermieden haben will, lässt sich nicht finden, da eine solche bei genügender Verdünnung und späterer Abkühlung die Zersetzung nur beschleunigen kann.
Fehling behandelt nun einen bestimmten Theil des gewogenen Niederschlages in einer Kugelröhre mit Chlorgas in bekannter Weise.

Ohne zu filtriren lässt man die Flüssigkeit in einem vorher gewogenen Porzellantiegel absetzen, zieht die klare Flüssigkeit mehremal mit einem Quecksilberheber ab, bis das Wasser auf Platinblech keine Flecken mehr lässt, trocknet dann aus und bestimmt das Gewicht des Niederschlages. Da von dem Silberniederschlag immer kleine Theilchen auf der Oberfläche schwimmen, so hat man Sorge zu tragen, dass man mit dem Heber nur den mittleren Theil herausziehe.

Man hat demnach zwei Thatsachen: 1) das absolute Gewicht des brom- und chlorhaltigen Silberniederschlages durch unmittelbare Wägung; 2) das Gewicht des darin enthaltenen Silbers aus der zur vollständigen Fällung beider Körper verwendeten Silbermenge.

Wir gelangen nun durch folgende Betrachtung zur Berechnung des Broms und des Chlors in der Verbindung.

Bei der gleichen Menge Silber wiegt Bromsilber mehr als Chlorsilber, und zwar gerade so viel, als das Atom Brom schwerer ist, als das Atom Chlor, nämlich 80 weniger 35·46 oder 44·54.

187·97 Bromsilber geben, wenn man durch einen Strom Chlor das Brom in der Hitze austreibt, 143·43 Chlorsilber. Wir machen diese letzte Operation nicht, sondern berechnen die Menge des Chlorsilbers aus

1) Liebig's Annal. d. Chem. u. Pharm. 93, 76.
dem Gewicht des angewandten reinen Silbers. Da 107·97 Silber 143·43
Chlorsilber geben, so ist

\[107\cdot97 \cdot x = 143\cdot43, \text{ woraus } x = 1\cdot328. \]

Man hat also das angewandte Silber mit 1·328 zu multiplizieren, um
die entsprechende Menge Chlorsilber zu erhalten. Zeichne man diese be-
rechnete Menge von der gewogenen Menge des Bromchlorsilbers ab, so
erhält man die Differenz, aus der man das Brom leicht berechnet. Da
auf 44·54 Diff. 1 At. Brom = 80 kommt, so ist die gefundenen Differenz
mit \(\frac{80}{44\cdot54} \) oder mit 1·796 zu multiplizieren, um das Brom in Grammen
zu erhalten.

Der Niederschlag mag so viel Chlorsilber wie immer enthalten, dies
hat auf das Resultat keinen Einfluss; denn wäre er reines Chlorsilber, so
würde er so viel wiegen, als die Berechnung aus dem Silber ergibt; es
würde dann keine Differenz erscheinen und folglich wäre auch der Brom-
gehalt gleich Null.

In gleicher Art kann man auch den Chlorgehalt berechnen. Die
Differenz 44·54 ist proportional einem Atom Chlor. Es ist also auch hier

\[44\cdot54 : 35\cdot46 = \text{Diff. : Chlor}, \]
also Chlor = \(\frac{\text{Diff. 35\cdot46}}{44\cdot54} \) = 0·796 mal die Differenz.

Die beiden Zahlen 0·796 und 1·796 verhalten sich wie die Atom-
gewichte des Chlors und Broms, aus denen sie sich durch Division mit der-
selben Zahl (44·54) entstanden sind. Die Differenz beider Zahlen ist
immer gleich 1; für das Brom war der Factor \(\frac{\text{Br}}{\text{Br} - \text{Cl}} \), und für das
Chlor \(\frac{\text{Cl}}{\text{Br} - \text{Cl}} \). Zieht man den zweiten vom ersten ab, so ist

\[\frac{\text{Br}}{\text{Br} - \text{Cl}} - \frac{\text{Cl}}{\text{Br} - \text{Cl}} = \frac{\text{Br} - \text{Cl}}{\text{Br} - \text{Cl}} = 1. \]

Es ist unerwartet, dass, je größer der Bromgehalt des Gemenges
ist, desto größer auch die Gewichtsdifferenz des gemischten und des auf
Chlorsilber berechneten Niederschlag ist, und dass abseits des Resultat
zuverlässiger werden müsste. Da in den meisten Fällen der Bromgehalt
gegen den Chlorgehalt sehr klein ist, so ist dem Umstande einer grossen
Differenz kein Vorschub geleistet. Darin besteht schon der Vorzug von
Fehling's Methode, dass er durch theilweise Fällung einen weit brom-
reicherer Niederschlag erhält. Ich habe, diesen Weg verfolgend, ein
noch schöneres Resultat erhalten, indem ich das Brom isolirte und da-
durch einen Niederschlag erzeugte, der den ganzen Bromgehalt ein-
schliesst und so rein ist, dass er gelb erscheint.

Wenn man Bromsalze mit Salzsäure und Braunstein destilliert, so
goes erst alles Brom über, und man kann den Moment, wo das letzte
Brom übergeht, ganz scharf erkennen, indem in der Röhre gelb und farblos dicht an einander stossen. Es kommt nicht darauf an, dass nicht auch etwas Chlor übergehe, wenn nur alles Brom übergegangen ist.

Das Brom leitet man in überschüssiges Ammoniak, worin sich Bromammonium bildet. Dieses wird mit Salpetersäure genau gesättigt und mit Zehntel-Silberlösung gemessen. Der Niederschlag ist leicht zitronengelb und fast reines Bromsilber, dessen Gewicht bestimmt wird.

Aus dem Gewicht des gewogenen und des zu Chlorsilber berechneten Niederschlanges findet man, wie oben, das Brom. Diese Methode ist ganz besonders am Platze, wenn der Bromgehalt allein mit grosser Schärfe bestimmt werden soll, wie in den Mutterlauge der Salinen, wo der Chlorgehalt eine ganz gleichgültige Sache ist.

Eine specielle Anwendung auf die Kreuznacher Mutterlauge möge hier folgen.

200 cccm = 279,9 g derselben wurden mit Braunstein und Salzsäure destillirt, bis alles Brom übergegangen war. Man kann diesen Zeitpunkt genau daran erkennen, dass die gelbe Farbe des Bromdampfes plötzlich verschwindet und die Luft in der Röhre farblos erscheint. Das Brom wurde in einer kalt gehaltenen Flasche in Ammoniak aufgenommen, die Flüssigkeit mit Salpetersäure oben sauer gemacht und dann zu 1 Liter verdünnt.

100 cccm dieser Lösung mit Silberlösung gefällt erforderten davon 36,4 cccm. Da jeder Cubikcentimeter \(\frac{1}{10000} \) At. = 0,014343 Chlorsilber entspricht, so sind die 36,4 cccm = 0,5220864 g Chlorsilber. Der ganze Niederschlag gesammelt und gewogen betrug aber 0,625 g. Zieht man davon das Chlorsilber ab, so bleibt 0,10281 und diese mit 1,786 multipliziert geben 1,8362 g Brom, welche in 267,9 g Mutterlauge enthalten sind, also 0,685 Procent betragen.

Fernere Belege zu den anderen weniger genauen Methoden finden sich in Liebig's Annalen der Chem. und Pharm. Bd. 93, S. 81.

Diese Analyse ist hier als Gewichtsanalyse behandelt. Wenn man aber statt das Silber abzuwägen, womit man fällt, die Fällung aus der Bürette mit Zehntel-Silberlösung vornimmt, so gehört sie hierhin. Man hat alsdann für jeden Cubikcentimeter Zehntel-Silberlösung 0,014346 g Chlorsilber in Anrechnung zu bringen.

Chlor und Jod.

Beide lassen sich körperlich trennen, wenn man das Gemenge mit Eisenchlorid oder saurem schwefelsaurem Eisenoxyd destillirt; das über-
gehende Jod kann mit unterschweifsgaurem Natron bestimmt werden. Als dann kann man in einer frischen Menge beide mit Zehntel-Silberlösung fallen, und zieht man nun die dem Jod entsprechende Menge Cubikcentimeter Zehntellösung von der Silberlösung ab, so bleibt diejenige Zahl übrig, die auf Chlor zu berechnen ist.

Sie lassen sich aber auch durch die indirekte Analyse bestimmen.

Man versetze die neutrale Lösung mit etwas neutralem chromsauren Kali und bewirke die Fällung mit Zehntel-Silberlösung, bis die rothe Farbe des chromsauren Silberoxysds erscheint. Man bemerke die verbrauchten Cubikcentimeter.

Den Niederschlag säure man mit Salpetersäure an, wasche ihn durch Sedimentiren in einer Platinschale aus oder sülse ihn auf einem gewogenen Filtern aus, trockne ihn und bestimme sein Gewicht.

Man weiss nun das Gewicht des gemischten Niederschlages von Jod- und Chlorsilber; und man weiss das Gewicht des ihm entsprechenden reinen Chlorsilbers, wenn man die verbrauchten Cubikcentimeter Silberlösung mit 0·014343 multiplizirt.

Die Differenz von Jod- und Chlorsilber ist wiederum genau dieselbe wie zwischen Jod und Chlor, also 127 weniger 35·46 = 91·54. Dieser Differenz entspricht das Jod;

\[
91·54 : 127 = \text{Diff.: Jod},
\]

\[
\text{also Jod} = \frac{127 \times \text{Diff.}}{91·54} = 1·387 \text{mal die Differenz},
\]

und ebenso ist Chlor = \[
\frac{35·46 \times \text{Diff.}}{91·54} = 0·387 \text{mal die Differenz, und wie oben der Unterschied der beiden Quotienten} = 1.
\]

Es wurde zur Prüfung der Richtigkeit folgende Analyse vorgenommen:

0·2 g reines trocknes Jodkalium wurde in Wasser gelöst, mit einigen Tropfen chromsauren Kalis versetzt und mit Silberlösung ausgetirirt. Es wurden 12·1 cbcm verbraucht. Ferner wurden 0·2 g reines Chlorkalium in gleicher Weise gemessen und dazu 26·95 cbcm, im Ganzen also 39·05 cbcm \(\frac{1}{16}\)-Silberlösung verbraucht. Die Fällungen sind getrennt vorgenommen worden, um sogleich eine Kontrolle über die richtige Bestimmung der einzelnen Bestandtheile zu haben. Obige 12·1 cbcm Silberlösung geben mit 0·016611 multiplizirt 0·20099 g Jodkalium, und die 26·95 cbcm Silberlösung geben 0·20096 g Chlorkalium.

Bei einer wirklichen Analyse hätte man im Ganzen nur die Summe von 12·1 und 26·95 = 39·05 cbcm erhalten.

Der getrocknete Niederschlag von Jod- und Chlorsilber wog 0·672 g.

Obige 39·05 cbcm Silberlösung mit 0·014346 multiplizirt geben 0·56021 g Chlorsilber, und diese von 0·672 g abgezogen lassen 0·11179 g Differenz. Diese mit 1·387 multiplizirt geben 0·155 g Jod, während die Berechnung 0·153 g gibt.
VII. Fällungsanalysen.

Die gefundenen 0.155 g Jod entsprechen im System \(
\frac{0.155}{0.0127} = 12.2
\)
cbcm Silberlösung; es sind aber im Ganzen 39.05 bcm verbraucht worden, also auf das Chlor noch 26.85 bcm (gefunden oben 26.95). Diese mit 0.003546 multipliziert geben 0.09521 g Chlor. Die Berechnung ergibt in 0.2 g Chlorkalium 0.0951 g Chlor.

Jod.

Vor Allem kommt es darauf an, die Stärke der Palladiumlösung zu bestimmen, d. h. sie zu titriren. Es wird angenommen, man habe aus dem Handel eine Palladiumlösung von unbekannter Stärke bezogen, oder man habe sich solche aus Palladiummetall selbst bereitet. Da dieses Metall selten ganz rein ist, man wenigstens nicht seiner Reinheit versichert sein kann, so muss man in jedem Falle seine Stärke bestimmen, und zwar durch dieselbe Operation, deren man sich nachher bedient, um mit dieser Palladiumlösung das Jod zu bestimmen. Letzteres darf weder als freies Jod, noch als Jodsäure, sondern muss als Jodmetall vorhanden sein. Wegen der Schärfe der Reaction muss sowohl die Jodlösung als die Palladiumlösung stark verdünnt sein.

Als Urmaass des Jods bereitet man sich eine Jodkaliumlösung, welche 1/1000 wirkliches Jod enthält. Man wäge von chemisch reinem Jodkalium 1.308 g genau ab und löse es zu 1 Liter in destillirtem Wasser. Von dieser Lösung, die wir hier Jodlösung benennen wollen, enthält ein Cubikcentimeter genau ein Milligramm Jod.

Von der Palladiumlösung mache man eine beliebige, aber bekannte Verdünnung, z. B.: Man bringe mit einer Vollpipette 10 bcm in eine 500 bcm-Flasche, fülle bis zum Striche an und schütte tüchtig um. Mit dieser Palladiumlösung fülle man eine Bürette. Man nehme jetzt

Man wiederholt die ganze Operation noch einigemal mit anderen Mengen Jodlösung, um sowohl die Uebereinstimmung als die Verhältnismässigkeit der Resultate zu ermitteln.

Man erfahrt so den Werth oder Titer der Palladiumlösung in Jod ausgedrückt, und kann diese Flüssigkeit direct mit diesem Titer gebrauchen oder sie auch so stellen, dass sie der Jodlösung gleichwerthig ist.

Als Beispiel möge ein konkreter Fall dienen.
10 cbcm einer konzentrierten Palladiumlösung wurden zu 500 cbcm verdünnt.

Von der verdünnten Palladiumlösung wurden gebraucht

\[
\begin{array}{l}
\text{auf 10 cbcm Jodlösung } 1) \ 4\cdot7 \ \text{cbcm} \\
\quad 2) \ 4\cdot7 \\
\quad 3) \ 4\cdot8 \\
\text{auf 20 cbcm } 9\cdot3 \ \text{cbcm, also} \\
\text{auf 10 cbcm } 4) \ 4\cdot65 \ \text{cbcm} \\
\quad 5) \ 4\cdot7 \ \text{cbcm}
\end{array}
\]

Als Mittel könnten 4·7 cbcm angenommen werden, und der Titer wäre: 4·7 cbcm Palladiumlösung sind gleich 0·010 g Jod.

Von dieser Lösung würden obige 500 cbcm

\[
\frac{500 \times 0\cdot010}{4\cdot7} = 1\cdot064 \ \text{g Jod}
\]

sein.
Verdünnt man deshalb die 10 cbcm der konzentrierten Palladiumlösung zu 1064 cbcm, so ist die Palladiumlösung gleichwertig der Jodlösung. Nachdem dies ausgeführt worden, zeigte sich die Palladiumlösung richtig. Auf 10 cbcm Jodlösung wurde mit 10 cbcm Palladiumlösung beim letzten Tropfen noch eine leichte Färbung erzeugt, bei 10·1 cbcm aber nicht mehr.

Diese Titerstellung kann man auch benutzen, um die ursprüngliche Stärke der konzentrierten Palladiumlösung zu ermitteln. Das Atomgewicht des Palladiums ist 53·24 und die Jodverbindung enthält gleiche Atome Jod und Palladium.

Obige 4·7 cbcm verdünnte Palladiumlösung, welche = 10 cbcm Jodlösung waren, enthalten das Äquivalent von 0·010 g Jod an Palladium

\[
127 : 53·24 = 0·010 : x = 0·00419 \text{ g},
\]
also 4·7 cbcm verdünnte Palladiumlösung enthalten 0·00419 g Palladiumlösung; folglich enthält die ganze Menge der 500 cbcm verdünnter, oder 10 cbcm konzentrierter Palladiumlösung

\[
4·7 : 0·00419 = 500 : x
\]

\[
x = 500 \times \frac{0·00419}{4·7} = 2·095 = 0·445 \text{ g Palladium}.
\]

Dieselbe Berechnung gilt auch für die gleichwertig gestellte Palladiumlösung. 1000 cbcm derselben werden das Äquivalent von 1 g Jod = 0·419 g Palladium enthalten, also in 1064 cbcm sind \[
\frac{0·419 \times 1064}{1000} = 0·446 \text{ g Palladium enthalten}.
\]

Kersting führt an, dass, wenn man die Jodlösung in die Palladiumlösung gebe, die Abklärung leichter stattfände. Ich habe dies bei einigen Versuchen nicht bemerken können.

Die gebildeten Niederschläge von Jodpalladium kann man in einem Zylinderglas ansammeln, auswaschen, dann in einem Porzellantiegel
mehrere Male absetzen lassen und davon abgiessen, zuletzt austrocknen, glühen, und das rückständige Palladiumpulver wieder in Königswasser zu gleichem Zwecke lösen. Man gewinnt so fast alles Material wieder, was diese Analyse zugänglicher macht, als wie sie sonst bei dem hohen Preise des Palladiums sein würde.

Die Ausscheidung des Jods aus dem Kupferjodür durch Destillation mit Eisenchlorid ist eine leicht zu Verlusten führende Arbeit und in jedem Falle ein Umweg. Da sich Kupferjodür nicht vom Filtrum trennen lässt, so muss das Filtrum mit in den Destillationsapparat kommen.

Palladium.

Ist Palladium in einer Lösung vorhanden, so kann es durch Jodkalium gefällt werden, und es würde sich das umgekehrte Verfahren von der Jodbestimmung (siehe den vorigen Paragraphen) von selbst anbieten. Es kommen jedoch solche Analysen zu selten vor, als dass man nicht noch lieber das Jodpalladium fallen, auswaschen und durch Glühen in reines Palladium verwandeln wollte.

Mohr's Titirbucb.
Silber.

1. Im Systeme.

a. Mit Chlornatrium.

Masseffügigkeiten: Zehntelkochsalzlösung mit 5.846 g reinem Kochsalz im Liter.
Zehntelsilberlösung mit 10.797 g Silber oder 16.997 g salpetersaurem Silbreroxyd im Liter.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm Kochsalzlösung = 1 Prc. Subst.</th>
<th>1 cbcm Zehntel-Kochsalzlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>116. Silber</td>
<td>Ag</td>
<td>107.97</td>
<td>1.08 g</td>
<td>0.10797 g</td>
</tr>
</tbody>
</table>

Die Bestimmung des Silbers ist die umgekehrte der Chlorbestimmung. Sie kann entweder auf die chromsäure Silberreaction, oder auf das Aufhören des Niederschlanges gegründet werden. Für chemische Zwecke ist die erste Methode einfacher und leichter auszuführen.

Die zweite Methode der Fällung bis zum Aufhören der Bildung eines Niederschlanges wird bei der technischen Silberprobe vorzugsweise angewendet.
b. Mit Jodkalium.

Diese Methode ist von Hermann Vogel\(^1\)) angegeben worden und sie gründet sich auf die Zersetzung der blauen Jodstärke durch gelöstes Silber unter Bildung von Jodsilber und Verschwinden der blauen Farbe und umgekehrt.

Das zu bestimmende Silber befindet sich in salpetersaurer Lösung, und darf keine störende Metalle, insbesondere kein Kupfer enthalten, wodurch diese Methode eine sehr beschränkte Anwendung findet und eigentlich nur zur Silberbestimmung in ausgenutzten photographischen Flüssigkeiten Verwendung findet, in welchen kein Kupfer enthalten sein kann. Sonst dürfte sich wohl kaum eine Silberlösung darbieten, welche dieser Bedingung entspreche.

Man bedarf zu dieser Methode eine Stärkelösung, welche kein Chlor enthält, und Vogel hat vorgeschlagen, dieser Lösung durch Zusatz von Salpetrige in eine größere Haltbarkeit zu geben, was aber nicht der Fall ist. Ausserdem bedarf man dazu einer Zehntel-Jodkaliumlösung mit 16,611 g Jodkalium im Liter und der gewöhnlichen Zehntel-Silberlösung mit 17 g salpetersauren Silberoxyds im Liter. Zu gleicher Zeit wird Untersalpetersäure oder reines salpetersaures Kali angewendet. Wenn man eine saure Silberlösung mit salpetrigsaurem Kali in kleiner Menge versetzt, so entsteht keine Veränderung. In neutralen Flüssigkeiten entsteht ein weisser Niederschlag von salpetersaurer Silberoxyd, den man durch Zusatz weniger Tropfen reiner Salpetersäure zum Verschwinden bringt.

\(^1\)) Pogg. 124, 347.
mit $\frac{1}{10}$-Chlornatrium, und verträgt ausserdem keine Anwesenheit von Kupfersalzen, weil diese Kupferjodür niederschlagen, welches sich der Einwirkung entzieht.

Es kann hier bemerkt werden, dass Pisanî \(^1\) die blaue Jodstärke zur Bestimmung von Silber empfohlen hat. Sie wird aus filtrirter Stärkelsolution durch Schwüllern mit Jod bereitet. Allerdings wird die Jodstärke von Silberlösung entfärbt, aber ausser dem Silber thun dies noch Quecksilberoxydul- und Oxydsalze, Zinnoxydul, arsenige Säure, Antimonoxydsalze und noch mehrere andere. Die Jodstärkelösung ist unvermeidlich so verdünnt, dass man nur sehr kleine Mengen Silber (etwa 0,010 g) bequem damit messen kann. Da der Fall so äusserst selten eintreten kann, dass Silber nicht von einem der hinderlichen Metalle begleitet ist, nie in so kleiner Menge vorhanden ist, so hat die Methode wenig Anwendung. In konzentriertem Zustande scheint sich die Jodstärke von einer bräunlich gefärbten Flüssigkeit ab. Gerade beim Silber besitzen wir die schärfsten Methoden sowohl in der Ausfällung als in der Anwendung des chromsauren Kalis.

c. Mit Rhodanammonium.

Volhard \(^2\) gründet eine Silberbestimmung auf die Fällung von Rhodansilber aus saurer Lösung durch ein löschliches Rhodansalz, wozu er das Rhodanammonium vorschlägt. Das Rhodansilber fällt in weissen Flocken nieder, die mit dem Chlorisilber eine grosse Aehnlichkeit haben; sie sind in Wasser und verdünnten Säuren unlöslich. Er setzt in Silberlösung eine kleine Menge chlorfreies schwefelsaures Eisenoxyd an, welches mit dem Rhodansalz die bekannte blutrote Färbung gibt, die aber beim Umschütteln sogleich wieder verschwindet, so lange noch aufgelöstes Silber vorhanden ist. Das Stehenbleiben der rothen Färbung ist das Ende der Operation. Ich finde die Erscheinung des Endes nicht deutlich genug, und dass für gleiche Mengen Silberlösung sehr ungleiche Mengen Rhodanlösung verbraucht wurden je nach der Verdünnung und Säureüberschuss, so dass unter Umständen doppelt so grosse Zahlen hervorgingen.

2. Empirisch-technische Silberprobe.

Die Silberprobe hat den Zweck, den Gehalt an Silber in Münzen, Geräthen und Zainen auf das Schärfste zu bestimmen. Sie wird deshalb auf das Silber als Urmaass und Einheit gegründet. Sie wird in Münzwerkstätten, Affinirungsanstalten und den Kontrollbureaus derjenigen

\(^1\) Annales des Mines X, 83.
\(^2\) Fresenius' Zeitschr. f. analyt. Chem. 13, 171.

Der Verlust an Silber betrug im Mittel 5 bis 6 Tausendstel und erreichte in einzelnen Proben 9 bis 13 Tausendstel, also 1 1/2 Procent. Nachdem durch so viele Resultate die Ueberzeugung gewonnen war, dass der Werth des Silbers durchgängig zu niedrig geschätzt wurde, und zwar um eine veränderliche Menge, wurde in Frankreich das neue Verfahren der Probe auf nassem Wege und zwar mittelst der Massanalyse eingeführt und hat jetzt überall das alte verdrängt. Es führt dies Verfahren von dem vortrefflichen Gay-Lussac, dem Vater der Massanalyse, her, und ist von ihm in einer solchen Vollendung aufgestellt worden, dass es bis jetzt nur in Kleinigkeiten etwas verbessert wurde, im Ganzen und Grossen aber auf Gay-Lussac's Grundlagen beruht. Eine deutsche
Bearbeitung dieses Werkchens ist im Jahre 1833 1) von Liebig besorgt worden.

Der chemische Vorgang.

Wenn ein lösliches Silbersalz und ein lösliches Chlormetall in einer Flüssigkeit in Wechselwirkung treten, so fällt Chlorsilber nieder. Dies ist der allgemeine Vorgang. Wäre das Chlorsilber unter den obwaltenden Umständen ganz unlöslich, so wäre die Operation einfach die, dass man so lange Zehntelkochsalzlösung zusetzte, bis der letzte Tropfen noch eine Trübung veranlasste, der folgende aber nicht mehr.

Das Chlorsilber hat die Eigenschaft, sich in käseartigen Flocken zusammenzuballen und dann durch Schütteln wie ein Schwamm die noch

Es wird vorausgesetzt, dass man bei völliger Abklärung der Flüssigkeit mit einzelnen Tropfen Zehntelkochsalzlösung vorgegangen sei, und dass man bei immer abnehmender Grösse der Trübung zu der Ueberzeugung gekommen sei, dass der folgende Tropfen keine Trübung mehr erzeuge. Man hat dann die äusserste Genauigkeit erreicht, und, da ein Tropfen des Zehntelölösung $\frac{1}{20}$ Milliligramm Silber vorstellt, also bis auf diese Grösse den Silbergehalt genau bestimmt. Lässt man nun 1 Tropfen Zehntelsilberlösung hinzufallen, so entsteht von Neuem ein Niederschlag, und dieses wiederholt sich, bis ungefähr 20 Tropfen der Zehntelsilberlösung zugesetzt sind. Es entsteht nun keine Trübung mehr. Es könnte nun scheinen, als hätte man um die 20 Tropfen den Fällungspunkt überschritten, allein dies ist nicht der Fall, da der letzte Tropfen Kochsalzlösung noch eine Fällung veranlasst hatte. Die Erklärung dieser Erscheinung ist keine andere, als dass das Chlorsilber in kleiner Menge in

Nach dem Werthe der angewandten Lösungen, die 1 Milligr. Silber im Cubikcentimeter enthalten oder fällen, scheint es, dass in derselben Flüssigkeit, welche genau die erforderliche Menge Kochsalz erhalten hat, doch 1 Milligramm Silber noch die zu seiner Fällung nötige Menge Kochsalz vorfindet, während umgekehrt in der Lösung, welche dem Anscheine nach genug Silber enthält, noch 0,54 Milligramm Kochsalz die zur Ausfällung nötige Menge Silber finden. Wenn nun die Fällung so weit fortgeschritten ist, dass man in derselben in zwei Theile getheilt Flüssigkeit mit gleichviel Tropfen Zehntelkochsalz und Silberlösung Niederschläge erhält, so ist das erreicht, was Mulder den neutralen Punkt nennt. In diesem Augenblick sind in der Flüssigkeit enthalten salpetersaures Silberoxyd, Kochsalz und salpetersaures Natron.

Werden nun 20 Tropfen Zehntelsilberlösung zugetröpfelt, so bildet sich Chlorsilber und die Flüssigkeit enthält salpetersaures Silberoxyd und salpetersaures Natron.

Geht man wieder rückwärts mit 20 Tropfen Kochsalzlösung, so ist die frühere Zusammensetzung erreicht, und wenn die Flüssigkeit wieder salpetersaures Silber, Kochsalz und salpetersaures Natron enthält, ist der neutrale Punkt erreicht.

Bei einer höheren Temperatur ist Silber und Chlor in einem größeren Massen löslich, und es werden nach beiden Seiten eine größere Anzahl Tropfen verbraucht. Die Analyse kann nun nach Mulder in dreierlei Art beendet werden.

1. Man setzt zum Schlusse so lange Kochsalzlösung zu, als man noch eine Spur des Niederschlages bemerkt. Man muss an der eigen-thümlichen Gestalt des Niederschlages erkennen und aus Erfahrung
wissen, dass der letzte Tropfen zugesetzt ist und dass auf Zusatz einer weiteren Menge Kochsalzlösung keine Fällung mehr entstehen würde. Man nennt diesen den bestätigenden Niederschlag oder die Schlussreaction. Man addirt die verbrannten Cubikcentimeter Zehntelkochsalzlösung zu den normalen und erfahrt dadurch die Menge des zur Ausfällung verwendeten Kochsalzes.

2. Oder man setzt so lange Kochsalzlösung zu, bis man keinen Niederschlag mehr wahrnimmt, zieht den zuletzt zugesetzten Tropfen ab und nimmt von dem vorletzten die Hälfte.

3. Oder man kann den sogenannten neutralen Punkt suchen, wobei in der in zwei gleiche Theile geteilten Flüssigkeit durch Kochsalz- und Silberlösung gleich starke Niederschläge entstehen.

Die dritte Methode ist von dem Einfluss der erhöhten Temperatur frei, weil dabei nur eine größere Anzahl Tropfen erforderlich sind, um den neutralen Punkt bis an beide Grenzen zu verfolgen. Die beiden ersten Methoden geben bei höheren Temperaturen ein um 1/1000 stärkeres Resultat, wenn die Erwärmung auf 56° C. gestiegen ist.

Wir haben nun zum praktischen Theil zurückzukehren und die Mittel in Erwägung zu ziehen, wie man die Probe nimmt und daraus 1 g Silber genau fällt und dann, wie das noch nicht gefällte Silber bestimmt wird. Indem wir hier die Anwendung eines reinen Kochsalzes und reinen Silbers vorläufig voraussetzen, widmen wir diesen Gegenständen nachher eine besondere Betrachtung.

Bereitung der Probelüssigkeiten.

Da die ganze Silberprobe auf die Einheit des reinen Silbers gegründet ist, so sind auch die Massflüssigkeiten keine systematische, sondern sogenannte empirische. Eine Kochsalzlösung, von welcher 100 ccm genau 1 g Silber ausfällen, heisst im Verlaufe dieses Paragraphen empirische Normalkochsalzlösung. Nach den mit grosser Sorgfalt festgestellten Atomgewichten kommen auf 107,97 g reines Silber 58,46 g reines wasserleeres Kochsalz, also auf 10 g Silber 5,414 (46) g Kochsalz. Als Kochsalz, über dessen Reindarstellung später, nimmt man am besten reinen Salgemme, welches in durchsichtigen festen Würfeln, die von jeder Beimischung frei sind, vorkommt. Es ist vorzugsweise die Art der Ko\-häsion, die uns bei dem natürlichen Steinsalze anspricht, weil man sich davon ein grösstlich gekörntes Pulver, frei von jedem Staub darstellen kann, was bei chemisch gereinigtem Kochsalz nicht in dieser Art der Fall ist. Man zerstösst das Steinsalz zu einem grösstlichen Pulver und siebt durch ein feines Messingsieb von den groben Stücken ab; diese zerstösst man wieder, bis alles durchgegangen ist. Nun siebt man auf einem feineren Siebe allen Staub ab. Das gekörnte Pulver erhitzt man in einer
VII. Fällungsanalysen.

Porzellan- oder Platinschale bis nahe an 300° C., füllt es dann in eine trockene Flasche ein, die mit einem Korkstöpsel mit Chlorkalziumröhre geschlossen ist. Von diesem trocknen Pulver wäge man genau 5'414 g ab.

Da es darauf ankommt, von dieser Menge zu einer Silberprobe genau den zehnten Theil oder 0'5414 g abzufassen, so muss man sich der Uebereinstimmung der 100 cbcm-Pipette mit der Lösungsflasche versichern. Die 100 cbcm-Pipette soll nicht aus freier Hand abfließen, sondern fest in einem Stativ stehen, zu welchem Zwecke man das untere Ende dicht unter der zylindrischen Erweiterung mit einem Korke versieht, der in ein Loch eines Filtrirstativs passt. Oder man bedient sich einer unten zu beschreibenden Pipette, die von unten gefüllt wird und deren Einstehen bis an die Marke durch Hähne regulirt wird. In jedem Falle nimmt man dieselbe Pipette, die man zu den Proben gebraucht, und lässt sie zehnmal hinter einander in die leere Literflasche auslaufen. Um hier jede Willkürlichkeit wegzunehmen, muss das Ende des Auslaufens durch eine bestimmte Erscheinung bezeichnet sein, und diese ist hier, dass der Strahl abbricht. Die noch nachfallenden ein oder zwei Tropfen kommen nicht in die Flasche. Das Auslaufen muss natürlich bei der Aichung und bei der nachherigen Probe in ganz gleicher Art geschehen. Nachdem man die Pipette 10 mal in die Literflasche oder 20 mal in die 2-Literflasche hat auslaufen lassen, beachtet man, ob die Flüssigkeit in der Flasche an der Marke steht. Ist dies der Fall, so ist Flasche und Pipette einander richtig. Stände aber die Flüssigkeit bei der immer beobachteten Temperatur von 14° R. (17'50° C.) höher oder tiefer, so ist es viel schwerer, die Pipette richtig zu stellen, als durch eine Hälfsmarke an der Flasche den Fehler auszugleichen. Man klebe deshalb ein schmales Streifen Papier, auf das man vorher einen feinen Strich mit Tusche gezogen hat, an die richtige Stelle an. Man kann nun sicher sein, dass die Pipette genau den zehnten Theil des Inhaltes der Flasche fasst, worauf es doch allein ankommt. Das abgewogene Kochsalz bringe man ohne Verlust in die Flasche, was bei seinerkörnigen Gestalt sehr leicht und vollständig geht, fülle die Flasche halb an mit destillirtem Wasser, löse auf und fülle bis nahe an die Marke. Jetzt beobachte man die Temperatur, fülle, wenn sie richtig ist, bis an die Marke an und vermische bei aufgesetztem Stopfen innig durch Schütteln. Dies ist die Normalflüssigkeit. Um grössere Mengen zu bereiten, kann man sich einer in gleicher Art geaichten 3- oder 4-Literflasche bedienen, und die bereiteten Flüssigkeiten sogleich in andere Flaschen von 4 bis 6 Liter Inhalt umfassen, die entweder ganz trocken sein müssen oder mit derselben Flüssigkeit einigemal ausgespült werden.

Man fülle nun die 100 cbcm-Pipette mit der Normalflüssigkeit und lasse ihren Inhalt in die mit destillirtem Wasser ausgespülte geaichte Literflasche laufen, fülle dann bis an die Marke an, schüttle um, und man hat die Zehntelkochsalzlösung.
Endlich gebräuchlich man noch eine Silberlösung, welche der Zehntel-
kochsalzlösung ganz gleich ist. Zu diesem Zwecke löse man 1 g reines
Silber in wenige Salpetersäure, giesse in die sehr gut ausgespülte Liter-
flasche ein, fülle bis an die Marke an, und man hat die
Zehntelsilberlösung.

Diese wird in gleichen Volumen von der Zehntelkochsalzlösung genau
ausgefällt. Alle Flüssigkeiten müssen durch sehr guten Verschluss gegen
Verdunstung geschützt sein, und vor dem Öffnen der Flasche jedesmal
umgeschwenkt werden, um verdunstetes und in Tropfen abgesetztes Wasser
wieder aufzunehmen.

Emil Fleischer empfiehlt einen sublimirten Salmiak als Titert-
substanz, der allerdings den Vorzug hat, dass er durch seine Bereit-
tung von Feuchtigkeit frei sein muss, und in jeder Beziehung rein sein
cann. Auf 10 g Silber würden $\frac{10 \times 53.46}{107.97} = 4.951$ g Salmiak kom-
men. Es wäre noch zu prüfen, wie sich das sich bildende Salpetersäure
Ammoniak in dem Sinne von Mulder zum Chlorid Silber verhielt.

Die Annäherungsprobe:

Es ist schon erwähnt, dass man den Gehalt der Silberlegierung an-
nähernd kennen müsse, um davon das richtige Gewicht nehmen zu
können. Ist dies nicht der Fall, so muss man eine vorläufige Probe
machen. Dazu bedient man sich des gewöhnlichen Titirverfahrens.
Man wäge 1 g der Legierung ab, löse sie in einer Stöpselflasche in Sal-
petersäure und bringe die Lösung unter eine mit der Normalkochsalz-
lösung gefüllte Bürette. Von dieser lasse man anfangs eine starke Menge,
so lange man noch Fällung sieht, einfließen, kläre durch Schütteln und
gehe dann tropfenweise weiter, bis ein Tropfen keine Trübung mehr er-
geragt. Jeder Cubikcentimeter der Normallösung stellt 1 Proc. Silber,
or aber das Komma um eine Stelle rechts gerückt, Tausendtheile Silber vor.
Liest man 10tel Cubikcentimeter ab, so hat man ohne Weiteres ganze
Tausendtheile, und da man auch halbe Zehntel ablesen kann, so gibt
 diese Analyse den Silberwerth auf $\frac{1}{2}$ Tausendstel genau an. Diese Me-
 thode ist entschieden die bequemste und leichteste für Jeden, der maass-
analytische Instrumente hat.

Man kann die Ausführung noch erleichtern, wenn man wenigstens
mit halben Cubikcentimtern Kochsalzlösung vorangeht und etwas über
die Grenze hinaus niederschlägt und dann mit Tropfen einer Normal-
silverlösung von 10 g Silber auf 1 Liter zurückmisst. Diese können in
einer kleineren und engeren Bürette enthalten sein, welche schärfertes
Ableisen gestattet. Man zieht die verbrauchten Cubikcentimeter Silber-
lösung von der Kochsalzlösung ab, und der Rest gibt annähernd den Ge-
halt. Sehr bequem ist es, wenn die Ausflussspitze so breit ist, dass 20 Tropfen genau 1 cm³ ausmachen. Man zählt dann die Tropfen und zieht sie als 20stel Cubikcentimeter ab.

Eine andere, leicht ausführbare Annäherungsprobe, die immer viel genauer als das alte Cupellierverfahren ist, besteht in Folgendem: Man löse 1 g der Legierung in wenig Salpetersäure, füge Stücke feinen Kupferdrahtes hinzu, und falle alles Silber durch Digestion. Die Fällung ist so vollständig, dass in der abgegossenen Flüssigkeit Kochsalz keine Spur von Trübung veranlasst.

Die ungelösten Kupferstücke nehme man mit einer Pincette heraus, reibe sie unter dem Strahl der Spritzflasche ab und bringe das metallische Silber auf ein kleines Filtrum, wasche aus und treibe das Silber in die Spritze. Wenn es noch feucht ist, streue man ein wenig kohlensaures Natron und Salpeterr auf, schnüre das Filtrum durch Umdrehen über dem Silber zusammen, trockne und schmelze das Silber vor dem Löthrohr zu einem Korne, welches gewogen, ohne Weiteres die Procente an Silber gibt. Diese Probe ist sehr leicht auszuführen, und auch für Solche, denen es nicht auf die größte Schärfe ankommt und die keine andere Apparate als eine Wage haben, vollkommen ausreichend.

Erhebung der Probe auf 1000.

Zunächst hat man nach dem Resultat der Annäherungsanalyse diejenige Menge der Legierung zu berechnen, welche 1 g Silber enthält. Man nennt dies die Probe auf 1000 erheben.

Gesetzt, man habe durch die Annäherungsprobe gefunden, dass die Legierung 451 Tausendstel Silber enthalte. Wenn dies zufällig auch richtig wäre, und man berechnete daraus die entsprechende Menge der Legierung, welche 1 g Silber enthielte, so könnte es sich treffen, dass beim Zumischen von 100 cbcm Normalkochsalzlösung alles Silber gefällt wäre. Das ist aber gegen die Absicht, denn man will ja durch die Schlussprobe dasjenige ergänzen, was dem bereits bekannten Silbergewichte an der vollständigen Genauigkeit fehlt.

Man rechnet demnach den Gehalt etwas geringer, weil dann eine grösse Menge der Legierung zur Analyse kommt. In obigem Falle nehme man also 450 Tausendstel an, so hat man die Proportion

\[450 : 1000 = 1 : 2.222 \]

oder in Worten ausgedrückt: 450 Silber bilden 1000 Legierung, also 1 Silber gibt \[\frac{1 \cdot 1000}{450} \] oder 2.222 g Legierung. Man erhält also immer das Gewicht der zu nehmenden Probe, wenn man 1 Tausend durch die kleinste Zahl der Tausendstel dividirt, die in der Legierung sein können.
Hätte man 451 Tausendstel in Ansatz gebracht, so waren 2:217 g abzuwagen gewesen, man hätte aber dann Gefahr gelaufen, dass kein Silber mehr in der Lösung gewesen wäre.

Das Probenehmen.

VII. Fällungsanalysen.

Auflösung der Silberprobe.

Die Auflösung geschieht in der zylindrischen Probirflasche selbst, welche so geräumig sein muss, dass sie bei einem Inhalt von 100 ccm Kochsalzlösung und 7 bis 8 ccm Säure noch leeren Raum genug enthält, um wirksam schütteln zu können. Die Stopfen müssen sehr gut schliessen und unten in eine Spitze, nicht stumpf, endigen. Starke Salpetersäure löst Silber langsamer als schwache, weil das salpetersaure Silberoxyd in Salpetersäure schwer löslich ist. Ein specifisches Gewicht von 1.200 ist am passendsten.

Gläser und zugehörige Stopfen sind mit einem Schreibdiamant mit derselben Nummer bezeichnet, um Verwechslungen der Proben und Stopfen zu vermeiden.

Fällung von 1 g Silber.

Nachdem die Auflösung geschehen, lässt man aus der 100 ccm-Pipette genau eine Füllung in jede Probirflasche einlaufen. Man sauge demnach die Pipette bis etwas über den Strich voll, setze sie mit dem Korke fest auf das Stativ, lasse nun durch Lüften des Fingers genau bis an die Marke ablaufen, reinige dann die untere Spitze mit einem feuchten Tuche und lasse, indem man die Lösungsflasche unterstellt, nach Wegnahme des Fingers die Pipette auslaufen. Sobald der Strahl abbricht, führe man die Lösungsflasche hinweg, denn die zwei etwa noch nachfallenden Tropfen gehören, wie bei der ersten Aichung der Literflasche, nicht hinein. Die Spitze der Pipette muss deshalb 1 cm höher als der Hals der Flasche stehen, damit man nicht genöthigt sei, den anhängenden Tropfen abzustreichen.

Sehr zweckmässig bedient man sich bei diesen Analysen einer in einem Stativ befestigten Pipette (Fig. 115), die durch Ab- und Zufluss-
vorrichtung mit dem Vorrathsgefäß in Verbindung steht. Die Pipette hat 2 Marken, in dem oberen und unteren dünnen Ende eine, welche genau die 100 cbcm einschliessen. Durch Öffnen des Quetschhahns p füllt sich die Pipette bis über die obere Marke und man lässt nun durch den Quetschhahn bei n den Meniscus bis an die 0 cbcm-Marke abfließen. Jetzt setzt man die Probe unter, und lässt durch volles Öffnen der Klemme bei n genau bis an die Marke 100 cbcm abfließen, und bekümmert sich um das, was jetzt noch durch Zusammenfließen über die 100 cbcm-Marke steigt, nicht mehr, weil die Pipette mit derselben Manipulation auf die Literflasche regulirt ist. An der Zwischenrühr mit Thermometer erkennt man die Temperatur der Kochsalzlösung.

Noch einfacher bedient man sich der auf S. 139, Fig. 85, abgebildeten Vorrichtung zum Füllen der Pipette. Letztere ist in einem festen Stativ

Die Vorrathflasche hat denn auch statt der Kohlensäureröhre in Fig. 85 eine mit Wasser gefüllte Kugelröhre.

Diese ganze Operation beruht auf der Voraussetzung, dass die 100-ccm-Pipette jedesmal eine ganz gleiche Menge Flüssigkeit ausfließen lasse. Diese Thatsache prüft man mit einer Wage. Man setzt auf die eine Seite ein leeres Glas, welches mehr als 100 ccm fasst und 100 g dazu und bringt die Wage ins Gleichgewicht. Nun lässt man regelmässig eine Füllung der Pipette mit Wasser in das leere Glas einlaufen, setzt dies wieder auf die Wage, nimmt die 100 g weg und beachtet nun das Einstehen der Wage. Muss man Gewichte auf die andere Schale legen, so wiegt das Wasser 100 g + dem Gewicht; muss man Gewichte auf dieselbe Schale legen, so wiegt das Wasser 100 g — dem zugelegten Gewicht. Diese Versuche hat auch Mulder angestellt, und bei jedesmal zwei Wägungen sehr übereinstimmende Resultate erhalten. Die Unterschiede betrugen zwischen 0 und 4 mg. Wenn man jedoch den Versuch öfter wiederholt, so kommen auch grössere Differenzen zum Vorschein von 15 bis 20 mg, und wenn man sie an verschiedenen Tagen wiederholt, so stellen sie sich oft noch grösser heraus. Trotz aller Reinlichkeit der Flüssigkeiten überziehen sich die Pipetten im Innern mit einer dünnen Schicht, welche das regelmässige Annetzen und Ablauen stört. Bei jedem Auslauf saugt die Pipette eine gleiche Menge Luft aus dem umgebenden Raum ein, und die darin schwebenden Stäubchen setzen sich an die Wände an und veranlassen eine Veränderung ihrer Adhäsion. Es kommen noch dazu die Wirkungen der Wärme, welche die Flüssigkeit mehr wie das Glas ausdehnt, und im Winter die Kälte, welche sie zusammenzieht.

salzlösung (oder $\frac{1}{2}$ ccm Zehntellösung) gebräuch, so geht $\frac{1}{2}$ mg Silber ab, und die gefällte Silbermenge ist für dieselben Mengen Kochsalz ein- für allemal mit 0,9995 g Silber zu notiren. Hätte man 10 Tropfen Silberlösung gebräuch, so war zu viel Kochsalz vorhanden; das gefällte Silber beträgt dann 1'0005 g, ebenfalls ein- und für allemal. Die Unter- stellung, dass das angewandte Silber reiner sei, als das angewandte Stein- salz, ist eine ganz unbegründete, sogar nicht einmal eine wahrscheinliche. Ist das Kochsalz ganz rein, so schlagen 0,5141 g genau 1 g Silber nieder, die Kontrolprobe mag stimmen oder nicht. Die Feststellung dieses Zahlen- verhältnisses ist mit grösseren Mengen Substanz, reineren Stoffen und grösserer Sorgfalt angestellt, als bei der praktischen Ausführung der Silberprobe vorkommen können, so dass bei Anwendung von chemisch reinem und trocknem Kochsalz die Kontrolprobe überflüssig ist und es vollkommen im Ungewissen lässt, ob bei einer nicht vorhandenen Uebereinstimmung der Fehler im Silber oder im Kochsalz liege.

Die Anwendung gewogenen reinen Kochsalzes beseitigt

1. die Ungleichheit des Auslaufs der Pipette;
2. die aus der Verdunstung im Innern hervorgehende Verstärkung der Normalflüssigkeit;
3. die Unsicherheit wegen der Temperatur;
4. die täglich zu wiederholenden Kontrolproben um 1., 2. und 3. zu begegnen;
5. das Verschliesen, Ausspülen, Reinigen der Pipette mit Kali und Salpetersäure.

Man kann nicht in Abrede stellen, dass mit derselben Wage, womit das Silber gewogen wird und welche nach Mulder $\frac{1}{20}$ mg anzeigen soll, auch das Kochsalz auf $\frac{1}{20}$ mg genau abgewogen werden kann, was wegen des kleineren Atomgewichtes ungefähr $\frac{1}{10}$ mg Silber gleichzustellen ist, und soweit könnte man sicher sein, dass das im Ganzen gefällte Silber bis auf 0.0001 g oder $\frac{1}{100}$ Prozent richtig angenommen ist. Es ist eine kleine Arbeit, 30 Kochsalzportion Glasröhrchen abgewogen hinein zu bringen, wobei es auch weniger noch auf gesparte Arbeit, als auf erlangte grössere Sicherheit abgesehen ist, und wodurch ferner der ganze Silberprobirapparat wesentlich vereinfacht und zusammengezogen wird. Arbeitet man mit gewöhnlichem Kochsalz oder mit konzentrierter Kochsalzlösung, so muss man natürlich auf das reine Silber zurückgehen. Da man aber Kochsalz chemisch rein in der Natur findet und auch leicht künstlich darstellen kann, so ist kein Grund vorhanden, eine Vereinfachung der Arbeit, die mit Gewinn für die Richtigkeit verbunden ist, von der Hand zu weisen.
Vollendung der Analyse.

Nachdem durch die 100 cbcm Kochsalzlösung oder durch die 0.5141 g reines Kochsalz genau 1 g Silber ausgefallt ist, wird der Rest des noch nicht gefallten Silbers mit Zehntelkochsalzlösung bestimmt. Gay-Lussac bediente sich zu diesem Zwecke einer kleinen Stechpipette von 1 cbcm Inhalt, welche durch Eintauchen gefüllt, und jedesmal ganz in die Probe auslaufen gelassen wird. Mulder hat dafür einen eigenen, sehr zweckmäßig konstruirten Tropfapparat angewendet, welcher in Fig. 116 abgebildet ist. Zwei birnförmige Gefässe von Glas, sogenannte Scheidetrichter, sind unten mit einer Röhre von vulkanisirtem Kautschuk fortgesetzt. Auf dieser Röhre sitzen zwei Klemmen; die obere ein gewöhnlicher Quetschhahn, die untere aus einem federnden Metallplättchen gebogen, dessen Enden durch ein Schraubchen aneinander gedrückt werden können. Die Seiten dieser Klemme sind so gebogen, dass sie sich vermöge ihrer Elastizität immer öffnen, durch das Schraubchen werden sie so zusammengehalten, dass die Flüssigkeit nur in einzelnen leicht zählbaren Tropfen hervortritt. Man regulirt diese untere Klemme ein- für allemal so, dass sie diesem Zwecke entspricht, und dass die Tropfen in einzelnen Secunden

Jeder Tropfen, welcher in die Probesflasche gelassen wird, und der sichtbare Wirkung thut, wird durch einen Kreidestrich neben der Probesflasche bemerkt. Die Grösse der Tropfen wird durch Zählen derselben in ein 3-cbcm-Röhrchen festgestellt und nach diesem Resultate die Spitze des Ausflussröhrchens passend verändert, bis genau 20 Tropfen 1 cbcm ausmachen.

Man erseht leicht, dass Mulder's Methode eine viel grössere Schärfe zulässt als Gay-Lussac's, aber auch dass dieselbe viel mehr Mühe und Zeit erfordert. Zur Ausarbeitung der Methode ist dieser Tropfapparat gewiss ganz vortrefflich, ob aber die Praktiker in einem vielbeschäftigten Kontrollbureau sich damit einverstanden erklären, ist eine andere Frage. Gesetzt, man habe in der ersten Annäherungsprobe den Gehalt um fünf Tausendstel fälschlich genommen, was gewiss möglich ist, da man sogar den Strich auf dem Probirsteine zur Hülfe nimmt, so wären 100 Tropfen zuzuzählen und 100 Striche zu machen, und es bliebe auch nichts übrig, als alle diese Tropfen zu zählen, selbst wenn man an der sehr starken Fällung bemerke, dass man noch weit vom Ziele wäre. Es ist auch einleuchtend, dass man fast ebenso viel Tropfapparate als Arbeiter haben müsste, weil die grosse Anzahl der Tropfen so viel Zeit in Anspruch nehmen würde, dass ein Tropfapparat von einem Arbeiter immer be- setzt wäre.

Zehntelsilberbürette ist für den ganzen Tisch ausreichend, da sie regelmässig nicht gebraucht wird, sondern nur um überstürzte Proben wieder in Ordnung zu bringen.

Wenn keine Silberlösung gebraucht wird, so hat man gar nichts abzuziehen, sondern liest nach Vollendung des Versuchs an der Bürette ab. Da man leicht halbe Zehntel Cubikcentimeter ablesen kann, so ist die Genauigkeit ebenso gross wie bei Mulder, dagegen die Sicherheit des richtigen Masses weit grösser, weil jede Veränderung in der Beschaffenheit der Ausfluss spitze auf die Grösse der Tropfen einen Einfluss hat, nach der eben beschriebenen Art aber immer das Mass der verbrauchten Kochsalzlösung so richtig wie die Bürette selbst ist, und nicht aus dem Kleinen ins Große berechnet wird, wie es geschieht, wenn man 3 ccm in Tropfen abzählt und dann 8 bis 10 ccm gebraucht. Ist der Niederschlag ungewöhnlich stark, so kann man nach Erfahrung ganze Cubikcentimeter hinzulassen und erst tropfenweise vorgehen, wenn man aus der Gestalt des Niederschlanges den dazu passenden Zeitpunkt erkennt. Zwischen jeder Probe lässt man die Bürette wieder bis 0 anlaufen. Eine Verwechselung oder ein Irrthum im Zählen ist unmöglich, da die Bürette sichtbar die Nummer der Probirflasche trägt. Die Flüssigkeit in der Ausfluss spitze verdünntet leicht an dem nassen Ringe zwischen der Glas- und Kautschukröhre. Es ist deshalb nothwendig, die Kautschukröhre fest aufzubinden oder mit Schellack die Glasspitze einzukitten. Die ganze Silberprobe nach geschehener Lösung besteht demnach darin, mit der gewogenen Menge Kochsalz 1 g Silber zu fällen und nach dem Klären mit der Zehntelkochsalzlösung aus der kleinen Bürette die Probe zu vollenden.

Die zum Probiren erforderlichen Substanzen.

1. Reines Silber.

391

Silber.

Das Ausgiessen des Silbers in kaltes Wasser liefert ein gekörntes, ganz brauchbares Silber, wobei man das Auswalzen vermeidet.

2. Salpetersäure.

Das käufliche Kochsalz lässt sich leicht reinigen, aber dennoch kann man das gereinigte Salz nicht bequem zum Fällen mit Abwägung gebrauchen, weil es sich nicht körnig lässt und immer viel feines Pulver enthält. Bei den im Ganzen sehr kleinen Mengen Kochsalz, die bei der Silberprobe verbraucht werden, da man mit einem Kilogramm Kochsalz 1850 Silberproben ausführen kann, kann man sich leicht die nötige
Menge an reinem durchsichtigen Sal gemmae verschaffen. Man hat es zu prüfen auf Schwefelsäure, Kalk, Bittererde, Metalle. Trägt es äußerlich das richtige Kleid, so enthält es keinen dieser Stoffe.

Nach Versuchen von Fuchs lösen 100 Thle. Wasser 36, nach Fehling 35°91 Thle. reines Kochsalz auf. Das specifische Gewicht der gesättigten Salzlösung beträgt nach Karsten 1°2046, nach Anthon 1°205; ich fand 1°204. 10 cbcm dieser gesättigten Lösung sollen nach den Beobachtern 3°183 g Kochsalz enthalten. Liebig fand als Mittel von vier Versuchen in 10 cbcm der Lösung 3°184 g Kochsalz. Um demnach eine Lösung zu bereiten, welche im Liter 5°414 g Kochsalz enthieelt, müsste man $\frac{5\cdot414 \times 10}{3\cdot184} = 17\cdot004$ cbcm oder gerade 17 cbcm der gesättigten Kochsalzlösung abpipettiren und in einer Literflasche mit destilliertem Wasser bis an die Marke verdünnen. Mulder fand 17°13 cbcm bei 15° C. für nothwendig, um eine solche normale Kochsalzlösung herzustellen. Man kann sich natürlich nicht mit der ersten Darstellung begnügen, weil eine kleine Unrichtigkeit der Pipette, oder eine grössere Adhäsion der gesättigten Kochsalzlösung an die Wände des Glases ein anderes Auslaufen bewirkt. Höchst wahrscheinlich liegt hierin die Ursache, dass sowohl Mulder als ich grössere Zahlen nehmen mussten, als nach der Berechnung erforderlich waren. Die gesättigte Kochsalzlösung ist jedenfalls ein leichtes Mittel eine nahezu richtige normale Kochsalzlösung darzustellen, die aus der gewöhnlichen 100 cbcm-Pipette herausgelassen gegen 1 g Silber gemessen wird, so dass man ihren eigentlichen Werth in Silber ausgedrückt erhält und diesen annimmt, ohne die Korrection in Wirklichkeit auszuführen. Da jedesmal nach einer Probe die Berechnung stattfindet, so ist es gleichgültig, ob man die erste Hauptsättigung mit 1000 oder mit 998 bis 1002 in Rechnung zu stellen hat.
Korrection wegen der Temperatur.

Wegen der Ausdehnung jeder Flüssigkeit durch Erwärmen kann ihr Gehalt eigentlich nur bei derjenigen Temperatur richtig sein, wobei sie gestellt ist. Ist die Flüssigkeit wärmer, so ist sie ausgedehnter und enthält in demselben Raume von 100 ccm eine kleinere Menge Kochsalz, als zur Fällung von 1 g Silber nothwendig ist; umgekehrt, wenn sie kälter als die Normaltemperatur ist, so enthält sie eine größere Menge. Man müsste im ersten Falle noch eine kleine Menge Flüssigkeit mehr, im letzteren weniger als die 100 ccm ausfließen lassen. Glücklicherweise ist die Ausdehnung und Zusammenziehung der Flüssigkeit, wenn man sich nicht zu weit von dem Ausgangspunkte entfernt, sehr klein, und verursacht einen unbedeutenden Fehler.

Meistens sind die Lösungen in den Münzen für 15°C. titriert. Die folgende Tabelle zeigt den Betrag der Korrektion in Tausendsteln für die darüber stehenden Temperaturen:

 + 0.2 + 0.1 richtig — 0.1 — 0.2 — 0.3 — 0.5 — 0.6 — 0.8 — 1.0

Diese Tabelle ist so zu verstehen; dass man dem nach der Analyse gefundenen Gehalt der Tausendtheile die in der zweiten Zeile stehenden Werthe je nach ihren Zeichen zufügen oder abziehen soll, um das richtige Resultat zu erhalten.

Fremde Metalle im Silber.

Wismuth ist ebenfalls hinderlich, weil es mit Kochsalz ein sehr unlösliches Oxychlorid bildet, also das Silber stärker erscheinen lässt, als es ist. Zusatz von Weinsteinsäure hält das Wismuth in Lösung, und Kochsalz bewirkt keine Fällung mehr. Besonders störend auf die Richtigkeit der Resultate ist die Gegenwart von Quecksilber. Bei dem Auflösen der Probe in heisser Salpetersäure entsteht salpetersaures Queck-

Uebrigens kann dieses Metall weder in Werksilber noch in Münzen vorkommen wegen der wiederholten Schmelzungen, welche diese Legirungen erleiden, sondern in dem von dem Amalgamationsprocess herrührenden Silberbarren.

Die ungleiche Erstarrung der Silberlegirungen.

mehr aus einander liefen, als es die Genauigkeit der Methode bei einer angenommenen innigen Mischung erlaubte. Nicht bloss unreines Silber, sondern sogar 997 Tausendstel haltiges Silber zeigt diese Scheidung, wo die Probe von oben 1/4 Tausendstel mehr zeigte, als die am Boden gewonnene. Von allen Silberkupferlegierungen zeigte allein die von 718·93 Tausendstel Feingehalt keine Scheidung; alle anderen stärkeren und schwächeren Legierungen zeigen die Scheidung in merkbares Maasse, und zwar auch nicht gleichbleibend im selben Sinne, so dass die inneren zuletzt erstarrten Theile stärker und schwächer als die äusseren sein können. Levol untersuchte einen Silberbarren, aus dem 40 Frankenstücke geschnitten waren. Sie hättten 900 haben müssen, allein die einzelnen Stücke zeigten Gehalte von 900·44 bis 897·3, so dass die Grenzen der Gehalte 3·14 Tausendstel umfassen.

In den Zainen von höherem Feingehalt zeigen die Kanten einen geringeren, die Mitte einen höheren Feingehalt. Schneidet man am Rande eines holländischen 21/2 Guldenstückes 8 Stücke heraus, untersucht sie sämtlich, so geben die gegenüberstehenden zwei höchsten Gehalte die Mittellinie der ursprünglichen Silberplatte an. An demselben 21/2 Guldenstücke fand Mulder Unterschiede von 1·5 bis 1·7 Tausendstel. Diese Thatsache gibt uns den Maassstab, wie weit die Genauigkeit der Analyse praktisch zu gehen habe. Wenn in demselben Geldstücke Unterschiede von bis zu 1·7 Tausendstel vorkommen, so hat es keinen vernünftigen Zweck mehr, mit Zeitverlust die Schärfe auf 1/20 Tausendstel zu treiben. Die Analyse gibt nur den Gehalt des zur Probe genommenen Stückchens richtig an, lässt aber keinen Schluss, weder auf den ganzen Tiegelausguss, selbst nicht einmal auf ein grösseres Geldstück zu. Der Chemiker verbessert die Methode unbekümmert darum, ob man davon Gebrauch machen werde oder nicht; ihm ist es nur um die Wahrheit zu thun. Der Praktiker stellt sich die Frage, wie weit er von diesen Verbesserungen Gebrauch machen und mehr Zeit und Mühe aufwenden solle. Die Erscheinungen der Liquation, die man nicht beseitigen kann, geben uns die Ueberzeugung, dass die von Gay-Lussac auf 1/2 Tausendstel ausgearbeitete Analyse schon diese Grenzen erreichte und sogar über-
Ammoniak, Kali, Natron, kohlensaures Ammoniak, kohlensaures Kali, kohlensaures Natron, kohlensaurer Kalk, Baryt, Strontian, Kohlensäure, Stickstoff etc.

sämtlich durch Silber zu bestimmen.

1 cbem Zehntelsilberlösung = \(\frac{1}{10000} \) Atom jedes der genannten Körper.

Die Leichtigkeit und Schärfe mit welcher das Chlor unter Zuhilfenahme des chromsauren Kalis bestimmt werden kann, erlaubt davon eine ausgedehnte Anwendung zu machen. Alle Verbindungen, welche in neutrale Chlorverbindungen verwandelt werden können, lassen sich auf diesem Wege mit grosser Schärfe analysieren. Indem man in einer neutralen Chlorverbindung das Chlor selbst bestimmt, hat man auch die damit verbundene Basis mit gleicher Schärfe bestimmt. Die Verwandlung der Oxyde und kohlensauren Salze in neutrale Chlorverbindungen geschieht durch Uebersättigen mit Salzsäure, Abdampfen bis zur Trockne und Erhitzen bis zu 110 bis 120°C.

2. Kohlensaures Ammoniak.
 a. Das Ammoniak wie unter 1.
 b. Die Kohlensäure; man fällt mit Chlorbaryum und Ammoniak, erhitzt bis zum Kochen, filtrirt und süsst den kohlensauren Baryt aus. Dann löst man ihn in warmer Salzsäure auf dem mit einem Uhrglas bedeckten Filtrum, süsst aus und dampft zur Trockheit ab. Das Chlorbaryum würde bei Zusatz von chromsaurem Kali einen gelben Niederschlag von chromsaurem Baryt geben. Um dies zu verhüten, fügt man einen kleinen Ueberschuss einer Lösung von chlorfreiem Glaubersalz oder schwefelsaurem Kali hinzu. Der entstehende schwefelsaure Baryt hindert nicht die Erkennung der Reaction, ja er macht sie noch deutlicher, weil man nicht in die Flüssigkeit hinein-
sehen kann und deshalb von der gelben Farbe des chromsauren Kalis weniger getäuscht wird.

5. Organisch saure Alkalien und Erden. Sie werden durch Glühen kohlensauer, dann in Salzsäure gelöst, filtrirt, zur Trockne gebracht und bestimmt.

8. Stickstoff der organischen Körper. Man leitet das durch Erhitzen mit Natronkalkhydrat erhaltene Gasgemenge in dem Varrentrapp-Will'schen Absorptionsapparat (Fig. 118) durch verdünnte Salzsäure, dampft zur Trockeneit ab, wie in Nr. 1, und bestimmt das Chlor mit Zehntelsilberlösung. Die Operation ist ungleich leichter und sicherer.
als die Wägung des Ammoniumplatinchlorids, und gibt ein viel schärferes Resultat als die alkalimetrische Methode.

Beide Angaben werden direct in Grammen erhalten. Es sei das Gewicht der beiden Chlormetalle = S (Summe); das Gewicht des Chlors = C (Chlor) und die unbekannten Grössen

\[\text{Chlorkalium} = x \]
\[\text{Chlornatrium} = y \]

So ist I.

\[x + y = S \]

Das Chlorkalium enthält nach seiner Formel

\[\frac{35.46}{74.57} \text{seines Gewichtes Chlor}, \]

und dieser Bruch gibt ausgerechnet 0.47553; das Chlornatrium enthält nach seiner Formel \[\frac{35.46}{58.46} \text{oder 0.60657 seines Gewichtes Chlor.} \]

\[x \text{ Chlorkalium enthalten also } x \cdot 0.47553 \text{ Chlor, und } y \text{ Chlornatrium enthalten } y \cdot 0.60657 \text{ Chlor.} \]

Beide Chlorgehalte sind aber gefunden und = C, es ist also II.

\[x \cdot 0.47553 + y \cdot 0.60657 = C. \]
Setzen wir y aus der Gleichung I. mit $S - x$ in die Gleichung II., so ist
\[
x \cdot 0'47553 + (S - x) \cdot 0'60657 = C, \text{ woraus}
\]
\[
x \cdot 0'47553 + 0'60657 - 0'60657 = C; \text{ ferner}
\]
\[
x (0'60657 - 0'47553) = S \cdot 0'60657 - C
\]
\[
x = \frac{0'60657 \cdot S - C}{0'131}
\]
oder noch einfacher $x = 4'63 \cdot S - 7'63 \cdot C = \text{Chlorkaliurn}.$

Das Chlorinatrium erhält man durch Abziehen des Chlorkaliurns von der Summe S.

Da in den Mineralien kein Chlorkaliurn, sondern Kali und Natron enthalten ist, so muss dies noch berechnet werden; und zwar ist

\[
\text{Chlorkaliurn} \times 0'6317 = \text{Kali},
\]
\[
\text{Chlorinatrium} \times 0'5303 = \text{Natron}.
\]

Durch Differenzieren der Formel $x = 4'63 \cdot S - 7'63 \cdot C$ erhält man

1. $\frac{dx}{dS} = 4'63$ und 2. $\frac{dx}{dC} = -7'63$,

d. h. ein Fehler in der Bestimmung der Summe S wird im Chlorkaliurn 4'63mal gemacht, und ein Fehler in der Bestimmung des Chlors wird 7'63mal in der entgegengesetzten Richtung gemacht. Ein Uebergingewicht in S vermehrt das Chlorkaliurn, und ein Ueberringewicht in C vermindert es. Man ersieht hieraus, dass man die indirekte Analyse nur mit Vorsicht anwenden solle.

Um die vorstehend beschriebenen Methoden durch den Versuch zu prüfen, wurde, statt vieler, die folgende Analyse vorgenommen.

1. 31'5 cbcm
2. 31'5 cbcm

Ziehen wir für die drei kleinen Ueberschüsse 0'1 cbcm ab, so bleiben für die 300 cbcm 94'4 cbcm Zehntelsilberlösung. Multiplizieren wir diese mit 0'0053, so erhalten wir 0'50032 g kohlensaures Natron statt 0'500 g.
Es enthält aber dieselbe Analyse gleichzeitig eine Bestimmung von
1. Kohlensäure,
2. Natron,
3. Chlor,
4. Chlornatrium,
5. Kohlensaurem Natron,
und zwar Nr. 1 und 2, insofern das kohlensaure Natron als Bestandtheile
Kohlensäure und Natron enthält, Nr. 3, insofern Chlor entsprechend dem
Natrongehalt gebunden wurde, und Nr. 4, insofern aus kohlensaurem
Natron ein Aequivalent Kochsalz entstand. Berechnen wir nun diese
drei Körper ihrem Atomgewichte nach auf 0.5 g reines kohlensaures
Natron, so haben wir:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>berechnet</th>
<th>gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlensäure</td>
<td>0.20755 g</td>
<td>0.20768 g</td>
</tr>
<tr>
<td>Natron</td>
<td>0.29245 g</td>
<td>0.29264 g</td>
</tr>
<tr>
<td>Chlor</td>
<td>0.3345 g</td>
<td>0.3347 g</td>
</tr>
<tr>
<td>Chlornatrium</td>
<td>0.5515 g</td>
<td>0.5516 g</td>
</tr>
</tbody>
</table>

Auch könnte man die Kohlensäure als durch Verbrennung von
Kohleustoff entstanden ansehen, und es wäre als dann

<table>
<thead>
<tr>
<th>Stoff</th>
<th>berechnet</th>
<th>gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff</td>
<td>0.0566 g</td>
<td>0.0564 g</td>
</tr>
</tbody>
</table>

und es würde sich der Gedanke anbieten, in der Verbrennungsanalyse der
organischen Stoffe die Kohlensäure zu binden, und nach Verwandlung
der kohlensauren Verbindung in die entsprechende Chlorverbindung das
Chlor zu bestimmen, doch ohne Gewinn gegen die Wägung.

1 g trockner kohlensaure Baryt wurde in Salzsäure gelöst und zur
Trockne gebracht, dann gelöst, mit reinem schwefelsauren Natron ver-
setzt, etwas chromsaures Kali zugesetzt und in eine 300 cbcm Flasche
filtrirt und gut ausgewaschen. Es wurden 100 cbcm heraussogen und
mit Silberlösung gemessen. Es wurden gebraucht 34 cbcm, also im
Ganzen 102 cbcm; diese mit 0.00985 multiplizirt geben 10047 g
kohlensauren Baryt. Als Kohlensäurebestimmung betrachtet, haben wir
in 1 g kohlensaurem Baryt:

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>berechnet</th>
<th>gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2231 g</td>
<td>0.2246 g</td>
</tr>
</tbody>
</table>

Hat man das Kali mit Platin als Kaliumplatinchlorid gefällt, so kann
man dies Salz durch Glühen mit der doppelten Menge neutralen oxalsauren
Natrons zersetzen, und im Filtrat das Chlor mit 1/10 Silberlösung bestim-
men. 1 cbcm 1/10 Ag. ist = 0.00157 g Kali.

Hierdurch wäre die Anwendbarkeit der Methode und die Genauig-
keit ihrer Resultate zur Genüge bewiesen. Der einzelnen Fälle, wo sie die
ausgezeichneten Dienste leistet, sind sehr viele und die Anwendung
eine sehr ausgedehnte geworden.
<table>
<thead>
<tr>
<th>Substanz</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Substanz für 1 cbem 1/10 Kochsalzlösung = 1 Prc. Substanz</th>
<th>1 cbem Kochsalzlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quecksilberoxydul</td>
<td>Hg₂O</td>
<td>208</td>
<td>2.08 g</td>
<td>0.0208 g</td>
</tr>
</tbody>
</table>

Das Quecksilberoxydulsalz, meistens salpetersaures, wird in Lösung gebracht, zu welchem Zwecke man bei neutralen Salzen etwas reine Salpetersäure hinzufügen muss. Man bringt die klare Lösung unter die Kochsalzbürette und lässt bis zu einem kleinen Ueberschuss Kochsalz hinzu. Um dies zu erkennen, lässt man kurze Zeit absetzen und dann einige Tropfen Kochsalzlösung am Glase selbst herablaufen. Man kann leicht sehen, dass der Punkt der Fällung überschritten ist, aber nicht den Moment erkennen, wo er überschritten worden ist. Man filtrirt vom Quecksilberchlorür ab, und wäscht vollständig aus, wobei man jedesmal vollkommen ablaufen lässt, um die Flüssigkeit nicht zu sehr zu vermehren. Das Filtrat ist nun von der zugesetzten Salpetersäure sauer. Man fügt neutrales chromsaures Kali hinzu, wodurch sogleich die rothe Farbe des sauren Salzes erzeugt wird. Man gibt tropfenweise eine Lösung von chlorfreiem kohlensauren Natron hinzu, bis die Farbe ins Kanariengelbe übergeht. Die Flüssigkeit wird unter die Silberbürette gebracht und einige Tropfen daraus hinzugelassen. Entsteht ein blutrother Fleck, so ist die Mischung neutral oder schwach alkalisch. Die Färbung durch die ersten Tropfen der Silberlösung muss aber auch wieder verschwinden, weil man sonst nicht sicher ist, einen Ueberschuss von Kochsalz angewendet zu haben. Bildet sich kein rother Fleck, so ist die Flüssigkeit noch...
sauer, und man hat noch etwas kohlensaures Natron hinzuzufügen. Es wird jetzt Silberlösung hinzugelassen, bis eine Trübung der canariengelben Farbe nicht mehr verschwindet. Man zieht die verbrauchten Cubikcentimeter Silberlösung von den zur Fällung angewendeten Cubikcentimetern Kochsalzlösung ab, und berechnet den Rest auf Quecksilberoxyd.

Zur Prüfung der Methode wurde von einem spiessig krystallisierten salpetersauren Quecksilberoxydul 0,5 g abgewogen, in destilliertem Wasser unter Zusatz einiger Tropfen Salpetersäure gelöst und mit Zehntelkochsalzlösung gefällt. Als davon 20 cbcm zugegeben waren, erschien in der überstehenden Flüssigkeit keine Trübung mehr. Es wurde filtrirt, das Filtrat mit chromsaurem Kali versetzt und mit chlorfreiem kohlensauren Natron schwach übersättigt, dann mit Zehntelsilberlösung die Reactionserscheinung hervorgebracht. Es wurde genau 1 cbcm davon verbraucht. Es sind also 19 cbcm Kochsalzlösung gefällt worden. 19 mal 0,0208 giebt 0,3952 g Quecksilberoxydul = 79,04 Proc.

Zur Kontrolirung des Quecksilbergehaltes wurde 1 g desselben Salzes in einem vorher tarirten Porzellantiegel mit der Weingeistflamme erhitzt, bis sich keine rothen Dämpfe mehr entwickelten. Der Tiegel wurde mit einem kleinen Uhrglas bedeckt gehalten. Man erkennt den Punkt der vollständigen Zersetzung sehr scharf, wenn auf dem anfänglich gelb gewordenen Salze in der Mitte die letzte Spur gelb verschwindet und der schwarzen Farbe des erhitzen Quecksilberoxydu des Platz macht. Es ist dies die einfachste Bestimmungsmethode und zugleich auch jene, deren sich Marignac bei Untersuchung dieser Salze (Annal. der Chem. und Pharm. Bd. 72, S. 61) bedient hat. Es legt sich ein ganz schwacher Anflug von Quecksilbersalz an das Uhrglas, welcher nach vorherigem Erhitzen, Tarien und Abwischen zu 0,002 g Quecksilberoxyd bestimmt wurde. Das übrig gebliebene Quecksilberoxyd war 0,822 g = 82,2 Proc.

Von einem anderen salpetersauren Quecksilberoxydul, welches in festen Krystallen angeschossen war, wurde 1 g nach der Methode auf Quecksilberoxydul bestimmt, und ebensoviel durch Erhitzen auf Oxyd behandelt. Letzteres hinterliess in zwei Proben:

1. 0,737,
2. 0,738 g Quecksilberoxyd.

Das gelöste Gramm erhielt 36,8 cbcm Kochsalzlösung, und dagegen 2,6 cbcm Silberlösung. Es sind also 34,2 cbcm Kochsalzlösung das Maass des Quecksilberoxyduls. Dieses berechnet sich auf 0,7114 g = 71,14 Proc. Quecksilberoxydul. Und diese zu Oxyd berechnet geben 73,9 g Quecksilberoxyd, welches ebenfalls genau mit dem Erhitzungsversuch übereinstimmt.
Quecksilberoxyd.

a. Mit Kochsalzlösung.

Die Bestimmung des Quecksilberoxyds durch eine titirte Kochsalzlösung ist von Liebig angegeben worden.

Fügt man zu der Mischung der erstgenannten Salze, ehe der Niederschlag krystallinisch geworden ist, eine Kochsalzlösung hinzu, so setzt sich das entstandene phosphorsaure Quecksilberoxyd mit dem Chlorhydrin in Sublimat und phosphorsaures Natron um, der entstandene Niederschlag verschwindet und die Flüssigkeit wird klar und hell. Es gründet sich hierauf das Verfahren von Liebig, das Quecksilberoxyd in der salpetersauren Lösung mit ziemlicher Genauigkeit zu bestimmen. Ein Atom Quecksilberoxyd bedarf zu seiner Wiederauflösung 1 Atom Chlorhydrin, und wenn man die Menge des zugesetzten Chlorhydrins kennt, so weiss man damit den Gehalt der Lösung an Quecksilberoxyd. Die zu untersuchende Lösung darf natürlich kein Chlor, Brom oder Jod enthalten; es würde sonst eine dem Gehalte an diesen Salzbildnern entsprechende Menge Quecksilber nicht bestimmt werden; ferner darf sie weder freie Säure, welche die Entstehung des Niederschlages verhindern würde, noch fremde Metalle enthalten, deren phosphorsaure Verbindungen sich mit Chlorhydrin nicht umsetzen, da diese die Erscheinung des Klarwerdens nicht zulassen würden.

Das phosphorsaure Natron ist nur der Indicator, und es ließen sich auch hier die ganz gleich wirkenden Stoffe, Harnstoff und Kaliumeisencyanid, anwenden. Von diesen ist die Harnstoffverbindung gegen freie Säure noch empfindlicher als das phosphorsaure Natron, und mit dem Kaliumeisencyanid klärt sich die Flüssigkeit häufig gar nicht mehr auf, wegen der unvermeidlichen Spuren fremder Metalle. Gegen freie Säure ist jedoch der Quecksilbereisencyanid-Niederschlag ganz unempfindlich. Wendet man Kochsalzlösung gegen eine gleiche Menge salpetersaure Quecksilberoxydösung an, so erhält man ganz verschiedene Zahlen, je nachdem man den einen oder den anderen Stoff als Indicator anwendet.

10 cbcm einer möglichst neutralen Quecksilberoxydösung gebrauchten zur Aufhellung:
mit phosphorsaurem Natron . 10'5 cbm Zehntelkochsalzlösung,
mit Harnstoff 6 bis 6'3 cbm
mit Kaliumeisencyanid . . . 9'6 cbm

Der Versuch kann nun auch mit diesem Stoffe nicht in der Art angestellt werden, dass man den Niederschlag aus der zu untersuchenden Quecksilberoxydlösung und dem Kaliumeisencyanid durch Kochsalzlösung zum Verschwinden bringen will, sondern man muss, wie bei der Chlorbestimmung, die Quecksilberoxydlösung aus der Bürette in die Kochsalzlösung laufen lassen, bis der Niederschlag nicht mehr verschwindet. Es ist nämlich ungleich schwieriger, zu beobachten, ob ein vorhandener Niederschlag schwächer wird, als ob in einer klaren Flüssigkeit ein Niederschlag entsteht. Da die Quecksilberlösung sehr leicht kleine Spuren fremder Metalle enthält, welche einen in Kochsalzlösung unlöslichen Niederschlag mit Kaliumeisencyanid geben, so kann man im ersten Falle, wenn durch ferner Zusatz von Kochsalz der Niederschlag nicht merklich abgenommen hat, nicht wissen, ob man schon an der Grenze ist, wo der Quecksilberniederschlag gelöst ist, und nur der der fremden Metalle noch schwebt, da in diesem Falle jeder fernere Zusatz von Kochsalzlösung unwirksam ist; während man bei Zusatz von Quecksilberoxydlösung zur Kochsalzlösung eine sichtbare Vermehrung des Niederschlages bemerkt, wenn diese Grenze überschritten ist. Es hat deshalb auch schon Liebig bemerkt, dass eine leichte Trübung nicht zu acht und nur dann das Ende der Operation angezeigt sei, wenn jeder fernere Zusatz von Quecksilberoxydlösung eine Vermehrung des Niederschlages bewirkt.

Dass freie Säure auf den Versuch keinen Einfluss hat, ist offenbar ein grosser Vorzug.

Man hat demnach bei der Messung des Quecksilberoxyds in der folgenden Art zu verfahren. Man lasse 10 oder 20 cbm Zehntelkochsalzlösung in ein sehr klar gereinigtes Glas mit flachem und weitem Boden, setze dieses auf schwarzes Papier, füge einige keine Krystalle Kaliumeisencyanid hinzu, welche sich sogleich lösen, und lasse nun die Quecksilberoxydlösung aus einer graduirten Bürette hinzu, bis der Niederschlag nicht mehr verschwindet, sondern sich durch jeden Tropfen der Quecksilberlösung sichtbar vermehrt.
Die zu prüfende Lösung kann sauer sein, ohne dass das Resultat sich ändert. Um Genauigkeit zu erreichen, darf sie nicht konzentriert sein. Man verdünne sie deshalb in einem bestimmten Verhältniss, am besten aufs zehnfache Volumen, indem man mit einer Pipette 10 cbcm der ursprünglichen Lösung abfasst, dieselbe in ein 100 cbcm Glas hineinlässt und nun bis zur Marke verdünnt.

Die zur Erzeugung eines sichtbaren Niederschlags nöthige Menge Quecksilberlösung enthält immer dieselbe Menge Quecksilberoxyd, nämlich ebensoviele Zehntausendstel Atome, als man Cubikcentimeter Kochsalzlösung angewendet hat. Da man die Flüssigkeit zehnfach verdünnt hat, so hat man die gefuudene Menge Quecksilberoxyd zehnfach zu nehmen, um diejenige Menge zu erhalten, welche in den ausgezogenen 10 cbm enthalten war.

Die bei verschiedenen Mengen Kochsalzlösung erhaltenen Zahlen sind gut proportional. Es wurden folgende Versuchsreihen gefunden:

<table>
<thead>
<tr>
<th>Kochsalzlösung</th>
<th>Quecksilberoxyd-lösung</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cbcm</td>
<td>10.2 cbcm</td>
<td>10.2 cbcm</td>
</tr>
<tr>
<td>20 cbm</td>
<td>19.8</td>
<td>9.6</td>
</tr>
<tr>
<td>30 cbm</td>
<td>29.3</td>
<td>9.5</td>
</tr>
<tr>
<td>40 cbm</td>
<td>39.1</td>
<td>9.8</td>
</tr>
<tr>
<td>50 cbm</td>
<td>49.8</td>
<td>9.7</td>
</tr>
<tr>
<td>60 cbm</td>
<td>59.5</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Es kam nun auch darauf an, nachzuweisen, dass die aus der bekannten Zersetzungsort nach gleichen Atomen berechneten Mengen Quecksilberoxyd die richtigen wären. Wenn dies der Fall ist, so musste eine Zehntelquecksilberlösung sich mit der Zehntelkochsalzlösung geradeauf zersetzen. Es wurde demnach ein reines Quecksilberoxyd durch Erhitzen von dreimal umkristallisirtem salpetersauren Quecksilberoxydul hergestellt. Die kleinen Spuren fremder Metalle mussten durch die dersalbische Erzeugung einer Mutterlange entfernt sein. Das Atomgewicht des Quecksilberoxyds ist 108; es mussten also 10.8 g Quecksilberoxyd zum Liter gelöst werden. Dies wurde genau ausgeführt. Mit dieser Flüssigkeit wurden folgende Versuchsreihen erhalten:

<table>
<thead>
<tr>
<th>Zehntelkochsalzlösung</th>
<th>Zehntelquecksilberoxydlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cbm</td>
<td>10.6 cbm</td>
</tr>
<tr>
<td>20 cbm</td>
<td>20.8</td>
</tr>
<tr>
<td>30 cbm</td>
<td>31</td>
</tr>
<tr>
<td>40 cbm</td>
<td>41.2</td>
</tr>
<tr>
<td>60 cbm</td>
<td>61</td>
</tr>
</tbody>
</table>

Die grösseren Zahlen zur Rechten rühren offenbar von dem erzeugten Niederschlage her, da bei gleichen Atomen noch kein Niederschlag
VII. Fällungsanalysen.

entstehen kann. Die Ueberschüsse nehmen bei zunehmendem Volumen etwas, jedoch unbedeutend zu. Sämtliche Ueberschüsse auf die fünf Versuche betragen 4,6 ccbm, für den einzelnen also im Durchschnitt 0,9 ccbm. Man hätte demnach als Korrektion für den Niederschlag der verwendeten Quecksilberoxydmenge 0,9 ccbm abzuziehen und den Rest zu berechnen. Bringen wir diese Korrektion an obiger Versuchsreihe an, so erhalten wir folgende Resultate:

<table>
<thead>
<tr>
<th>Gehalt an HgO</th>
<th>Gefunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ccbm 0,10805</td>
<td>0,1048</td>
</tr>
<tr>
<td>20 " 0,21610</td>
<td>0,2150</td>
</tr>
<tr>
<td>30 " 0,32415</td>
<td>0,3252</td>
</tr>
<tr>
<td>40 " 0,43220</td>
<td>0,4354</td>
</tr>
<tr>
<td>60 " 0,64830</td>
<td>0,6493</td>
</tr>
</tbody>
</table>

Dass im vorliegenden Falle die zu untersuchende Flüssigkeit in die Bürette kommt, ist eine nicht zu vermeidende Unregelmäßigkeit.

b. Durch Kaliumeisencyanid.

Die Quecksilberoxydulsalze bilden mit dieser Lösung einen grünbläulichen Niederschlag, der sich sehr schwer absetzt, und durch das beste Filtrirpapier durchläuft, besonders bei nicht sehr sauren Flüssigkeiten und beim Auswaschen. Die Probe über den Zustand der Flüssigkeit
muss deshalb durch eine Täpfeloperation gemacht werden. Man bringt einen dünnen Glasstab in die Flüssigkeit und damit einen Tropfen auf weisses Filtrirpapier. Es setzt sich in der Mitte ein gelber Fleck vom Niederschlage auf, und um denselben bildet sich ein farbloser Wasserkrantz. Daneben setzt man mit einem anderen Glasstabe einen Tropfen eines Eisenoxydulammoniak auf, wozu sich am besten das schwefelsaure Eisenoxydulammoniak eignet. Ein Gehalt an Eisenoxyd schadet übrigens nicht. Wo die beiden Tropfen ineinander laufen, bildet sich eine zarte blaue Linie (Fig. 119), wenn das Kaliumeisencyanid im Ueberschuss vorhanden war. Der gelbe Niederschlag wird durch Berührung mit Eisen oxydulsalz ebenfalls blau, worauf kein Gewicht zu legen ist.

Ein Tropfen reines Quecksilber, welcher 0,86 g wog, wurde in heisser Salpetersäure zu Oxyd gelöst, und bedurfte zur Hervorbringung der Reaction 91,6 cbcm Zehntelkaliumeisencyanidlösung. Diese mit 0,0100 multipliziert geben 0,916 statt 0,86 g.

0,5 g reines Quecksilberoxyd gab in vier Versuchen:

1. 49,8 cbcm Kaliumeisencyanidlösung.
2. 50,6
3. 51,2
4. 50,0

Mittel: 50,4 cbcm Kaliumeisencyanidlösung

und diesen entsprechen 0,543 g statt 0,500 g. Es geht daraus hervor, dass die normale Lösung nur mit einer bedeutenden Korrektion brauchbar ist, indem man für 1 cbcm der Cyanidlösung 0,00992 g Quecksilberoxyd statt 0,0108 g rechnen müsste. Die Methode ist also nicht zu empfehlen.
Zinn.

Für die maassanalytische Bestimmung des Zinks, vorzugsweise zu hüttenmännischen Zwecken, liegen mehrere Methoden vor. Dieselben sind sämtlich Tüpfelanalysen und um sie zu prüfen muss man eine titirte Zinklösung haben. Am besten wählt man dazu die empirische Stärke mit 10 g Zink im Liter. Man stellt dieselbe aus 10 g reinem Zink dar, welches man in verdünnter Salzsäure oder Schwefelsäure löst, was bei gegossenem Zink eine ziemlich langweilige Operation ist. Ich kann nicht mehr raten, die Urfüssigkeit aus krystallisirten wasserhaltigen Salzen darzustellen, weil dieselben leicht verwittern, dagegen kann man reines Zinkoxyd sehr gut dazu verwenden, welches man leichter rein erhält, als metallisches Zink. In diesem Falle werden 120459 g frisch geglühtes Zinkoxyd in Salzsäure oder Schwefelsäure gelöst und zu 1 Liter verdünnt. Wenn man mit Schwefelnatrium arbeitet und eine alkalische Zinklösung haben muss, so löst man dieselbe Menge von 120459 g Zinkoxyd in Salzsäure, setzt 5 bis 6 g Salmiak zu, und übersättigt mit Ammoniak, bis der zuerst entstandene Niederschlag wieder gelöst ist. Geglühtes Zinkoxyd lässt sich nicht in Ammoniak auflösen.

a. Mit Kaliumeisencyanür (Blutlaugensalz).

Viel sicherer operirt man, wenn man mit der Blutlaugensalzlösung bis zu einer entschieden kräftigen Reaction vorgeht, und dann aus einer zweiten Bürette titirte Zinklösung zufiessen lässt, bis die bräun-

liche Farbe eben verschwindet. Hier hat man aus der abnehmenden Stärke der Farbe ein sicheres Zeichen der Annäherung, während man nach dem ersten Verfahren nichts sieht, bis der richtige Punkt über- schritten ist. Man reduziert die Blutlaugensalzlösung nach dem gefundenen Titer auf Zink und zieht die aus der Zinkbürette zugesetzte Menge ab.

Ein weiterer Vorzug besteht darin, dass Manganoxydulsaure, welche häufig das Zink begleiten, nicht hinderlich sind. Der mit Blutlaugensalz durch Mangansaure entstehende Niederschlag ist in Säuren löslich.

Die Zersetzung geht nicht im System vor sich. Nach der Formel sollte die Menge des Blutlaugensalzes die 6 5 fache des metallischen Zinkes sein, sie ist aber in Wirklichkeit nur etwas mehr als die 4 fache. Die Stärke der Blutlaugensalzlösung ist eigentlich eine beliebige, da man ihren Werth jedenfalls gegen die richtige Zinklösung bestimmen muss. Um sie annähernd der Zinklösung gleichwertig zu machen, löst man 41 g Blutlaugensalz zu 1 Liter auf und stellt dann den richtigen Werth durch wiederholte Versuche gegen Zinklösung fest. Die ganze Methode ist eine Notanalyse, und von den schlechten eine der besserer, weil die Blutlaugensalzlösung titerbeständig ist.

b. Mit Kaliumeisencyanid.

VII. Fällungsanalysen.

c. Mit Schwefelnatrium.

Zink wird aus einer ammoniakalischen Lösung durch Schwefelwasserstoff oder Schwefelnatrium als weisses Schwefelzink gefällt, das einzige weisse Schwefelmetall, welches existirt. Der Niederschlag setzt sich sehr langsam ab, und man kann nicht wie bei Chlorsilber durch Schütteln eine Klärung der Flüssigkeit bewirken. Man muss also durch irgend eine Reaction feststellen, ob eine kleine Menge Schwefelnatrium im Ueberschuss vorhanden ist. Unglücklicherweise wirkt in allen Fällen das Schwefelzink auf die Reagentien wie das Schwefelnatrium selbst, und man ist deshalb genötigt, die Prüfungen ausserhalb der Flüssigkeit, wo möglich mit einer kleinen Filtration zu vollenden.

Darauf schlug ich eine alkalische Bleilösung vor, die beim Aufsetzen auf Filtrirpapier neben der Probeflüssigkeit am Rande, wo beide Tropfen
in einander ließen, nach Fig. 120 einen schwarzen Kranz hervorbrachten. Auch diese Reaction war zu wenig empfindlich, weil sie nur auf der Oberfläche des Papieres erscheinen konnte. Es handelte sich darum, eine Metalloxidation zu finden, die von dem Schwefelnatrium gefärbt wurde, aber gegen das Schwefelzink indifferent wäre. Diejenigen Metalle, deren Schwefelverbindungen in Säuren unlöslich sind, konnten nicht genommen werden, weil sie vom Schwefelzink angegriffen werden und sich schwarz niederschlagen, wie Kupfer, Silber, Blei. Es musste also ein Metall aus der Zinkreihe selbst genommen werden; und solche, die mit Schwefelnatrium einen schwarzen Niederschlag geben, das Schwefelzink aber nicht angreifen, haben wir drei: Nickel, Kobalt und Eisen, welche auch schon alle angewendet worden sind.

Man setzt einen Tropfen der weissen Flüssigkeit mit dem Schwefelzink auf Porzellan auf und rührt einen Tropfen neutrales Nickelchlorür hinein. Eine schwärzliche Färbung zeigt die vollständige Fällung des Zinkes und einen kleinen Ueberschuss von Schwefelnatrium an.

1) Fresenius' Zeitschr. f. anal. Chem. 9, 465.
2) Ebendaselbst 10, 209.
VII. Fällungsanalysen.

Dieser Umstand soll nun durch das Darüberfließenlassen vermieden werden.

Als Tittersubstanz dient die schon S. 408 beschriebene empirische ammoniakalische Zinklösung mit 10 g Zink im Liter. Das Schwefelnatrium hat keinen bestimmten Titer, sondern dieser wird nach der Zinklösung in folgender Weise genommen.

Bei der Analyse verfährt man in ähnlicher Weise. Man bringt die ammoniakalische Zinklösung unter die Bürette, bis die Reaction deutlich eintritt; nun geht man aus der bis Null gefüllten Zinkbürette rückwärts, bis zum Verschwinden der schwarzen Färbung. Den Zinkgehalt berechnet man aus dem Schwefelnatrium nach dem ermittelten Titer in Gramm, und zieht davon die Zinkmenge der Zinkbürette ab. Den Rest berechnet man auf die Probe.

Das Schwefelnatrium muss nun aber auch eine passende Stärke haben. Ist es sehr stark, so sind die Abläsungen zu ungenau, aber bei der Bereitung ist es vorteilhaft, es konzentriert darzustellen. Es muss also verdünnt werden. Um nun hier nicht ins Blinde zu laufen, muss
man sich eine gewisse Stärke in Aussicht nehmen, und dazu könnte keine
passender sein, als dass es sich mit der empirischen Zinklösung zu glei-
chen Volumen zersetzte. Um das zu bewirken, muss man das konzen-
trirte Schwefelnatrium mit Zinklösung ausmessen. Ein konkreter Fall
wird dies am besten zeigen.

Ein frisch bereitetes Schwefelnatrium wurde in die Büretten ein-
gefüllt und daraus eine nachher abzulesende Menge herausgelassen, dann
mit Zinklösung ausgemessen, und weil der Punkt überschritten war, noch
einmal Schwefelnatrium und Zinklösung zugelassen. Es fand sich, dass
10.6 cbcm Schwefelnatrium gleich 121.2 cbcm Zinklösung waren. Es
mussten also 10.6 cbcm Schwefelnatrium zu 121.2 cbcm, oder 87.5 cbcm
to 1 Liter verdünnt werden. Dies geschah in dem Mischzyliner und
nun waren 13 cbcm Zinklösung gleich 13.2 cbcm Schwefelnatrium; dan-
noch wäre 1 cbcm Schwefelnatrium \(\frac{0.13}{13.2} = 0.0099 \) g Zn, und konnte
so bleiben.

Diese rasch fördernden Analysen haben nur bei hüttenmännischen
Anstalten einen praktischen Werth. Für die wissenschaftliche Analyse
einer Zinkverbindung wird man immer die Gewichtsanalyse beibehalten,
denn bei nur einer Analyse ist auch nichts an Zeit und Mühe gewonnen,
weil die Herstellung der Flüssigkeiten und ihre Titerstellung sich nur
dann lohnen, wenn täglich viele Analysen gemacht werden. Es wird
deshalb die Aufschliessung der Erze und die Ausführung der Analyse im
angewandten Theil näher besprochen werden.

Es ist noch zu bemerken, dass eine Rückmessung des überschüssigen
Schwefelnatriums im Filtrat durch Jodlösung unhünlisch ist, weil das
Schwefelnatrium immer unterschweßiges Natron enthält, welches auf
Jodlösung, aber nicht auf Zinklösung wirkt.

Schwefelalkalien, Schwefelwasserstoff.

\[
\begin{align*}
\text{Zn} \times 0.523 &= \text{S II} \\
\text{Zn} \times 1.199 &= \text{S Na} \\
\text{Zn} \times 1.694 &= \text{S K} \\
\text{Zn} \times 1.045 &= \text{S N II}_4.
\end{align*}
\]

Die löslichen Schwefelmetalle werden leicht und scharf mit einer
ammoniakalischen Zinklösung gemessen. Die Operation ist die um-
gekehrte der Zinkbestimmung, und eine Zinklösung von bekanntem Gehalt
ist die Massenflüssigkeit. Um sicher zu sein, dass kein Schwefelwasser-
stoff entweicht, setzt man noch etwas Aetznatron zu. Man bringt die
Schwefelalkalilösung unter die Bürette und lässt so lange Zinklösung zu-
fließen, bis ein Tropfen auf Nickelchlorürlösung aufgesetzt keine schwarme
Färbung mehr erzeugt.

Da Schwefelzink gleiche Atome Zink und Schwefel enthält, so zeigt
$\frac{1}{10}$ Atom Zink in einer Lösung auch $\frac{1}{10}$ Atom eines einfachen Schwefel-
alkalimetalles an. Hat man also im System $\frac{1}{10}$ Atom = 3·253 g Zink
erst in Säure, dann in Ammoniak gelöst und zu 1 Liter verdünnt, so
zeigt 1 cbcm dieser Flüssigkeit

\[
\begin{align*}
0'0016 \text{ g Schwefel}, \\
0'0039 \text{ g Schwefelnatrium (SNa)}, \\
0'005511 \text{ g Schwefelkalium (SK)}, \\
0'0034 \text{ g Schwefelammonium (SNH}_4\text{)}
\end{align*}
\]

an. Bequemer ist es, sich der empirischen Zinklösung, mit 10 g Zink
im Liter, zu bedienen und durch einfache Multiplication das Resultat zu
erhalten. Wenn 17 Schwefelwasserstoff gleich 32·53 Zink sind, so ist
die aus der Bürette berechnete Menge Zink mal $\frac{17}{32·53} =$ Schwefelwas-
serstoff; oder $x \cdot 32·53 = 17$,

\[
\text{also der Factor } = \frac{17}{32·53} = 0·523.
\]

In gleicher Weise sind die anderen Factoren berechnet. Den Zink-
verbrauch gibt unmittelbar die Bürette in Grammen, wenn man bei den
Cubiccentimetern den Punkt um zwei Stellen nach links rückt.

Es erforderte 1 cbcm eines vorhandenen Schwefelnatriums 11·6 cbcm
empirische Zinklösung; diese enthalten 0'116 g Zink, und diese mit
1·1993 multiplicit erbte 0'0139 g SNa in 1 cbcm Flüssigkeit. Schwefel-
wasserstoffwasser ist wohl für diese Analyse zu verdünnt, und man wird
t zu seiner Bestimmung eine der anderen Methoden wählen. Die Methode
eignet sich wegen ihrer bequemen Ausführbarkeit besonders zu tech-
nischen Bestimmungen, zur Bestimmung der Schwefelalkalien in Pott-
asche, Sodarohlaugen.

Schwefelsäure

a) Mit Bleisalzen.

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>Abzuwägende Menge für 1 cbcm $\frac{1}{10}$ Bleilösung =\equiv 1 Prc. Subst.</th>
<th>1 cbcm $\frac{N}{10}$ Bleilösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>118. Wasserleere</td>
<td>SO_3</td>
<td>40</td>
<td>0·4 g</td>
<td>0·004 g</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119. Schwefelsäure-</td>
<td>$\text{SO}_3 + \text{HO}$</td>
<td>49</td>
<td>0·49 g</td>
<td>0·0049 g</td>
</tr>
<tr>
<td>hydrat . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120. Schwefelsäure-</td>
<td>$\text{SO}_3 + \text{KO}$</td>
<td>87·11</td>
<td>0·8711 g</td>
<td>0·008711 g</td>
</tr>
<tr>
<td>Kali . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121. Schwefelsäure-</td>
<td>$\text{SO}_3 + \text{NaO}$</td>
<td>71</td>
<td>0·71 g</td>
<td>0·0071 g</td>
</tr>
<tr>
<td>Natron .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setzt man zu einer kalten Lösung eines jodkaliumhaltigen schwefelsauren Salzes einige Tropfen einer Lösung von salpetersaurem Bleioxyd, so entsteht sogleich eine gelbe Färbung und diese verschwindet häufig nicht in den ersten zehn Minuten. Erwärmt man das Gemenge, so geht die Entfärbung rascher vor sich, indem nun Jodblei gelöst wird, und sich mit dem ebenfalls gelösten schwefelsauren Alkali umsetzt. Alles aber, was die Löslichkeit des Jodbleies vermehrt, ist ein Eingriff in die Funktion des Indicators, denn gerade die Fällung des Jodbleies soll das Ende der Operation anzeigen. Würde man die Flüssigkeit verdünnen und erhitzen, so würde zwar die Zersetzung augenblicklich vor sich gehen,

allein es könnte sich dann kein Jodblei ausscheiden und das Ziel wäre verfehlt.

Wenn man frisch gefälltes Jodblei mit grossen Mengen Glaubersalz schüttelt, so verschwindet die gelbe Farbe des Jodbleies erst nach Stunden vollständig, und eine Lösung von schwefelsaures Kali, welche mit Jodkalium versetzt und durch Bleilösung bis zur bleibend gelben Farbe gebracht war, zeigte filtrirt mit Barytsalzen noch reichlichen Gehalt an Schwefelsäure.

Es ist eine wesentliche Bedingung bei Anwendung von Indikatoren, dass die damit hervorgerufene Erscheinung durch Vermischung mit dem zu bestimmenden Körper augenblicklich wieder verschwindet. Alle guten Methoden haben diese Eigenschaft; so z. B. entfärbt schweiflige oder arsenige Säure augenblicklich die bereits gebildete Jodstärke, Chlornatrium das chromsaure Silberoxyd. Bei obiger Methode ist dies nun nicht der Fall, denn umgekehrt wird frisch gefälltes schwefelsaures Blei oxyd mit Jodkalium übergossen gelb, was eine Bildung von Jodblei anzeigt. Da die Zersetzung zwischen Jodblei und schwefelsaurem Salze nicht zu Ende geht, so ist einleuchtend, dass man die Schwefelsäure zu gering bestimmen werde, trotzdem dass ein Theil der Fällungsmittels auf einen ganz fremden Körper, das Jodkalium, verwendet worden ist. Um die Zahlenresultate zu prüfen, wurde eine normale Lösung von salpetersaurem Blei oxyd mit 1 At. oder 165.57 g im Liter angefertigt, und zum Bestimmen eine Lösung von 5 g reinem schwefelsauren Kali zu 500 ccm. Jeder Cubikcentimeter enthält 0.010 g schwefelsaures Kali, und 1 ccm der Bleilösung entsprach 1/1000 At. oder 0.008711 g schwefelsaurem Kali.

50 ccm schwefelsaure Kalilösung, welche 0.5 g Salz enthielten, wurden kalt mit Jodkalium versetzt und mit der Bleilösung bleibend gelb titriert. Es wurden 4.2 ccm Bleilösung gebraucht. Dies gibt 0.365862 g schwefelsaures Kali statt 0.5 g. Eine Wiederholung gab nur 0.34844 g.

50 ccm schwefelsaure Kalilösung stark erhitzt, zeigten das Verschwinden der gelben Farbe recht schön, und es wurden gebraucht

1) 6 ccm $= 0.52266 g \text{SO}_3 + \text{K}O$

2) $5.7 n = 0.49653 n$

Die gelbe Flüssigkeit wurde durch Erhitzen farblos und durch Abkühlen wieder gelb. Indem wir durch Erhitzen die Löslichkeit des Jodbleies förderten, überschritten wir die Grenze der Fällung und erhielten mehr schwefelsaures Kali, als vorhanden war. Man ersieht daraus, dass man durch kalte Fällung zu wenig, durch heiße Fällung zu viel findet, und dass es unmöglich ist, auf diesem Wege ein richtiges Resultat anders als durch einen günstigen Zufall zu erhalten, von dessen Vorhandensein man keine Kenntniss haben kann.

Ungleich günstiger stellt sich die Operation, wenn man das Jod-

Man stellt sich die Zehntel-Bleilösung aus salpetersaurem Bleioxyd dar, welches man zerreibet, scharf trocknet und dann abwägt. 1 At. salpetersaures Bleioxyd wiegt 165.57; es werden also 16.577 g abgewogen und in destillirtem Wasser zu 1 Liter gelöst. Jeder Cubikcentimeter stellt 1/10000 At. Schwefelsäure oder eines schwefelsauren Salzes vor. Die zu messenden Flüssigkeiten dürfen nicht stark sauer sein. Levol empfahl, sie mit kohlensaurer Magnesia abzustumpfen. Als dann hat man eine' Filtration nothwendig. Einfacher ist es, sie mit reinem kohlensauren Natron abzustumpfen, und sich des Betupfens von Lackmuspapier zur Erkennung der Neutralität zu bedienen.

Als analytische Methode besitzt sie nicht Schärfe genug, und als technische hat sie den Nachtheil, Chlormetalle auszuschliessen, die in solchen Fällen selten fehlen.

b) Mit Barytsalzen.

Die systematischen Flüssigkeiten sind

1 At. krystallisirtes Chlorbaryum = 122 g und
1/2 At. doppeltchromsaures Kali = 73.79 g im Liter,
oder wenn man Zehntel-Flüssigkeiten anwenden wollte:
12.2 g Chlorbaryum
und 7.379 g doppelt-chromsaures Kali im Liter,
doch ist die stärkere normale Lösung vorzuziehen.

Zur Probe wurden im Atomverhältniss 0.974 g einfach chromsaures Kali und 1.22 g krystallisirtes Chlorbaryum abgewogen, einzeln gelöst und vermisch. Nach dem Absetzen des Niederschlags war die Flüssigkeit farblos, gab aber mit einigen Tropfen chromsauren Kalis eine schwache Trübung, dann aber sogleich Farbe, ebenso wurden 0.738 g doppelt-chromsaures Kali und 1.220 g Chlorbaryum mit Ammoniak versetzt abgekocht; die klare, überstehende Flüssigkeit war farblos und zeigte mit 1 Tropfen chromsaurer Kalilösung sogleich Farbe.
Die zu fallende Flüssigkeit darf kein kohlensaures Alkali enthalten und muss mit einem kleinen Ueberschuss kohlensäurefreien Ammoniaks versetzt sein, da wir mit Biochromat fällen. Das einfach chromsaure Kali ist ein basisches Salz und zieht leicht Kohlensäure an. In allen Fällen kann man sich die Flüssigkeit richtig machen, wenn man sie mit einigen Tropfen Salzsäure kocht und dann mit reinem Ammoniak übersättigt. Man bringt sie zum Kochen und lässt Normalchlorbaryumlösung aus einer Quetschhahnbürette zufüllen, bis ein Ueberschuss desselben vorhanden ist. Der schwefelsaure Baryt setzt sich von allen Niederschlägen am langsamsten ab, besonders wenn er in konzentrierten Flüssigkeiten entstanden ist. Das Absetzen wird ungemein beschleunigt, wenn man der Flüssigkeit eine kleine Menge Chloralanuminium 1) oder richtiger salzsaure Thomieder zusetzt und dann erst das Ammoniak. Nach wenigen Augenblicken stet sich in der erwärmten Flüssigkeit der Niederschlag horizontal ab, so dass man erkennen kann, ob sich in der überstehenden Flüssigkeit durch Barytsalz noch Trübung zeigt. Man lässt, wenn dies nicht mehr stattfindet, aus der daneben stehenden Chrombürette dieses einfiessen, bis nach dem Absetzen, was nun immer rascher geschieht, sich ein lichtgelber Farbenton zeigt. Das Erkennen ist sehr bestimmt, da 1 Tropfen Normallösung des chromsauren Kalis 100ccm Wasser bei Gegenwart von Ammoniak deutlich färbt. Aber auch diesen kleinen Ueberschuss kann man durch wenige Tropfen Barytlösung wegnehmen, wodurch die Flüssigkeit wieder farblos ist. Man zieht die Cubikcentimeter der Chromlösung von jenen der Chlorbaryumlösung ab, und berechnet den Rest auf Schwefelsäure mit dem Factor 0'04 bei normalen, und 0'004 bei zehntelnormalen Flüssigkeiten. Arbeitet man mit normalen Flüssigkeiten, so muss man grösere Proben anwenden, um nicht zu kleine Mengen der Messflüssigkeiten zu verbranen.

1) Man bereitet die salzsaure Thomieder, indem man 10g Ammoniakalaun löst, und dazu 11'09g Chlorbaryum setzt, kocht und nachher filtrirt. Ein etwaiger Ueberschuss von Barytsalz wird durch kleine Mengen Alasulfat ausgefallt.
2) 2g Bittersalz, dazu 20 cccm N. Chlorbaryum, dagegen 3'8 cccm Chromlösung also 20 — 3'8 = 16'2 cccm N. Chlorbaryum; diese × 0'04 geben 0'648g S O 4 = 32'4 Proc.; Formel 32'52 Proc.; ebenso kann man in Zink- und Kadmiumsalzen die Schwefelsäure bestimmen. Doch hat das keinen Werte, wenn es sich nicht um technische häufig wiederkehrende Analysen handelt.
VII. Fällungsanalysen.

c) Schwefel in Kiesen, Bleiden und Schiesspulver als Schwefelsäure bestimmt.

B a r y t.

1 cbcm halb doppeltchromsaures Kali = \(\frac{1}{1000} \) At. Baryt oder Barytsalz.
1 cbcm \(\frac{1}{10} \)-neutrales chromsaures Kali = \(\frac{1}{10000} \) At. Baryt oder Barytsalz.

Der Baryt kann ebensowenig mit Schwefelsäure gemessen werden, als die Schwefelsäure mit Baryt, weil sich keine deutliche Erscheinung darbietet. Dagegen kann Baryt aus seinen neutralen und ammoniakalischen Lösungen mit neutralem chromsaurem Kali gefällt werden und das Ende der Erscheinung ist, dass die Flüssigkeit einen leichten Stich ins Gelbe zeigt.

Der neutrale chromsaure Baryt hat bei der Fällung eine schwach gelbliche Farbe und setzt sich in erwärmter Flüssigkeit leicht ab. Er ist in Wasser auch in der Siedhitze vollkommen unlöslich, wie sich aus der Farblösigkeit der überstehenden Flüssigkeit ergibt. Dagegen ist er in Salzsäure mit Salpetersäure löslich und unterscheidet sich dadurch von dem schwefelsauren Baryt. Er kann also nur aus neutralen oder ammoniakalischen Flüssigkeiten gefällt werden, und wenn sie das nicht schon
sind, so werden sie mit Ammoniak ersetzt, bis sich dies an rothem Lackmuspapier zu erkennen gibt.

Doppeltchromsäures Kali gibt mit Chlorbaryum eine tief gelb gefärbte Flüssigkeit, weil dabei 1 At. Salzsäure in Freiheit tritt. Setzt man Ammoniak zu, so scheidet sich aller Baryt als ein licht gelber Niederschlag aus. Die Fällungsfähigkeit ist dieselbe, wie im vorigen Paragrafen mit 73.79 g doppeltchromsäurem Kali in halbnormaler Lösung, weil das neutrale Salz leicht Kohlensäure aufnimmt. Sie wird durch Abwägen dieser Menge und Lösen zu einem Liter dargestellt und ist vollkommen haltbar, wenn Verdunstung vermieden ist. Jede einzelne Probe wird bei der Analyse mit Ammoniak ersetzt.

Die Operation wird in folgender Weise ausgeführt. Man löst das gewogene Barytsalz in Wasser in einem mehr hohen als breiten Becherglase, erwärmt stark und setzt das chromsäure Kali aus einer Blasebürette (Fig. 30, S. 22) hinzu, welche am bequemsten ist, um über die Lampe zu kommen. Es entsteht ein Niederschlag, der anfangs fast weiss aussieht, und erst durch Verdichtung seine hellzitronengelbe Farbe annimmt. So lange man an der Einfallstelle reichlichen Niederschlag entstehen sieht, fährt man mit dem Zusatz fort; wenn dies zweifelhaft wird, schüttelt man um, und lässt etwas absetzen. Man hält nun das Glas etwas schief, dass die obere klare Flüssigkeit frei ohne Niederschlag erscheint, und indem man diese Stelle über schwarzes Papier bringt, kann man beim Eintröpfeln des chromsauren Kalis leicht erkennen, ob sich noch Niederschlag bildet. Wenn der Niederschlag so schwach wird, dass man ihn nicht mehr erkennen kann, so lässt man absetzen und betrachtet die Flüssigkeit im durchfallenden Licht, ob sie einen Stich ins Gelbe zeigt. Wenn das nicht der Fall ist, so tröpfelt man von der Chromlösung ein, wo man dann die Tropfen sich als gelbe Schlieren bewegen sieht. Werden sie auf diesem Wege noch gefällt, so verschwindet die gelbe Färbung sichtlich, und man fährt mit Zusatz fort, bis nach Umschütteln und Absetzen ein lichtgelber Ton bleibt. Die Menge der überschüssig zugesetzten Chromlösung ist verschwindend klein, wenn man findet, dass ein Tropfen Chromlösung 100 bis 150 cbem Wasser sichtbar zu färben im Stande ist.

Die Methode hat wenig Aussicht auf Gebrauch, da die Fälle von Barytbestimmung überhaupt selten sind. Bei feinen analytischen Untersuchungen wird man die Fällung durch Schwefelsäure und Wägung vor-
ziehen, und in der Technik werden die rohen Barytsalze so wohlfeil angeboten, dass eine sehr genaue Bestimmung über das Ziel trifft. In vorkommenden Fällen leistet die Methode gute Dienste.

Chromsäure.

1 cbcm Normalchlorbaryum $= 0'02624$ g Chrom (Cr),

$= 0'05024$ Chromsäure (CrO_3),

$= 0'09735$ einf. chroms. Kali (CrO_3, KO),

$= 0'07379$ dopp. chroms. Kali (2CrO_3, KO).

Chromsäure lässt sich aus ihren löslichen Verbindungen durch Normalchlorbaryum ausfällen, wenn keine Schwefelsäure oder Kohlensäure vorhanden ist, und das sichtbare Zeichen ist das umgekehrte, wie bei der Fällung des Baryts durch Chromsäure, nämlich, dass die letzte Spur einer gelben Färbung der Flüssigkeit durch den letzten Tropfen Chlorbaryum verschwindet. Um gegen Kohlensäure gesichert zu sein, kocht man die Lösung der gewogenen Substanz mit einigen Tropfen Essigsäure, setzt dann kohlensäurefreies Ammoniak zu, bis zum schwachen Vorwalten desselben, erhitzt stark und fällt aus der Blaseburette mit Normalchlorbaryumlösung von 122 g auf das Liter.

Man erkennt lange auf der Oberfläche, dass an der Einfallstelle des Chlorbaryums eine hellere Färbung erscheint als rundum. So lange das stattfindet, tröpfelt man unter Umschütteln die Probeflässigkeit hinzu; sobald dies anfängt undeutlich zu werden, lässt man absetzen, was in der heissen Flüssigkeit sehr leicht geschieht. Das Erkennen der gelben Färbung der Flüssigkeit ist viel empfindlicher und schärfer als jede Prüfung auf Chromsäure durch Betupfung mit Silber- oder Bleilösung. 25 cbcm $1/2$-normal-doppelt-chromsäures Kali (mit 73'79 g im Liter) erforderten genau 25 cbcm Normalchlorbaryum zum Verschwinden der gelben Färbung, während umgekehrt 25'1 cbcm Chromlösung verbraucht wurden, um in 25 cbcm Normalchlorbaryum die gelbe Färbung hervorzubringen. Im letzten Falle war der färbende Antheil im Ueberschuss.

Wenn zugleich Schwefelsäure vorhanden ist, so lässt sich die Fällungsmethode mit Baryt nicht anwenden und dies ist der Grund, warum die obige Methode überhaupt keine Anwendung finden wird. Es ist dann immer Eisendoppelsalz und Chamäleon bei weitem mehr angezeigt.
Bleioxyd.

a) Mit schwefelsaurem Kali.

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm zehntelschwefels. Kalilösung = 1 Prc. Substanz</th>
<th>1 cbcm zehntelschwefelsaure Kalilösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>122. Blei</td>
<td>Pb</td>
<td>103.57</td>
<td>1.036 g</td>
<td>0.010357 g</td>
</tr>
<tr>
<td>123. Bleioxyd . .</td>
<td>Pb O</td>
<td>111.57</td>
<td>1.116</td>
<td>0.011157</td>
</tr>
</tbody>
</table>

Wenn sich Zehntel-Bleiösung und zehntelschwefelsaure Kalilösung zu gleichen Volumen zersetzen, so gäbe die Methode richtige Resultate. Bei einer Prüfung dieses Verhaltens erforderten:

Zehntel-Bleiösung. 1) 25 cbcm 2) 25 3) 50
Zehntelschwefelsaure Kalilösung 24.6 cbcm 24.6 49.4
VII. Fällungsanalysen.

b) Mit Schwefelnatrium.

Flores Domonte hat die Fällung des Bleies durch Schwefelnatrium
empfohlen, aber keine Belege über die Richtigkeit der Methode gegeben.
Bei Prüfung der Methode zeigte sich, dass bei vollständigem Ausfallen
des Bleies noch ein Theil Schwefelnatrium mit dem Blei niedergedrungen
wird. Wenn die Flüssigkeit bereits mit Nitroprussidnatrium die bekannte
Reaction gegeben hat, so verschwindet sie nach einiger Zeit wieder und
man kann neue Fällungen mit Schwefelnatrium hervorbringen, wodurch
Zahlen ohne alle Übereinstimmung erhalten werden. Die Methode führt
durchaus zu keinem brauchbaren Resultat.

c) Mit neutralem chromsauren Kali.

Das chromsaure Bleioxyd ist ein sehr schwer löslicher Körper und
der neu gebildete Niederschlag in einer klaren Flüssigkeit sehr sichtbar.
Löst man $\frac{1}{10}$ At. neutrales chromsaures Kali oder 9.735 g zu einem
Liter, so sollte jeder Cubikcentimeter $= \frac{1}{10000}$ At. Blei sein. Man er-
hitzt die Bleilösung, welche keine freie Salpetersäure enthalten darf, die
man durch essigsaures Natron in Essigsäure umsetzt, bis zum Kochen,
setzt die Chromlösung zu, bis man keine Fällung mehr erkennen kann.
Man muss jetzt abklären lassen durch Warmstellen, was allerdings
nie sehr rasch geschieht. Der anfangs hellgelbe Niederschlag ballt
sich grösstentheils zu festen orangegelben Flocken zusammen, aber immer
ist ein Theil aufgeschleimmt, der sich langsamer absetzt. Man kann sich
auch eines kleinen Filtrums aus gut durchlassendem Papire bedienen,
und den Punkt zu erfassen suchen, wo keine Fällung mehr stattfindet.
Die Zahlen sind nur annähernd übereinstimmend.

Man könnte sich wohl auch des phosphorsauren Natrons zur Fällung
des Bleoxyds aus einer essigsauren Lösung bedienen. Alle diese Fäl-
lungen haben das Unangenehme, dass die Enderscheinung gerade dann am
schwächesten ist, wenn es sich um die Entscheidung handelt, und nur durch
Uebung und Ausdauer kann man zu erträglichen Resultaten gelangen.
Schwarz hat auch auf diese Bestimmung das neutrale salpetersaure Silberoxyd als Indicator angewendet. Zu der essigsauren Bleilösung, die durch Zusatz von essigsäurem Natron zu der salpetersauren entstanden ist, fügt man die $\frac{1}{10}$ Lösung von neutralem (Schwarz hat doppelt-chromsaures) chromsaurem Kali, bis ein herausgenommener Tropfen auf einem Porzellanteller mit einem Tropfen einer Lösung von neutralem salpetersauren Silberoxyd eine rothe Färbung hervorbringt. Das hierbei entstehende chromsaure Silberoxyd ist in freier Essigsäure nicht ganz unlöslich, und man hat deshalb die Flüssigkeit vorher mit kohlensaurem Natron so weit abzustumpfen, dass noch kein Niederschlag (von phosphorsaurem Kalk etc.) entsteht, aber die Grenze eben erreicht ist.

Die Methode hat nur eine beschränkte Anwendung, weil das Blei in essigsaurer Lösung sein muss, während die meisten Bleierze schon beim Aufschliessen schwefelsaures Bleioxyd erzeugen, und auch die oxydischen sich nicht in Essigsäure aufschliessen lassen.

Jodkalium

<table>
<thead>
<tr>
<th>Namen</th>
<th>Formel</th>
<th>Atomgewicht</th>
<th>Abzuwägende Menge für 1 cbcm $\frac{1}{10}$ Sublimatlösung $= 1$ Proc. Subst.</th>
<th>1 cbcm $\frac{1}{10}$ Sublimatlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>124. 2 At. Jod</td>
<td>2 J</td>
<td>254</td>
<td>2.54 g</td>
<td>0.0254 g</td>
</tr>
<tr>
<td>125. 2 At. Jodkalium</td>
<td>2 KJ</td>
<td>832.22</td>
<td>3.322 g</td>
<td>0.033222 g</td>
</tr>
</tbody>
</table>

1 At. Jodkalium (166.11) und 1 At. Quecksilberchlorid (135.46) setzen sich, wenn die Lösungen zusammenkommen, in Chlorkalium und rothes Quecksilberjodid um. So lange noch freies Jodkalium vorhanden ist, löst dieses das gefällte Quecksilberjodid zu einer farblosen, leicht löslichen Verbindung, Kalium-Quecksilberjodid (KaJ + HgJ), auf. Jeder Überschuss von Quecksilberchlorid erzeugt einen anfänglich röthlichen, nachher lebhaft rothen, krystallinischen Niederschlag von Quecksilberjodid. Ist das Jodkalium nicht völlig rein, so tritt diese Fällung früher ein, als bei einem reinen Salze, und es ist die zugesetzte Menge Quecksilberchlorid, welche notwendig war, die erste Spur von bleibender Fällung zu erzeugen, das Maass des vorhandenen Jodkaliums.

Die Maassflüssigkeit ist zehntelnormal und enthält $\frac{1}{10}$ At. Quecksilberchlorid oder Sublimat. Man hat demnach 13.546 g Quecksilber-

VII. Fällungsanalysen.

Erwärmt darf die Lösung nicht werden, da das Jodquecksilber in der Wärme in Chlorkalium und den meisten Ammoniaksalzen, selbst in einem Wasser etwas löslich ist. Der sich anfangs bildende Niederschlag ist weiss, wahrscheinlich Quecksilberjodid mit Sublimat umhüllt, er wird dann röthlich und verschwindet beim Umrütteln sehr rasch. Die Flüssig- keit erhält aber zu früh einen rothen Schimmer, welcher gegen einen weissen Hintergrund, aber nicht im durchscheinenden Tageslicht zu sehen ist.

Bei Anwendung von 0·5 g Jodkalium wurde die erste bleibende rothe Fällung bei 14·3 cbcm Zehntelsublimatlösung bemerkt. Dies gibt 0·47451 g Jodkalium statt 0·500 g, also 95 Proc. des angewendeten Jodkaliums. Da man beim Eintrüpfeln der Sublimatlösung immer eine lichte Färbung des Niederschlages bemerkt, so lange noch neues Quecksilberjodid gebildet wird, so versuchte ich, ob man nicht die vollständige Fällung statt der halben ausführen könnte. Bei zwei Versuchen mit 0·5 g Jodkalium wurde bei 28 cbcm Zehntelsublimatlösung keine weitere Trü- bung mehr wahrgenommen. Es hätte dies aber eigentlich erst bei 30·2 cbcm stattfinden dürfen. Es ist demnach das Resultat nicht genauer, als jenes mit der halben Fällung.
Phosphorsäure.

a. Mit Uranoxydsalzen, nach Pincus.

Diese Methode ist von Dr. Pincus\(^1\) ermittelt worden. Zur Gewichtsanalyse ist die Fällung der Phosphorsäure durch Uransalze bereits von W. Knop angewandt worden.

Hierbei zeigt sich nun der wesentliche Vorzug, dass man keine Filtration nothwendig hat, denn der ausgewaschene Niederschlag von phosphorsaurem Uranoxyd wird von Blutlaugensalz nicht verändert, wie dies beim phosphorsauren Eisenoxyd allerdings der Fall ist. Man hat also nur die zwei Tropfen auf einem Porzellanteller in einander zu reiben, wo dann der bräunliche Niederschlag entsteht.

Das Entstehen einer Färbung in der Reaction ist immer misslich zu beobachten, weil man einen Augenblick vorher noch nichts wahrnimmt, also kein Zeichen der Annäherung hat. Entweder wird die Arbeit sehr langweilig bei kleinen Zusätzen und vielen Prüfungen, oder man überstürzt sie. Es ist deshalb sicherer und auch theoretisch richtiger, sowohl bis zu einer kräftigen Reaction mit der Uranlösung vorzugehen, und dann aus einer zweiten fein geteilten Bürette mit einer titrirten

Lösung eines phosphorsauren Salzes rückwärts zu gehen, bis die braune Färbung eben wieder verschwindet. Das hat man ganz in seiner Ge-
walt, weil man die neben einander stehenden und abnehmenden Reak-
tionen vor Augen hat. Man setzt mit einer spitz ausgezogenen Glasper-
re eine Reihe von Tropfen der Blutlaugensalzlösung neben einander auf eine
Porzellanplatte und betupft sie der Reihe nach aus der Probe. Die
Methode gewinnt dadurch ungemein an Schärfe und theoretisch richtiger
ist sie, weil nun kein Überschuss der Uranlösung (von 0‘010 g PO₅
= 1 cbem) vorhanden ist, der bei ungleichen Mengen an Flüssigkeit
auch sehr ungleich sein wird.

Zur Titerstellung bedient man sich am besten der titirten Lösung
von phosphorsaurem Natron-Ammoniak, welche im Cubikcentimeter
0‘010 g Phosphorsäure enthält. Dieses Salz, auch kürzer Sal micro-
cosmicum genannt, hat die Zusammensetzung NaO, NH₄O, PO₅, 9 H₂O
= 209‘36, und diejenige Menge, welche 10 g Phosphorsäure enthält, ist
\[
\frac{10 \times 209'36}{71'36} = 29'339 \text{ g.}
\]
Man löse diese Menge zu einem Liter auf und
benutze sie sowohl zur Stellung des Titers der Uranlösung, als zur Be-
dingung jeder einzelnen Analyse. Vor dem phosphorsauren Natron hat es
den grossen Vorzug, keine Kohlensäure anzuziehen und nicht zu verwittern,
was letzteres Salz selbst in geschlossenen Gefässen thut. Da Phosphorsäure-
bestimmungen fast nur bei agriculturchemischen Arbeiten vorkommen,
so hat es zweckmassig geschienen, die empirische Stärke der Flüssigkeiten
anzuwenden, wo man den Gehalt sogleich an der Bürette ableisen kann.
Im System würde eine 1/₁₀ normale Lösung 20‘936 g Sal microcosmicum
im Liter enthalten und jeder Cubikcentimeter = 0‘007186 g PO₅ sein.

Die Uranlösung lässt sich nicht durch Wägung darstellen, sondern
muss auf die Phosphorsäurelösung gestellt werden, was um so richtiger
ist, als es sich um deren Bestimmung handelt und man vom Atomgewicht
des Urans ganz unabhängig bleibt. Man löse käufliches essigsaures Uran-
oxyd in Wasser, oder gelbes Uranoxyd in Essigsäure, welche von bronz-
lichen Stoffen frei sein muss, weil sie reducirend wirken, und bestimme
dessen Werth gegen die empirische Phosphorsäurelösung. Man füllt zwei
neben einander stehende Büretten, die eine mit der empirischen Phos-
phorsäurelösung, die andere mit der Uranlösung, lässt aus der ersten
eine beliebige Menge in ein Glas fließen, ohne die Menge zu notiren,
läst dann Uranlösung zufliessen, bis eine starke Reaction mit Blut-
laugensalz entsteht, und nun wieder Phosphorsalzlösung, bis diese
Reaction eben aufhört. Beide Büretten werden jetzt abgelesen, und die
Uranlösung auf die doppelte Zahl der Cubikcentimeter der Phosphor-
säurelösung verdünnt, was im Mischcyliner nach Berechnung geschieht.
Die Uranlösung muss stärker als auf die empirische verdünnt werden,
weil sich sonst Krystalle von essigsaurer Uranoxyd absetzen. Um ein
einfaches Verhältniss zu haben, eignet sich am besten die Verdünnung
auf das doppeltete Volum. Jeder Cubikcentimeter ist dann = 0‘005 g PO₅.
Es wird dann mit der gestellten Uranlösung eine Versuchsprobe gemacht, ob die entsprechenden Mengen beider sich eben zersetzen. Da beide Flüssigkeiten sehr haltbar sind, so kann man größere Mengen der Uranlösung für viele Versuche anfertigen. Es ist zweckmässig, die Uranlösung in grünen Mineralwasserflaschen (S. 36) aufzubewahren, oder sonst wie gegen Licht zu schützen.

Zur Wiedergewinnung des Urans aus dem gelben Niederschlag sind mehrere Wege angegeben worden. Aetzkali nimmt nur einen kleinen Theil der Phosphorsäure auf und der Rest ist nicht ganz auffällig in Essigsäure.

1) Liebig's Annal. 151, 216.
2) Fresenius' Zeitschr. f. anal. Chem. 15, 292.
c. Mit Bleisalzen.

1 ccm \(\frac{3}{10} \) Bleilösung = 0,007136 g PO₅
1 „ „ „ = 0,015536 „ PO₅ + 3 CaO.

Es wurde dieses Salz, wie bei der Bestimmung, aus dem gewöhnlichen phosphorsauren Natron mit salpersaurem Blei oxyd niedergeschlagen, ausgewaschen und dann geprüft.

Phosphorsaures Blei oxyd mit destillirtem Wasser kalt behandelt und filtrirt, gab eine Flüssigkeit, welche weder von Schwefelwasserstoffwasser, noch Schwefelnatrium, noch neutralem chromsaurem Kali im geringsten affizirt wurde. Es ist also in Wasser so gut wie unlöslich; ebenso in kochendem Wasser, wenn die ersten Portionen abfiltrirt waren.

Phosphorsaures Blei oxyd mit essigsaurem Natron gekocht, und ebenso mit salpersaurem Natron gekocht, gab Filtrate, in denen durch Schwefelnatrium und durch chromsaures Kali nur kleine Spuren von Blei angezeigt wurden. Es bildet also mit diesen Salzen keine Doppelsalze, in denen es eine grössere Löschlichkeit hatte.

In sehr verdünnter Salpersäure ist das phosphorsaure Blei oxyd bekanntlich merkbar löslich, und die Filtrate geben ebenfalls Reaktionen auf Blei und Phosphorsäure. Demnach wäre die hier unvermeidliche Essigsäure der einzige Körper, der eine Störung in die Anwendung der Methode bringen könnte.

Um über die Zusammensetzung des Niederschlages Gewissheit zu erhalten, wurden analytische Versuche gemacht.

3,3425 g krystallinisirtes phosphorsaures Natron gaben geglähtes phosphorsaures Blei oxyd 3,788 g. Nach den Atomgewichten ist

\[\frac{358.36}{406.07} = \frac{3.3425}{3.788} \]

Ebenso gaben 1,075 g krystallinisirtes phosphorsaures Natron 1,2202 g geglähtes phosphorsaures Blei oxyd. Die Rechnung verlangt 1,218 g. Es ist demnach der Niederschlag dreibasisch phosphorsaures Blei oxyd.
Phosphorsäure.

Von Flüssigkeiten können wir uns der systematischen (mit $\frac{1}{10}$ At. im Liter), oder der empirischen (mit 10 g Substanz im Liter) bedienen.

Die systematischen Zehntel-Flüssigkeiten sind:

$\frac{1}{10}$ At. phosphorsaures Natron-Ammoniak (NH_3, NaO, PO_3, 10 HO = 209·36) mit 20·936 g dieses Salzes im Liter;

$\frac{3}{10}$ Bleilösung mit $\frac{3}{10}$ At. Bleizucker ($\text{C}_4\text{H}_3\text{O}_5$, PbO, 3 HO = 189·57) oder 56·871 g Bleizucker im Liter; oder mit salpetersaurem Blei-oxid (NO_3, PbO = 165·57) zu 49·671 g Bleisalpter im Liter, 1 cbcm = 0·007136 g PO_3.

Die empirische Phosphorsäurelösung, welche 10 g Phosphorsäure im Liter enthalten soll, entsteht, wenn man $\frac{10 \times 209\cdot36}{71\cdot36} = 29\cdot339$ g Sal

Die eine Lösung, welche $\frac{29\cdot339 \times 568\cdot71}{10 \times 209\cdot36} = 79\cdot694$ g Bleizucker im Liter enthält. 1 cbcm = 0·0010 g PO_3.

Um keine Verwechslungen zu veranlassen, entschliesse man sich vorab, welche man anwenden wolle. Ohne Frage sind bei Phosphorsäure die empirischen Lösungen vorzuziehen, weil sie keine Berechnungen nothwendig machen und das Resultat gleich an der Bürette abgelesen werden kann, wenn man den zu untersuchenden Körper in der Einheit des Gewichtes abgewogen hat.

Man bringt die phosphorsäurehaltige Flüssigkeit in eine Stöpselflasche von ungefähr 300 cbcm Inhalt, verdünnt bis etwa 200 cbcm mit etwas warmem (35 bis 40° C.) Wasser, setzt essigsaures Natron zu und lässt die $\frac{3}{10}$ Bleilösung einfließen. So lange man noch deutliche Fällung bemerkt, fährt man mit Zugiessen fort, und sobald es zweifelhaft wird, schüttelt man um, und stellt die Flasche warm zum Absetzen hin. Wenn sich eine Schicht klarer Flüssigkeit gesondert hat, gibt man eine kleine Menge in ein Uhrglas oder eine Probirröhre ab, und setzt einige Tropfen Bleilösung zu, und wenn noch ein Niederschlag entsteht, gibt man die Probe in die Flasche zurück und fährt mit Zusatz fort, bis kein Niederschlag mehr sichtbar wird. Es ist nun noch die Probe zu machen, ob ein Zusatz von essigsaurem Natron in der klaren Flüssigkeit einen Niederschlag erzeugt. Sobald dies stattfindet, war Salpetersäure in Freiheit geblieben, die von dem Niederschlag etwas gelöst hielt. Durch essigsaures Natron wird die Salpetersäure gebunden und der Versuch kann beendet werden.

Es ist aber auch möglich, dass die Fällung schon ganz geschehen war. Wenn nach Zusatz von essigsaurem Natron und Abklärung durch Bleilösung kein Niederschlag mehr entsteht, so ist der letzte Fall zu befürchten. Man lässt abklären und versucht, ob mit zehntel-phosphorsaurem Natron-Ammoniak ein Niederschlag entsteht, und wenn dies der Fall ist, setzt man aus einer Pipette 1 cbcm davon hinzu, schüttelt um und geht
VII. Fällungsanalysen.
nun mit Vorsicht bis zu Ende der Fällung. Den 1 ebcm phosophorsaures Natron-Ammoniak zieht man mit 0.010 g PO₃ vom Resultat ab. Die Methode hat Ähnlichkeit mit der Silberfällung durch Kochsalz und hat auch einen ähnlichen neutralen Punkt in Bezug auf die Essigsäure, dagegen nicht in Bezug auf das essigsäure oder salpersaure Natron. Die vollständige Fällung durch Bleilösung und rückwärts durch phosphorsaures Natron liegen um so weiter auseinander, je mehr freie Essigsäure vorhanden und je wärmer die Flüssigkeit ist. Es würde jedoch zu zeitraubend sein, diesen neutralen Punkt durch Versuche zu ermitteln, da sich die trübe Flüssigkeit nicht so vollständig klärt, wie die Chlorsilberflüssigkeit. Meistens schwimmen einige Flocken des phosphorsauren Blei oxyds an der Oberfläche, die durch leichtes Bewegen sich etwas senken, und dadurch den Anschein geben, als wäre eine neue Fällung geschehen. Es ist darum zweckmässig, die jedesmalige Zusatzprobe, wenn die Flüssigkeit nicht ganz klar ist, in einem Uhrglass zu machen, welches man auf schwarzes Papier stellt. Man kann darin sehr leicht erkennen, ob ein neuer Niederschlag entsteht. Die Operation lässt sich wegen des Abklärens nicht in einem Zuge beenden, und man muss ab und zu die Fällung vollenden.

50 ebcm zehntel-phosphorsaures Natron erforderten zur vollständigen Fällung 50.1 ebcm 3/10 Bleiösung, 25 ebcm empirische Phosphorsäurelösung (≈ 0.250 g PO₃) erforderten 35 ebcm 3/10 Bleiösung;
35 × 0.007136 = 0.24976 g PO₃.

1 g trockner dreibasisch phosphorsaurer Kalk wurde in wenig Salpersäure gelöst, mit Wasser verdünnt, und dann essigsaurer Natron zugesetzt und mit 3/10 Bleiösung ausgefällt. Es wurden 64.3 ebcm verbraucht. Diese mit 0.015536 multipliziert geben 0.998 g phosphorsauren Kalk.

Zu einer gleichen Menge phosphorsauren Kalkes wurden 64.4 ebcm Bleiösung verbraucht. Dies gibt 0.99942 g phosphorsauren Kalk.

Phosphorsäure.

Zustande gefällt, wo die Bedingung von selbst gegeben ist, dass keine schwefelsaure Salze und keine Chlorüré vorhanden sind. Die Bleilösung bringt man am bequemsten in die Blaseburette.

d. Dieselbe Methode, modificirt von Schwarz 1).

Er verzichtet darauf, die Phosphorsäure mit einer eben genügenden Menge der Bleilösung zu fällen, sondern gibt einen kleinen angemessenen Uberschuss hinzu und misst diesen zurück mit doppelt chromsauren Kali, und das Ende der Fällung des Bleisalzes erkennt er dadurch, dass ein kleiner Uberschuss des einfach chromsauren Kalis mit neutraler Silberlösung eine rothe Färbung von chromsauren Silberoxyd hervorbringt.

Es ist am besten, die Bleilösung zu \(\frac{3}{10} \) normal anzunehmen mit 49·671 g salpetersaurem Bleioxyd und der entsprechenden Menge essigsauren Natrons im Liter, und statt des doppelt chromsauren Kalis einfach chromsaures Kali zu nehmen. Da sich nämlich Bleioxyd mit Chromsäure zu gleichen Atomen verbindet, so wird durch die Anwendung von doppelt chromsauren Kalis die Flüssigkeit gegen Ende immer saurer, wenn auch nur von freier Essigsäure, allein in dieser ist das chromsaure Silberoxyd etwas löslich. Man hat deshalb bei Anwendung des doppelt chromsauren Kalis gegen Ende immer die freie Säure abzustumpfen, um die Empfindlichkeit der Reaction wieder herzustellen. Bei einfach chromsaurem Kali bleibt die Neutralität ungeändert. Letzteres Salz (CrO₃, KO = 97·35) würde als \(\frac{3}{10} \) normal mit \(3 \times 9735 = 29·205 \) g abzuwägen und zu 1 Liter zu lösen sein. Es ist dann gleichwertig mit der \(\frac{3}{10} \) normalen Bleilösung. Die Operation wird nun in folgender Weise ausgeführt. Das phosphorsaure Salz wird in Lösung gebracht, und wenn es nicht in Wasser löslich ist, in Salpetersäure gelöst und mit essigsauren Natron versetzt. Fallen hierbei phosphorsaures Eisenoxyd und Thonerde heraus, so müssen diese besonders untersucht werden. Man fällt nun das phosphorsaure Salz mit der \(\frac{3}{10} \) Bleilösung in einem kleinen Uberschuss, erhitzt zum Absetzen und filtrirt, oder wenn man das Volum des sehr dichten Niederschlags nicht beachtet, so verdünnt man zu 300 ccbm, lässt absetzen, und nimmt 100 ccbm zur Rückmessung heraus. Hierin stumpt man nun die Säure soweit ab, dass noch kein Niederschlag entsteht, und lässt nun die \(\frac{3}{10} \) einfach-chromsaure Kalilösung aus der Bürette hinzufüllen. Die Probe wird auf einem Porzelanteller gemacht. Man setzt mit einer ausgezogenen Röhre kleine Tropfen einer neutralen salpetersauren Silberlösung auf, und betupft diese mit der Flüssigkeit, welche geprüft werden soll. Ist alles Blei gefällt,

Mohr's Titirbuch.
VII. Fällungsanalyse.

und ein kleiner Überschuss Chromsäure vorhanden, so entsteht die lebhaft rothe Farbe des chromsauren Silberoxyds, welche in dem gelben Niederschlag sehr deutlich erkannt werden kann.

Uranoxyd.

Die Bestimmung des Uranoxyds kann durch die umgekehrte Operation der Phosphorsäurebestimmung (S. 427) geschehen. Die freie Säure des Uranoxydsalzes wird durch Zusatz von essigsäurem Natron in Essigsäure umgesetzt. In die Bürette nimmt man die empirische Phosphorsäurelösung von 29.339 g krystallinischem phosphorsauren Natron-Ammoniak im Liter. Da das Uranoxyd in der phosphorsauren Verbindung 80 Procent, die Phosphorsäure 20 Procent ausmacht, so ist 1 cbcm der empirischen Phosphorsäurelösung = 0.040 g Uranoxyd, nach dem Ansatz 20 : 80 = 0.010 : x, woraus $x = \frac{0.80}{20} = 0.040$. Man lässt die Phosphorsäurelösung zulaufen, bis zwei ineinander laufende Tropfen von der zu untersuchenden Lösung und von Blutlangensalzlösung keine braune Färbung mehr erzeugen. Wenn überhaupt bei einem so selten vorkommenden Stoffe eine Massanalyse wünschenswerth ist, so kann sie in dem beschriebenen Verfahren gefunden werden.

Thonerde.

1 cbcm $\frac{1}{10}$ Phosphorsalzlösung = 0.00514 g Al₂O₃.

Es ist noch kein Indicator für Thonerde gefunden worden, und selbst die oben (S. 146) beschriebene acidimetrische Bestimmung der Thonerde gründete sich auf die damit verbundene Säure.

E. Fleischer hat nun die Thonerde durch eine Restmethode mit Uran bestimmt, indem er den Rest einer gemessenen Menge Phosphorsalzes bestimmt. Die zu bestimmende Menge Thonerde wird in saurer Lösung durch Uebersättigung mit essigsäurem Natron in essigsäure Lösung übergeführt, darauf eine gemessene Menge $\frac{1}{10}$ Phosphorsalzlösung,
mit 20.936 g Sal microcosmicum im Liter, im Ueberschuss zugesetzt und zum Sieden erhitzt. Als dann wird in der Hitze durch Urnanlösung der Phosphorsäureüberschuss, ohne vorher abfiltrirt zu haben, nach S. 427 bestimmt. Zieht man die der Phosphorsäurelösung entsprechenden Cubikcentimeter Urnanlösung von der zugesetzten Menge der ersteren ab, so gibt der Rest mit dem obigen Factor die Menge der Thonerde. Enthält die Thonerdelösung viel freie Mineralsäuren, so stumpft man erst mit kohlensaurem Natron vorsichtig ab, doch so, dass kein Niederschlag entsteht, der sonst durch einige Tropfen Salzsäure wieder in Lösung zu bringen wäre, und setzt dann erst das essigsaurc Natron zu. Von Basen dürfen nur Alkalien und alkalische Erden vorhanden sein, dagegen keine zur Eisengruppe gehörigen. Der Niederschlag hat die Formel \(\text{Al}_2\text{O}_3\text{PO}_5 \), wenn Phosphorsäls vorwaltet, welches hier immer von selbst eintritt, weil man die Thonerde vollständig fällen will.

Bittererde und Manganoxydul.

1 cbem \(\frac{1}{10} \) Urnanlösung \(= 0.004 \) g MgO
1 \(\frac{1}{10} \) \(= 0.0071 \) g MnO.

Die beiden Basen können aus salmiakhaltiger und mit Ammoniak versetzter Lösung durch phosphorsaures Natron-Ammoniak sehr vollständig gefällt werden. Das Bittereredoppelsalz muss längere Zeit stehen, und das Mangansalz muss längere Zeit erhitzt werden, um dichter zu werden. Sie werden beide auf einem Filtrum mit ammoniakalischem Wasser ausgewaschen, dann in Essigsäure gelöst und mit Urnanlösung ausgemessen oder die Bittererde alkalmietrisch (s. Anhang).

Kupfer.

1. Durch Schwefelnatrium.

a) Aus ammoniakalischer Lösung nach Pelouze.

Nach dieser Methode wurde das Kupfer aus einer ammoniakalischen, also intensiv blauen Kupferoxylösung durch eine titrierte Lösung von Schwefelnatrium gefällt. Bei gewöhnlicher Temperatur ist der so er-
zergte Niederschlag Einfach-Schwefelkupfer, CuS, das sich schwierig absetzt. Um das Absetzen zu befördern und dadurch die Farbe der Flüssigkeit sichtbar zu machen; wurde die Fällung nach Pelouse bei 60 bis 80° C. bewirkt, der entstehende Niederschlag ist dann ein Oxysulphurat \(5 \text{CuS} \rightarrow \text{CuO} \), welches sich rascher absetzt und weniger leicht oxydiert. Operiert man bei noch höherer Temperatur, etwa bei 90 bis 100° C., so besteht der Niederschlag aus noch oxydierchem Oxysulphurat und es bleibt eine unbestimmte Menge Kupfer als Oxydul in der Flüssigkeit, ohne sie zu färben. Man hat also diesen Umstand zu vermeiden. Zur Bestimmung verdünnte man die kupferblaue Flüssigkeit mit destilliertem Wasser zu etwa 200 ccbm, erwärmte sie bis zu 75° C., was man durch ein Thermometer prüfte, und liess die Schwefelnatriumflüssigkeit aus einer Blaseburette in die Flüssigkeit einlaufen. Durch lebhaftes Umschwenken klärte sich die Flüssigkeit vollständiger. Man ging damit so lange vor, bis keine Spur der blauen Flüssigkeit mehr sichtbar war. Als Urmaass diente eine reine ammoniakalische Kupferlösung, welche 10 g reines Kupfer im Liter enthält. Man kann dazu 10 g Rothkupferdraht in Salpetersäure lösen, mit Ammoniak übersättigen und zu 1 Liter verdünnen, oder 39,356 g reinen Kupferitriol, welche 10 g Kupfer enthalten, in Wasser lösen und mit Ammoniak übersättigen, dann zu 1 Liter verdünnen. Von dieser Flüssigkeit misst man 50 ccbm ab und entsättigt sie in gleicher Art mit der Schwefelnatriumlösung. Die verbrauchten Cubikcentimeter entsprechen 0,5 g Kupfer.

Diese Methode ist auf vielen Kupferhütten lange in alleiniger Anwendung gewesen und auf einigen noch im Gebrauch. Der gegrundeteste Einwurf gegen dieselbe ist die verschiedenartige Fällung des Kupfers je nach der Höhe der Temperatur, die man doch nicht so ganz in seiner Gewalt hat; ferner ist auch die blauen Farbe der Kupferlösung ein nicht hineinreichend deutliches Merkmal der vollständigen Zersetzung, da solche Lösungen bereits bis zum Farblosen verdünnt noch deutliche braune Fällungen mit Schwefelnatrium geben. Es scheint demnach richtiger, die blaue Farbe der Lösung ganz ausser Acht zu lassen und nur auf die vollständige Fällung des Kupfers zu sehen, und um zugleich die Unsicherheit der Temperatur zu vermeiden, müsste man die Fällung bei einer niederen, 35 bis 40° C. nicht übersteigenden Wärme vornehmen. Dazu verfährt man in folgender Weise.

Man verdünnt die Kupferlösung je nach ihrem muthmaasslichen Gehalt in einem etwas hohen und schmalen Stöpselglase bis zu 200 bis 300 ccbm, wozu man ausgekochtes warmes Wasser von 35 bis 40° C. nimmt. Man bewirkt die Fällung in der Stöpselflasche und befördert das Absetzen des Niederschlages durch heftiges Schütteln. Frisch gefalltes Schwefelkupfer färbt die Flüssigkeit fast durchsichtig braun. Schüttelt man heftig, so schlägt sich das suspendierte Schwefelkupfer auf das bereits gefallte ab, und die Flüssigkeit erscheint wasserhell über dem Niederschlage. So lange man am Rande der klaren Flüssigkeit braune Fällungen
entstehen sieht, lässt man zufliessen und schüttelt zuweilen um. Sobald dies zweifelhaft wird, lässt man so weit absetzen, dass eine fingerdicke Schicht einer klaren Flüssigkeit darüber steht. Jetzt lässt man aus der Bürette einzelne Tropfen an der inneren Wand des Halses der Schüttelflasche herablaufen, und beobachtet, ob noch eine braune Fällung entsteht. Diese Reaction ist so empfindlich, dass die Fällung sich mit einem einzeln Tropfen entscheidet. Sie hat Aehnlichkeit mit der Silberbestimmung von Gay-Lussac, und da die Unlöslichkeit des Schwefelkupfers wohl so gross wie die des Chlorsilbers ist, und die Klärung fast noch leichter und vollständiger geschieht, so gehört diese Bestimmung zu den ganz scharfen. Man muss sich nur einige Zeit nehmen und ab und zu die Fällung beenden. Hat sich der Niederschlag einmal recht gut abgesetzt, so thut er dies nachher um so leichter. So lange noch Kupfer in der Lösung ist, scheidet sich der Niederschlag vollständiger ab, und die Flüssigkeit ist wasserhell. Ist aber Schwefelnatrium vorwaltend, so nimmt die Flüssigkeit eine opalisirend grünliche Farbe an und das Absetzen geschieht langsamer.

b) Aus saurer Lösung.

Man bringt die zu prüfende Flüssigkeit in eine hohe und genügend geräumige Stöpselflasche (400 bis 500 cbcm), welche höchstens zu 1/3 des Volums von der ganzen Probe gefüllt wird, setzt viel freie Salzsäure zu, und verdünnt mit heissem Wasser bis zu 200 cbcm und darüber. Sodann bringt man sie unter die Bürette mit Schwefelnatrium, lässt davon einflieessen, setzt sogleich den Stöpsel auf und schüttelt tüchlig um. Der leere Raum der Flasche gestattet, dass keine Spur Schwefelwasserstoff entweicht. Der Niederschlag setzt sich nach dem Schütten leicht ab und beim Schiebenhalten der Flasche hat man eine klare Flüssigkeit über dem hellen Hintergrunde des Porzellantellers. Man lässt nun jedesmal kleine Mengen Schwefelnatrium einflieessen, schüttelt jedesmal um, und wiederholt dies so lange, bis die neuen Trübungen immer schwächer werden und auf einmal aufören. Das Erkennen der Trübung und Fällung ist sehr leicht und sicher. Aus der sauren Lösung kann sich kein oxydhaltiges Schwefelkupfer, sondern nur reinen CuS absetzen und zwar bei jeder Temperatur; auch scheidet sich aus der sauren Flüssigkeit das Schwefelkupfer durch Schütteln leicht in grossen Flocken ab.
VII. Fällungsanalysen.

Die Angaben sind sehr übereinstimmend. Den Titer der Schwefelnatriumlösung nimmt man mit einer gemessenen Menge Kupferflüssigkeit, welche 10 g Kupfer im Liter enthält.

2. Mit Cyankalium.

3. Galetti hat die Ausfällung des Kupferoxyds durch eine titirte Lösung von Blutlaugensalz (50·225 g im Liter) empfohlen, ohne dabei anzugeben, durch welches Zeichen das Ende der Reaction erkannt werden soll. Man muss also vermuthen, dass er eine Tüpfeloperation auf Filtrierpapier mit einer verdünnten Eisenchloridlösung vornimmt, wobei das Eintreten der blauen Zone das sichtbare Zeichen sein soll. Diese Art Fällungen und Prüfungen gehören zu den ungenauesten, einmal, weil die Niederschläge immer von dem Fällungsmitteln mit niederreissen, dann

1) Fresenius' Zeitschr. f. analyt. Chem. 8, 135.
Schwefelwasserstoff.

aber, weil der Fällungspunkt schon ansehnlich überschritten ist, wenn die dünne Schicht Flüssigkeit auf dem Filtrirpapier eine sichtbare Reaction gibt. Ausserdem hat der braunrothe Niederschlag von Kupferferrocyanür die böse Eigenschaft, sich ins Papier hineinzuziehen und nicht an der ersten Aufsetzstelle haften zu bleiben. Bringt man ihn frisch gefällt auf ein Filtrum, so läuft die ganze Flüssigkeit braunroth durch und das Filtrum wird bald vollkommen verstopft. Aehnlich verhält sich auch das rothe Blutlaugensalz. Die Arbeit von Galetti enthält übrigens keine Belege, woraus man die Brauchbarkeit der Methode beurtheilen könnte.

Schwefelwasserstoff.

<table>
<thead>
<tr>
<th>Namen.</th>
<th>Formel.</th>
<th>Atomgewicht.</th>
<th>1 cbem Zehntelsilberlösung ist gleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>126. Schwefelwasserstoff . .</td>
<td>SH</td>
<td>17</td>
<td>0,0017 g</td>
</tr>
</tbody>
</table>

Enthält die Flüssigkeit, welche auf Schwefelwasserstoff geprüft werden soll, Chlormetalle, so ist diese Methode weniger zu empfehlen, sondern die Arsenikmethode (S. 334) vorzuziehen.

Die Methode ist scharf wegen der bestimmten Zersetzung der Silbersalze mit Schwefelwasserstoff. Sie hat den Vorteil, dass von Anfang an
VII. Fällungsanalysen.

nach dem Zusatze des Silbers kein Verlust mehr möglich ist, so dass man in aller Ruhe fortarbeiten kann.

Unterschweßige Säure bestimmt man am besten in einer neuen Probe, aus der mit ammoniakalischer Zinklösung der Schwefelwasserstoff gefällt ist.

Harnstoff.

Empirische Lösung von salpetersaurem Quecksilberoxyd: 77,2 g reines Quecksilberoxyd in möglichst wenig Salpetersäure zu 1 Liter gelöst. 1 ccm dieser Lösung = 0,010 g Harnstoff.

Harnstoff.

Setzt man zu einer Harnstofflösung so lange salpetersaures Quecksilberoxyd, als sich ein Niederschlag bildet, so bleibt die Mischung beim Zusatz von kohlensaurem Natron weiss; lässt man aber die ursprüngliche Mischung einige Stunden stehen, so ändert sich die Beschaffenheit des Niederschlages, er wird krystallinisch und enthält nunmehr 3 At. Quecksilberoxyd. 1 At. Quecksilberoxyd ist in die saure Lösung zurückgegangen, und diese gibt nun mit kohlensaurem Natron einen gelben Niederschlag. Es geht daraus hervor, dass die Bestimmung des Harnstoffes auf diesem Wege in einem Zuge beendigt werden müsse.

So lange die mit salpetersaurem Quecksilberoxyd versetzte Harnstofflösung mit kohlensaurem Natron einen weissen Niederschlag gibt, ist noch kein Ueberschuss von Quecksilbersalz vorhanden. Es entsteht dieser weisse Niederschlag nur in Folge der Abstumpfung der freien Salpersäure, worin der Harnstoffniederschlag löschlich ist.

Um aber die Reaction mit kohlensaurem Natron hervorzubringen, muss eine gewisse Menge Quecksilbersalz im Ueberschusse vorhanden sein. Diese Menge ist in etwas von der Menge der Flüssigkeit abhängig, zu welcher die Quecksilberlösung hinzukommt.

Es hat sich durch Versuche herausgestellt, dass 0.1 g Harnstoff, zu 10 cbm Flüssigkeit gelöst, 10 cbm einer Quecksilberlösung, welche 0.772 g Quecksilberoxyd enthalten, zur Hervorbringung der gelben Reaction erfordert, während nach der Formel nur 0.720 g Quecksilberoxyd nothwendig gewesen wären. Es enthält demnach ein jedes Cubikzentimeter der Quecksilberlösung einen Ueberschuss von 0.0052 g Oxyd. Demnach wird die Masseflüssigkeit in dieser Stärke dargestellt, dass 1 cbm 0.0772 Gramm oder 1 Liter 77.2 g Quecksilberoxyd enthält.

Liebig gibt ausführlich das Verfahren an, wie man diese Massenflüssigkeit auf Harnstoff stellen könne. Es dürften aber dabei viel abweichendere Flüssigkeiten hervorgebracht werden, als wenn man die von ihm ermittelten Mengen Substanz in reinem Zustande zu bestimmten Räumlichkeiten auffüllt. Ich ziehe den folgenden Weg vor.

Da man metallisches Quecksilber sehr schwer in bestimmten Mengen abwägen kann, und da man Quecksilberoxyd sehr leicht rein und trocken haben kann, so ist die Darstellung der Masseflüssigkeit aus Quecksilberoxyd am meisten zu empfehlen. Das Quecksilberoxyd kann man sich aus mehrmals umkrystallisirtem salpetersaurem Quecksilberoxydul durch Brennen in einer Porzellananschale leicht bereiten. Auch erhält man im Handel Oxyd, welches zu diesen Zwecken rein genug ist, weil hier die grosse Reinheit, wie wir sie bei Anwendung des Kaliumeisencyanids zur Bestimmung des Chlors als nothwendig erkannt haben, gar nicht erfordert wird. Ein Quecksilberoxyd, welches beim Erhitzen auf Platinblech keinen ins Gewicht fallenden Rückstand zurücklässt, kann unbedenklich verwendet werden.

Es werden 77.2 g Quecksilberoxyd genau abgewogen, in einer Porzellananschale unter Erwärmung in wenig reiner Salpersäure gelöst, zur
VII. Fällungsanalysen.

Syrupdicke abgedämpft und dann zu 1 Liter verdünnt. Nötigenfalls wird noch so viel Salpetersäure tropfenweise zugesetzt, bis ein etwa entstandener Niederschlag sich wieder gelöst hat.

Der Gründe, warum wir der Quecksilberlösung keine systematische Stärke, Normal oder Zehntelnormal geben, sind zwei:

1. Die Zehntellösung, mit 10,8 g Oxyd im Liter, ist zu verdünnt, um die Reaction mit kohlensaurem Natron zu geben, und es würden für 0,2 g Harnstoff große Mengen bis zu 140 cbcm Flüssigkeit erfordert werden, was ein mehrmaliges Füllen der Bürette erheblichen würde.

2. Eine normale Stärke ist wegen der eigenthümlichen Reaction, welche einen Überschuss des Fällungsmittels erfordert, ebenfalls ohne Nutzen. Um deshalb den Harnstoff sogleich in Procenten zu erhalten, ist die empirische Stärke beibehalten worden.

Hat man 10 cbcm einer Harnstofflösung abgemessen, so sind die bis zur Hervorbringung der Reaction verbrauchten Cubikcentimeter, nachdem man das Komma um eine Stelle zur Linken gerückt hat, Procente von Harnstoff. Da 1 cbcm der Quecksilberflüssigkeit 0,010 g Harnstoff anzeigt, so werden 10 cbcm 0,1 g Harnstoff anzeigen. 0,1 g ist 1 Procent von den 10 cbcm der Harnstofflösung, und die 10 cbcm der Quecksilberlösung geben, wenn man den Punkt um eine Stelle zur Linken rückt, 1,0 Proc. Der Versuch wird dann in der folgenden Art gemacht. Man pipettiirt 10 cbcm der Harnstofflösung in eine Flasche, aus welcher sich leicht ausgiessen lässt, und bestreicht den Rand noch mit etwas Talg. Jetzt lässt man die Quecksilberlösung einfließen. So lange man noch Niederschlag entstehen sieht, fährt man damit fort. Sobald dies zweifelhaft wird, giesst man etwas von der Flüssigkeit auf ein Uhrglas und bringt einige Tropfen einer Lösung von kohlensaurem Natron hinzu. Sobald nur ein weisser Niederschlag entsteht, giesst man ihn von dem Uhrglase in die Flasche zurück und lässt eine neue Menge Quecksilberoxydlösung hinzu, etwa 1/2 cbcm auf einmal, und wiederholt dieselbe Probe. Wenn an der Berührungsstelle des kohlensauren Natrons mit der Flüssigkeit die leiseste Spur einer gelben Färbung erscheint, ist die Operation beendet. Um hierbei die richtige Stärke der Reaction zu erkennen, wägt man 0,1 g reinen Harnstoff ab, löst in 10 cbcm Wasser und setzt 10 cbcm Quecksilberlösung hinzu. Dieselbe Erscheinung, die jetzt eintritt, muss man auch bei Versuchen mit unbekannten Mengen hervorbringen suchen.

Zum Eintropfeln des kohlensauren Natrons bedient man sich der schon früher beschriebenen Pipette mit Kautschukbeutel, Fig. 121, welche beim leisesten Drucke eine beliebige Menge der Flüssigkeit ausfließen lässt.

Die gleichzeitige Berücksichtigung anderer störender Stoffe, wie Phosphorsäure und Kochsalz, wird im angewandten Theile unter der Harnanalyse berührt werden.
Traubenzucker.

Bei der Fällung des Niederschlages durch das salpetersaure Quecksilberoxyd wird die Flüssigkeit stark sauer, weil die Salpetersäure austritt, die mit dem niedergeschlagenen Quecksilberoxyd in Verbindung war. Es gibt auch kein eigentliches Mittel dies zu vermeiden, da man eine basische Quecksilberoxydlösung nicht darstellen kann, und aus einer neutralen Lösung schon das Quecksilberoxyd von selbst herausfällt. Kohlsaure Bittererde zersetzt schon allein das salpetersaure Quecksilberoxyd, in welchem sich die Salpetersäure fast wie eine freie Säure verhält.

Man kann einzig nur von Zeit zu Zeit einige Tropfen kohlsaures Natron zusetzen, so lange dies einen rein weissen Niederschlag erzeugt. Die Reaction wird dadurch empfindlicher, weil sich jetzt auf dem Uhrglas eine kleinere Menge des weissen Niederschlages ausscheidet, der gelbe also um so leichter sichtbar wird.

__Traubenzucker.__

\[\text{C}_{12}\text{H}_{12}\text{O}_{12} = 180. \]

(Honigzucker, Krümelzucker, Fruchtzucker, Stärkezucker, Harnzucker.)

Der wasserfreie, bei 100° C. vollständig ausgetrocknete Traubenzucker besteht aus gleichen Atomen Kohlenstoff, Wasserstoff und Sauerstoff. Der gewöhnliche krümliche Traubenzucker enthält außerdem noch 2 Atome Wasser. Der nach dem patentirten Verfahren von Fr. Anthon bereitete feste Traubenzucker enthält nur 1 Atom Wasser und ist also \[\text{C}_{12}\text{H}_{12}\text{O}_{12} + \text{H}_2\text{O}. \] Bei der Bestimmung des Traubenzuckers können wir nur auf den wasserfreien zurückgehen, da sich die Hydrate nicht sicher herstellen und halten lassen.

Oder nach Schwarz 2), wodurch man ein vorzügliches Resultat erhält. Man versetzt 80 procentischen Weingeist mit 1/15 seines Volums rauchender Salzsäure, und trägt feingepulverten weissen Rohrzucker nach und nach ein, bis nach ätherischem Umschütteln das Lösungsvermögen gesättigt ist. Man gießt die syrumpartige Flüssigkeit in einen unten ver-
Traubenzucker.

Die quantitative Bestimmung des Traubenzuckers gründet sich auf die Zersetzung einer alkalischen Kupferlösung. Das Kuperoxxyd ist jedoch nur in alkalischen Flüssigkeiten löslich, welche fixe organische Säuren, wie Weinsäure oder Zitronensäure, enthalten. Wenn eine solche Kupferlösung mit Traubenzucker erwärmt wird, so wird sie zuerst grünlich und trüb, dann wechselt die Farbe rasch bei fortwährender Erwärmung durch verschiedene Töne von Braun und Grün, bis sie endlich durch ein dunkles Roth in ein brennendes Roth übergeht.

Fehling fand, indem er zu einem bestimmten Volum der Kupferlösung eine titrirte Lösung von bei 100°C. getrocknetem Traubenzucker zusetzte, bis das Kupfersalz vollkommen zersetzt war, dass auf 1 Atom Traubenzucker 10 Atome Kupfervitriol kamen. Diese Thatsache wurde auch von Neubauer und Anderen bestätigt. Danach würden 180 Trauben Zucker 1246·8 g Kupfervitriol zersetzen, oder auf 5 g Traubenzucker kommen 34·64 g Kupfervitriol.

Es wird demnach die Fehling'sche Flüssigkeit in der Art bereitet, dass man 34·64 g reinen Kupfervitriol abwägt und ihn in etwa 160 cbm Wasser auflöst; auf der anderen Seite löse man 150 g neutrales, weinsaures Kali in 600 bis 700 cbm ätzender Natronlauge von 1·12 specif. Gewicht in der Literflasche selbst auf und setze die Kupferrauflosung all-

1) Liebig's Annalen der Chemie und Pharmacie, Bd. 72, S. 106.
mälig unter Umrütteln hinzu. Nach geschehener Vermischung und Auflösung fülle man die Literflasche bis an die Marke an. Von dieser Flüssigkeit wird eine bestimmte Menge abgemessen, gewöhnlich 100 ccm, und in einer Porzellanflasche bis nahe zum Kochen erhitzt, wobei sie selbst nicht getrübt werden darf, und dann wird die zuckerhaltige Flüssigkeit aus einer Blasebürette (S. 22, Fig. 30) hinzugefügt. Es ist wesentlich, dass die trocknen Seiten der Porzellantasse nicht erhitzt werden, weshalb man diese Schale auf einen passenden Metallring setzt. Man rührt die Flüssigkeit mit einem Glasstreifen, der von Scheibenglas abgeschnitten ist, leise um. Sobald die Flüssigkeit kochend heiss ist, mässigt man die Flamme, dass Sieden nicht mehr stattfindet, und bläst die Zuckerlösung auf den in der Flüssigkeit stehenden Glasstab, so dass sie sich auf der Oberfläche verbreitet. Man rührt nicht um, sondern wartet 5 bis 6 Sekunden lang, wo sich auf der Oberfläche ein leichtes gelbgrünliches Wölkchen zeigt, welches Kupferoxydulhydrat ist. Jetzt rührt man um, wodurch es verschwindet, und so führt man mit dem Zusatz der Zuckerlösung fort, bis sich in der ruhigen Flüssigkeit dieses Wölkchen nicht mehr zeigt. Der rothe Niederschlag erscheint um so dunkler, je blauer die Flüssigkeit ist, und wird mit zunehmender Zersetzung der Kupferlösung immer brennender roth. Die Farbe der Flüssigkeit zu beachten nützt nur bei ganz reinen Stoffen; bei allen natürlichen zuckerhaltigen Säften ist entweder schon Farbe vorhanden, oder sie bildet sich aus der Einwirkung des Atznatrons auf andere Stoffe. Die Bildung der gelben Schichte von Kupferoxydul ist das einzige sichere Zeichen das Ende der Operation zu beurtheilen. Da das Kupferoxydul sich nach einigem Erhitzen ziemlich leicht absetzt, so hat man versucht, mit chemischen Reagentien die Gegenwart von Kupfer nachzuweisen. Aber weder Blutlaugensalz noch Schwefelnatrium, noch die Läthrohrprobe mit Chlorarilber 1) sind so bequem, als die Beobachtung der Flüssigkeit selbst, da sie die Arbeit in eine Tüpfeloperation verwandeln, bei der alles von der vollständigen Absetzung des Kupferoxyduls abhängt.

Einige Analytiker rathen die Zuckerflüssigkeit bis auf 1/2 Proc. zu verdünnen, die Zersetzung in einem hohen Kölbcchen vorzunehmen, um die Farblosigkeit der Flüssigkeit zu beurtheilen. Man muss alsdann jedesmal absetzen lassen, denn kleine Mengen des schwimmenden Kupferoxyduls vernichten ganz den kleinen Rest blauer Farbe; derselbe erscheint aber deutlich, sobald sich der letzte Rest Kupferoxydul abgesetzt hat. Zuweilen scheint es, als hätte sich nochmals etwas Kupfer zu Oxyd verwandelt, während das Hervortreten der blauen Farbe nur von dem Absetzen des letzten Kupferoxyduls abhängt. Dieser Körper ist gar nicht sehr oxydabel und kann selbst auf dem Filtrum getrocknet werden, ohne seine Farbe zu verändern. Das von mir zur Beurtheilung gewählte gelbe Wölkchen von Kupferoxydul erscheint auf der Oberfläche der Flüs-

1) Liebigs’s Annalen der Chemie und Pharmacie, Bd. 96, S. 90.
Traubenzucker.

sigkeit und ist von ihrer Farbe gar nicht beeinflusst. Sobald es erschiene ist, kann man wieder weiter zusetzen, was viel rascher stattfindet, als das Klarwerden durch Abspülung. Wein und Bier kann man ohne Weiteres in die Bürette nehmen, Most verdünnt man bis etwa zum fachen Volum mit Wasser, wenn man den natürlichen Gehalt auf 16 bis 20 Proc. Traubenzucker schätzt.

Die Fehling'sche Lösung ist jedoch bei langem Aufbewahren der Zersetzung unterworfen, insbesondere durch das Licht, so dass sich die Flaschen an der Lichtseite mit einem Panzer von Kupferoxydul inwendig überziehen. Diesem muss dadurch vorgebeugt werden, dass man die Flüssigkeit in undurchsichtigen Gefäßen von Porzellan, Steinzeug, grünen Mineralwasserflaschen oder unter einer Papphülse aufbewahrt. Eine verdorbene Flüssigkeit ist schwer wieder zurecht zu bringen, und muss entweder weggeworfen, oder auf neuen Zucker titriert werden. Ausserdem enthält die Lösung eine unverhältnismässig grosse Menge weinstein-saurer Salze, die wohl die Lösung, aber nicht die Haltbarkeit bedingen können. Barrereswill machte seine Flüssigkeit aus Weinsteins, kohlen-saurem Natron und Aetzkali, und es ist kein Grund vorhanden, warum dieselbe nicht ebenso haltbar sein soll, und gleichwohl gilt die Ansicht, dass sie es nicht sei. Um diese Nichthaltbarkeit zu beseitigen und ebenfalls den Ueberschuss von weinstein-sauren Salzen zu vermeiden, bedient man sich des gefallten weinteinsauren Kupferoxyds, welches die neutrale Verbindung enthält und in ätzenden Alkalien mit azurblauer Farbe vollkommen loslich ist. Um dieses Salz zu bereiten, muss man die richtigen Mengen der sich zersetzenden Salze auf einmal zusammenbringen, weil jeder Ueberschuss des einen oder des anderen Salzes an sich und durch Doppelsalzbildung einen Verlust herbeiführt. Man nehme 250 g kristallisierten Kupfervitriol und löse ihn in einer Porzellan schale in wenig Wasser mit Hülfe der Wärme auf; ebenso in einer anderen Schale 280 g Natronweinstein (Seignettesalz). Es wird sich zeigen, ob eine Filtration nothwendig ist. Man schüttelt die beiden warmen Lösungen plötzlich zusammen, wo sich dann eine reichliche Menge eines hellblauen Pulvers absondert. Man rührt stark um und lässt erkalten. Das ausgeschiedene Salz wird auf einem Filtrum ausgewaschen, wenn man es ganz rein haben will, bis zum Aufhören der Schwefelsäurereaction mit Barytsalzen. Will man aber das Salz auf reinen Traubenzucker titriren, so ist eine solche Reinheit nicht nöthig. Man trocknet an der Luft bis zur Pulverform. Das lufttrockne Salz hat die Formel $C_4H_2O_5$, $CuO + 3H_2O = 132.68$ und enthält 29.64 Proc. Kupferoxyd; das in kochender Salzlösung durch Luftzug getrocknete wasserleere Salz hat die Formel $C_4H_2O_5$, $CuO = 105.68$ und enthält 37.568 Proc. Kupferoxyd.

Um eine der Fehling'schen Lösung gleich starke Kupferlösung mit diesem Salz zu machen, hat man für 0.5 g Zucker den Ansatz:

$$180 : 10 \times 132.68 = 0.5 : 3.686 \text{ g.}$$
VII. Fällungsanalysen.

Es wären also 3,686 g des reinen lufttrocknen Salzes = 0,5 g Traubenzucker; und ebenso hätte man für die gleiche Menge Trauben-
zucker 2,935 g des wasserleeren Salzes abzuwägen, wenn man sich seiner
Zusammensetzung versichert hat, und die Titerstellung auf Zucker um-
geben will.

Wenn man die Salzlösungen kalt mischt, so gestehen sie zu einer
Gallerte von einem hydratischen Niederschlag, der sich aber nicht lange
als solcher hält, sondern schon unter Wasser, besonders in der Wärme,
zu dem dichten Salz und einer darüber schwach von Kupfer gefärbten
Flüssigkeit sich trennt. Die abfiltrierte Flüssigkeit ist fast immer anfängs
von Kupfer gefärbt; denn wenn weinsteinosaures Salz im Ueberschuss ist,
so entsteht ein Doppelsalz; und ist Kupfervitriol im Ueberschuss, so ist
sie von diesem gefärbt. Der letzte Fall ist vorzuziehen. Nachdem das
Pulver getrocknet und in einem Mörser zu Staub zerrrieben ist, füllt man
es in ein Glas und unterwirft es der Titration auf reinen wasserfreien
Stärkezucker. Man macht sich zu diesem Zwecke eine genaue Lösung,
welche 2 Proc. Zucker enthält; man löse also 2 g trocknen Zucker zu
100 cbcm oder 4 g zu 200 cbcm. Diese Lösung füllt man in eine Blase-
bürette. Von dem Kupfersalz löse man nun 2 g in Aetznatron auf; von
der Stärke, wie man es bei der Kautschierung durch Kalk mit dem Heber
von dem kohlensauren Kalke abzieht, was annähernd die doppelte Stärke
des Normalnatrons hat. Das Kupfersalz löst sich darin zu einer intensiv
blauen Flüssigkeit auf, die durch Kochen keinen Absatz gibt. Man erhitzt
in einer Porzellanschale bis zum Kochen und misst die Flüssigkeit
in der oben beschriebenen Weise mit der reinen Zuckerlösung ab. Da-
nach berechnet man diejenige Menge Kupfersalz, welche für 0,5 oder 1 g
Traubenzucker erforderlich wäre. Diese Mengen wägt man genau ab,
und fasst sie in Glasröhren ab, die man verstopft und in einer Schachtel
aufrechtstehend und gegen Licht geschützt zum Gebrauche aufbewahrt.
Dadurch ist man gegen jede Veränderung des Kupfersalzes durch Aus-
trocknen geschützt.

Für einen solchen Fall wurden 2 g Kupferatrat abgewogen, und
erforderten 14,8 cbcm der zweiprozentigen Zuckerlösung. Darin sind
enthalten
\[
\frac{2}{100} = 0,0296 \text{ g Zucker; nach der Proportion}
\]
\[
0,296 : 2 = 0,5 : x
\]
findest man, dass 3,378 g des Kupfersalzes gleich 0,5 g Traubenzucker
sind. Diese Menge wurde 2 mal abgewogen und erforderte jedesmal
25 cbcm Zuckerlösung oder 0,5 g Zucker.

Da jeder zuckerhaltige zu untersuchende Stoff in die Bürette kom-
men muss, so macht man davon eine Auflösung, deren Volum man genau
bestimmt; und weil noch einige andere Stoffe zersetzend auf die Kupfer-
lösung wirken, die schweflige Säure, arsenige Säure, unterschwefligsäure
Salze, Aldehyd, Chloroform, Salicin, Harnsäure, so benutzt man die Lü-
sung zugleich, einen Theil dieser Körper auszuscheiden oder zu verflüchtigen. Um zugleich bei Pflanzensäften Eiweiss und Farbstoff abzusondern, bereitet man sich diese Lösung mit wenig Kalkmilch, filtrirt, und verdünnt zu einem zu bestimmenden Volum. Daraus kann man die Menge des angewandten Körpers, sei er flüssig gewesen (Most, Bier), oder fest (Stärkezucker, Früchte) immer berechnen.

Es war die Güte eines käuflichen Stärkezuckers zu bestimmen. Es wurde deshalb eine Lösung von 2 Procent (10 g zu 500 cbcm) gemacht.

Auf 3,378 g Kupfertartrat wurden 37,8 cbcm der 2 procentigen zu untersuchenden Zuckerlösung verbraucht. Die Berechnung geschieht nun entweder so, dass man sagt, von der reinen 2 procentigen Zuckerlösung werden 25 cbcm verbraucht, von der unreinen 37,8 cbcm; der Gehalt ist also \(\frac{25}{37,8} = 66,1 \) Procent reiner Zucker; oder 37,8 cbcm enthalten 0,756 g des zu untersuchenden Zuckers, und darin sind 0,5 g reiner Zucker enthalten; also der Gehalt \(\frac{0,5}{0,756} = 66,1 \) Procent.

Wenn 200 cbcm 11,57 g Substanz enthalten, so enthalten 49,5 cbcm 2,863 g Substanz, und hierin sind 0,5 g Stärkezucker enthalten oder 17,25 Procent.

Eine Bestimmung des Traubenzuckers, welche sich auf die Messung des ausgeschiedenen Kupferoxyduls gründet, ist zulässig, wenn man Sorge trägt, dass eine überschüssige Menge Kupferlösung angewendet werde. In diesem Falle wird die Fehling'sche Kupferlösung zum Kochen gebracht und die gewogene Zuckermenge, oder entsprechende Menge zuckerhaltiger Flüssigkeit (Most, Bier etc.) derselben allmählich zugesetzt, so aber, dass immer noch Kupfer oxyd in Lösung bleibt, was durch die Farbe oder eine Reaction erkannt wird. Durch Kochen bewirkt man die Verdichtung des Kupferoxyduls, welches durch ein Filter abgeschieden und ausgewaschen wird. Das Filtrum samt Niederschlag wird mit schwefelsaurem Eisenoxyd und Schwefelsäure in einer Stöpselflasche geschüttelt, und nach vollständiger Auflösung des Kupferoxyduls mit \(\frac{1}{10} \) Chamäleon (3,162 g Salz zum Liter) ausgemessen. 1 cbcm \(\frac{1}{10} \) Chamäleon ist gleich 0,0036 g wasserleerem Traubenzucker. Da nämlich der Trauben Zucker 10 At. Kupferoxyd reducirt, diese aber nur 5 At. Kupferoxydul geben, so kommt, da hier das Kupferoxydul gemessen wird, nur der fünfte Theil von 1 Atom des Traubenzuckers zur Berechnung. Es ist aber \(\frac{0,0180}{5} = 0,0036. \)

Mohr's Titirbuch.
Wendet man die empirische Chamäleonlösung mit 5·646 g überman-
gansaurem Kali im Liter an, so leitet uns die folgende Betrachtung: 180 Traubenzucker sind gleich 5 Cu₂O, und diese fordern soviel Sauer-
stoff, wie das Oxydul von 10 At. Fe; also 180 Traubenzucker = 10 × 28
= 280 Fe. Der Traubenzucker beträgt also \(\frac{180}{280} \) = 0·642 mal das
Eisen, welches an der Bürette der Chamäleonlösung abgelesen wird. Also allgemein Fe × 0·642 = Traubenzucker (vergl. S. 226).

Julius Loewe ¹) hat die Eigenschaft des Glycerins, die Fällung
des Kupferoxyds zu verhindern, zu derselben Analyse benutzt. Man löst
den Kupfervitriol in Wasser, setzt ungefähr die Hälfte Glycerin zu, und
dann Natronhydratlösung bis zur tief azurblauen Farbe. Es tritt hier
das Glycerin an die Stelle des weinsauren Salzes. Die Erscheinungen
sind ganz dieselben, wie im ersten Falle. Einen besonderen Vorzug kann
man dem Glycerin vor dem Seignettesalz nicht einräumen, vielmehr muss
man prüfen, ob das käufliche Glycerin nicht mit Stärkezucker, Dextrin
oder Rübenzucker verfälscht war. Die fertige Lösung muss Siedhitze
vertragen, ohne einen Absatz zu geben. Die jedesmalige Lösung be-
stimmter Mengen weinsauren Kupferoxyds scheint einfacher und kürzer
zu sein.

Eine Parallelmethode ist von K. Knapp ²) angegeben worden. Cyan-
quecksilber in alkalischer Lösung wird von Traubenzucker vollständig
zu Metall reduziert. Das Ende der Wirkung wird erkannt, wenn ein
Tropfen der Flüssigkeit, auf ein Stück Filtrirpapier gebracht, über ein
Glas mit starkem Schwefelammonium am Rande nicht mehr braun ge-
färbt wird. Der Niederschlag wird in jedem Falle gefärbt. Nach Ver-
suchen werden 0·4 g Cyanquecksilber durch 0·1 g Traubenzucker beim
Sieden reduziert. Die Maßflüssigkeit wird aus 10 g Cyanquecksilber
in Wasser gelöst, 100 cbem Natronlauge von 1·145 specif. Gewicht zu
1000 cbem verdünnt, bereitet. Einen Vorzug vor der Trommer’schen
Probe besitzt die neue Methode nicht, vielmehr ist die Reactionerschei-
nung viel umständlicher hervorzurufen.

¹) Fresenius' Zeitschr. f. anal. Chem. 9, 20 und 224; 10, 452.
²) Liebig's Annalen der Chemie und Pharmacie 154, 252; Fresenius' Zeitschr. f. anal. Chemie 10, 395.
Achter Abschnitt.

Angewandter Theil.

Hölzascbe.

Zur Ermittelung des mutmasslichen Productes an Pottasche aus einer gegebenen Holzasche wird eine nicht zu kleine Menge Holzasche, 10 bis 20 g, kochend heiss ausgezogen, bis das abfließende Wasser kaum mehr alkalisch reagirt. Ein Eindampfungsversuch in einer gewogenen Porzellan- oder Platinschale und Erhitzen bis zum Glühen gibt das ganze Gewicht der unreinen Pottasche. Man löst wieder in Wasser auf, verdünnt zu 300 ccm, nimmt 100 ccm heraus, setzt rothe Lackmustintur hinzu und bestimmt das kohlensaure Kali mit einer Normalsäure in bekannter Art. Da der Auszug der rohen Holzasche häufig sehr stark gefärbt ist, so ist das vorgenommene Erhitzen bis zum Glühen auch hierfür dienlich gewesen, indem dadurch die Farbstoffe zerstört wurden. Eine braun gefärbte Lösung von kohlensaurem Kali kann man nur mittelst Betupfens von Lackmuspapier austitriren.

Die Bestimmung des ganzen Gehaltes an kohlensaurem Kali und kohlensaurem Kalke kann in folgender Art geschehen. Man wäge eine bestimmte Menge Asche, etwa 5 g ab, bringe sie in eine Kochflasche und lasse Normalsalzsäure hinzu, bis diese entschieden im Ueberschusse ist. Man kochte bis zum vollständigen Austreiben der Kohlensäure und filtrire. Das Auswaschen mit heissem Wasser wird bis zum Aufhören der Reaction auf blauen Lackmuspapier fortgesetzt. Im Filtrat bestimmt man den Ueberschuss der Normalsalzsäure durch Normalkali. Man erhält so die ganze Alkalität der Holzasche.

(2 g Cigarrenasche sättigten im Ganzen 23'95 ccm Normalsalzsäure. Der gefällte kohlensaure Kalk sättigte allein 18'3 ccm; folglich das
Kali 5·65 cbcm. Es berechnen sich nun 18·3 cbcm Normalsalzsäure zu 0·915 g = 45·75 Proc. kohlensaurem Kalk; und 5·65 cbcm Normalsalzsäure zu 0·390 g = 19·52 Proc. kohlensaurem Kali.

Eine andere Methode, das Kali und den Kalk einzeln zu bestimmen, kann in der Art ausgeführt werden, dass man das Kali als Chlorkalium darstellt und dann seinen Chlorgehalt bestimmt.

Man löse 1 bis 2 g Asche in reiner Salzsäure auf und falle sogleich mit ätzendem und kohlensaurem Ammoniak unter Erwärmung. Man filtriere, und dampfe das Filtrat in einer Porzellan- oder besser Platinschale zur Trockne ein. Aus der Salzmasse muss man nun den Salmiak durch starkes Erhitzen vertreiben. Diese Arbeit zieht leicht Verluste nach sich, wenn die Salzmasse vor dem beginnenden Heisswerden nicht vollkommen trocken ist. Man kann auch die Schale nicht mit einer Glasplatte oder Papierscheibe bedecken, weil die auffliegenden Salzteilchen an der bereits verdächtigen Flüssigkeit kleben bleiben und dann nicht mehr in die Masse kommen können. Am besten ist es, die eingetrocknete Salzmasse in einem heissen Trockenschränke oder unter der Feuerschale einer Herdplatte längere Zeit stehen zu lassen. Der Salmiak wird durch genügendes Erhitzen verflüchtigt, was man daran erkennt, dass keine weissen Dämpfe mehr aufsteigen.

Das Chlor wird aus dem wässerigen Auszuge der Asche nach dem Neutralisieren mit Salpetersäure durch Zehntelsilberlösung und chromsaures Kali bestimmt (S. 354).

\[(1 \text{ g Cigarrenasche erforderte } 10·2 \text{ cbcm } \frac{1}{10} \text{-Silberlösung} = 0·05963 \text{ g} = 5·96 \text{ Proc. Kochsalz.}\]

Die Schwefelsäure wird nach der Restmethode mit Chlorbaryum bestimmt (S. 129) oder gewichtsanalytisch.

(Das Filtrat von 1 g Cigarrenasche erhielt 10 cbcm Normalchlorbaryumlösung, dann wurde mit kohlensaurem Ammoniak ausgefällt, und der ausgesäuste Niederschlag mit Normalsalpetersäure gemessen. Er entsprach 9·4 cbcm derselben; der auf schwefelsaures Kali zu berechnende Rest ist also 10 — 9·4 = 0·6 cbcm N. Salpetersäure = 0·052266 g = 5·2266 Proc. schwefelsaures Kali.)

Eisenoxid kann durch eine besondere Aufschliessung in Salzsäure, Reduction mit Zink, und Bestimmen mit Chamäleon oder doppelt kohlensaurem Kali erhalten werden. Die Bestimmung der Phosphorsäure
macht besondere Schwierigkeiten. Gewöhnlich erhält man sie in zwei Portionen.

Man löst eine größere Menge der Asche, 5 bis 10 g, in Salpetersäure warm auf, setzt salpetersauren Baryt zu, um alle Schwefelsäure zu fällen, filtrirt und versetzt mit essigsaurem Natron. Es fällt phosphorsaures Eisen oxyd nieder, welches man durch Filtration trennt, auswäscht, mit Zink reduziert und mit Chamäleon bestimmt. Der größere Theil der Phosphorsäure ist als phosphorsaurer Kalk und Baryt in Essigsäure gelöst. Aus dieser Lösung kann man die Phosphorsäure, nach Pincus, mit essigsaurem Uran oxyd fällen; oder man kann mit essigsaurem Blei oxyd fällen, und das dreibasisch-phosphorsaure Bleioxyd nach dem Auswaschen glühen, und nach Gewicht bestimmen.

Ausgelaugte Holzasche.

Zunächst muss eine richtige Probe gezogen werden, damit man den Mittelwerth des ganzen Vorrathes erhält. Die größeren Theile müssen zer klopft, und aus dem grübligen Pulver diejenige Menge genommen werden, welche zur Analyse bestimmt wird. Sehr feines Pulver ist nicht absolut nothwendig, da sich die bezüglichen Stoffe leicht in Säuren lösen.

Kohlensaurer Kalk und kohlensaures Kali werden im Ganzen, wie bei der Asche, durch Normalsalzsäure bestimmt, indem man in einer überschüssigen aber gemessenen Menge dieser Säure löst, dann filtrirt und auswäscht; und im Filtrate den Überschuss der Säure mit Normal kali bestimmt.

Das Kali kann man direct bestimmen, wenn man die ausgelaugte Asche in reiner Salzsäure löst, wobei man nur einen kleinen Überschuss

Das Kali kann man auch als Weinstein bestimmen. Man löst die Holzasche in möglichst wenig Salpetersäure, und fällt sogleich kochend mit kohlensaurem Natron ebenfalls ohne grossen Ueberschuss, bis rothes Lackmuspapier eben gebläut wird. Man filtrirt, sättigt das über- schüssige kohlensaure Na
tron mit Weinsäure, setzt doppelt weinsaures
Natron zu und dampft zur Trockenheit ab, wie S. 154 beschrieben wurde. Die trockene Salzmasse zieht man mit kaltgesättigter Weinseinlösung aus, bis die ablaufende Flüssigkeit nicht saurer ist, als die Weinsein-
lösung selbst. Den ausgewaschenen Weinstein titrirt man mit Normal-
kali oder Natron.

Die Phosphorsäure bestimmt man, wie bei der rohen Asche soeben
gewiesen wurde.

1 g ausgelagerte Holzasche wurde in Salzsäure gelöst, mit reinem
und kohlensaurem Ammoniak gefällt, filtrirt, zur Trockne eingedampft
und zur Vertreibung des Salmiaks geglüht. Die Salzmasse in Wasser
gezogen und mit Zehntelsilberlösung titrirt, erforderte 10·1 cbem Zehntel-
silberlösung. Berechnet man dieses auf kohlensaures Kali, indem man
mit 0·006911 multipliziert, so ergeben sich 0·0698 g = 6·98 Proc. kohlens-
aures Kali.

1 g derselben ausgelagten Holzasche mit Salzsäure zur Trockne
gebracht, gelöst, filtrirt und mit Zehntelsilberlösung gemessen, erforderte
davon 108 cbem.

Ziehen wir die dem Chlorkalium entsprechenden 10·1 cbem Zehntel-
silberlösung von der Gesammtsumme der 108 cbem ab, so bleiben
97·9 cbem Zehntelsilberlösung als dem Chlorkalzium resp. kohlensaurem
Kalk entsprechend. Diese mit 0·0050 multipliziert geben 0·4895 g gleich
48·95 Proc. kohlensauren Kalkes.

Pottasche.

Kohlensaures Kali.

Wenn es sich ausschliesslich um den Gehalt an kohlensaurem Kali
handelt, so genügt das bereits (S. 101) beschriebene Verfahren. Man
wägt 1/10 At. = 6·911 g Pottasche ab, löst in heissem Wasser auf und

Eine dritte Methode besteht darin, dass man die Pottasche durch Kochen mit Kalkhydrat kausticirt, die Flüssigkeit in einem 300 ccmb Glase absetzen lässt und 100 ccmb davon mit Normalsäure amsitzt. Die Flüssigkeit noch Kalk auflöst, so hat man für jede 100 ccmb 4.5 ccmb Normalsäure in Abzug zu bringen. Die Entscheidung des Endes ist wegen Abwesenheit der Kohlensäure viel bestimmter, dagegen wird die grössere Mühe des Kausticirens und die Korrektion wegen des gelösten Kalkes der Methode keinen Eingang verschaffen.

Die hauptsächlichsten im Handel vorkommenden Pottaschesorten werden gewonnen

1) aus Holzasche,
2) aus schwefelsaurem Kali nach dem Leblanc’schen Prozess,
3) aus Schlempekohle,
4) aus Schafwollsweiss (Oesypus).

Nachdem 10 g der zu untersuchenden Pottasche in einem dichten Metallpflänchen (auch Porzellan oder Platina) so weit erhitzt worden sind, dass eine aufgelegte Glasplatte nicht mehr beschlagen wurde, gewinnt man auf der Wage die Menge der Feuchtigkeit. Man löst in heissem Wasser, filtrirt mit Auswaschen in einem 500 ccmb Kolben und bestimmt die unlöslichen Bestandtheile auf dem vorher tarirten Filter.
1) 50 cbcm dieser Lösung werden mit Normalsalzsäure gemessen und der gefundene Alkaligehalt auf kohlensaures Kali berechnet.

2) 50 cbcm werden mit Salpetersäure neutralisiert und das Chlor mit $\frac{1}{10}$ Silberlösung und chromsaurem Kali bestimmt.

3) 100 cbcm werden nach Ansäuren mit Salzsäure mit Chlorbaryum heiss gefällt und der schwefelsaure Baryt auf schwefelsaures Kali berechnet.

Das in 2) und 3) ermittelte schwefelsaure Kali und Chlorkalium wird auf kohlensaures Kali umgerechnet und von dem in 4) gefundenen abgezogen. Der Rest gibt den wirklichen Gehalt an kohlensaurem Kali, zieht man den Rest von dem in 1) durch Titriren gefundenen kohlensauren Kali ab, und rechnet den Rest auf kohlensaures Natron um, so erhält man den Gehalt an diesem Salze.

Als Beispiel möge eine Pottasche aus der Fabrik von Vorster und Grünberg in Kalk bei Deutz dienen, welche nach dem Leblanc'schen Prozess dargestellt ist.

10 g wurden bei 120°C. getrocknet. Gewichtsverlust 0,087 g = 0,87 Proc. Feuchtigkeit.

Nach dem Lösren in heissem Wasser wurden die unlöslichen Stoffe auf dem getrockneten Filter zu 0,023 g = 0,23 Proc. bestimmt.

Die Lösung wurde auf 500 cbcm gebracht.

1) 50 cbcm davon (= 1 g Substanz) erforderten 13,9 cbcm Normalsalzsäure $\times 0,06911 = 0,9606$ g = 96,06 Proc. kohlensauren Kalis.

2) 50 cbcm mit 13,9 cbcm Normalsalpetersäure und mit einigen Tropfen neutralen chromsauren Kalis versetzt erforderten 3,2 cbcm $\frac{1}{10}$ Silberlösung. $3,2 \times 0,007457 = 0,0238$ g = 2,38 Proc. Chlorkalium.

3) 100 cbcm (= 2 g Substanz) mit Salzsäure und Chlorbaryum gefällt gaben 0,019 g schwefelsauren Baryt. $0,019 \times 0,747 = 0,0142$ g $= 0,71$ Proc. schwefelsauren Kalis.

4) 20 cbcm der nach 4 oben behandelten Lösung, entsprechend 0,20 g Substanz, gaben 0,683 g Chlorplatinkalium. Diese mit 0,2832 multipliziert geben 0,19342 g = 96,71 Proc. kohlensauren Kalis.

1) Ich würde vorziehen die 50 cbcm mit nassem kohlensaurem Baryt und Kohlen säure zu digerieren, dann in dem 100 cbcm-Kolben zu filtriren und bis an die Marke anzufüllen. Jeder Uberschuss von Baryt ist dann von selbst vermieden (vergl. S. 129).
2.38 g Chlorkalium = 2.38 \times 0.9268 = 2.20 \text{ kohlens. Kali}
0.71 \text{ schwefelsaures Kali} = 0.71 \times 0.7934 = 0.56
\text{Summe} = 2.76 \text{ kohlens. Kali.}

\text{Gesammtalkaligehalt aus der Platindestillation} = 96.71 \text{ kohlens. Kali}
\text{ab für Chlorkalium und schwefelsaures Kali} = 2.76
\text{Wirklicher Gehalt an kohlensaurer Kali} = 93.95.
\text{Gesammtalkaligehalt aus 1)} = 96.06
\text{ab das wirklich vorhandene kohlensaur Kali} = 93.95
\text{Rest} = 2.11,

und dieses mit dem Factor 0.766 g auf kohlensaures Natron berechnet gibt
kohlensaures Natron \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1.61

\text{Die Resultate zusammengestellt sind:}
\begin{align*}
93.95 \text{ Proc. CO}_2 \text{ KO} \\
1.61 \text{ CO}_2 \text{ NaO} \\
2.38 \text{ CIK} \\
0.70 \text{ SO}_4 \text{ KO} \\
0.87 \text{ Feuchtigkeit} \\
0.23 \text{ Unlösliches} \\
0.26 \text{ Analysenverlust}
\end{align*}
\text{100}

\text{Die konstanten Factoren mögen hier zur Bequemlichkeit zusammen-}
\text{gestellt werden:}
\begin{align*}
\text{Schwefelsaurer Baryt} \times 0.7477 = \text{ schwefelsaurem Kali} \\
\text{Chlorplatinkalium} \times 0.2832 = \text{ kohlensaurem Kali} \\
\text{Chlorkalium} \times 0.9268 = \text{ } \text{ } \\
\text{Schwefelsaures Kali} \times 0.7934 = \text{ } \text{ } \\
\text{Kohlensaures Kali} \times 0.7669 = \text{ kohlensaurem Natron.}
\end{align*}

\text{Schlempekohle (Rübenasche).}

\text{Die Schlempekohle ist der Glührückstand der aus den Melassebrennereien hervorgehenden Melassenschlempe. Schlechter Syrup aus der Rübenzuckerfabrikation, den man Melasse nennt, wird auf Alkohol vergoßen. Was nach der Destillation des Alkohols übrig bleibt, ist die Schlempe der Melasse. Sie enthält neben indifferenten organischen Stoffen eine beträchtliche Menge Alkalosalze mit organischen und Mineral-}
Schlempekohle (Rübenasche).

Es wurden 100 g einer Schlempekohle genau abgewogen und mit destilliertem Wasser erwärmt und dann auf ein Filtrum gebracht, dessen Trichter auf einer Literflasche stand. Es wurde mit heissem destilliertem Wasser ausgewaschen bis die Literflasche gefüllt war. So waren 1000 ccm Lösung enthalten, von denen 100 ccm = 10 g roher Rübenasche waren. Die Flüssigkeit reagirte alkalisch bis zu Ende, und es ist nicht möglich, die Rübenasche durch Wasser ganz zu erschöpfen, weil in der Kohle das schwer lösliche Doppelsalz von kohlensaurem Kali und Kalk enthalten ist, was sich nur sehr langsam zersetzt. Die Auswaschung mit dem zehnfachen Gewichte Wasser muss für alle praktischen Zwecke als genügend erscheinen.

1) 100 ccm (= 10 g Substanz) der Lösung wurden zur Trockne verdampft, stark erhitzt und dann mit der Schale, nachdem sie in einer Glocke mit Chlorkalium erkal tet war, gewogen.

| Schale mit Salzen | 83'889 g |
| Schale allein | 76'160 n |

| Inhalt der Schale | 7'729 g |
| oder 77.29 Procent lösliche Salze und 22.71 Procent unlösliche und Feuchtigkeit.

2) 100 ccm der Lösung wurden mit Normalsalzsaure und Lackmus auf roth titriert und 78.4 ccm Normalsalzsaure verbraucht.

3) 100 ccm der Lösung wurden mit Salzsäure übersättigt, mit Chlorbaryum gefällt, und der schwefelsaure Baryt geglührt und gewogen. Er wog 0'6865 g.
4) 10 cbcm (= 1 g Substanz) der Lösung wurden mit Salpetersäure beinahe neutralisiert, dann chromsaures Kali zugesetzt und mit Zehntelseilverlösung das Chlor ausgemessen. Es wurden 34'52 cbcm davon verbraucht.

5) 100 cbcm der Lösung wurden zum Kochen erhitzt, und durch hineingestreute Weinstein säure gerade gesättigt. Die Weinstein säure war in gleicher Menge auf den beiden Wagschalen verteilt, so dass die Wage vor dem Versuche im Gleichgewicht stand. Die Sättigung geschah aus der einen Wagschale. Als die Sättigung eingetreten war, wurde aus der anderen Wagschale so viel Weinstein säure weggenommen, dass die Wage wieder ins Gleichgewicht kam, und diese Weinstein säure zu der gesättigten Flüssigkeit gesetzt, gelöst und das Ganze zur Trockne gebracht. Die erkal tete Salzmasse wurde in gesättigter Weinsteinlösung aufgeweicht, auf ein Filtrum gebracht und so lange mit Weinsteinlösung ausgewaschen, bis die ablauende Flüssigkeit nicht mehr sauerer war, als die reine Weinsteinlösung, nämlich bis 10 cbcm des Filtrates von 6 Tropfen Normalkali gebläut wurden. Der Niederschlag wurde in eine Porzellan schale gebracht, Lackmus zuge setzt und mit Normalkali gesättigt. Es wurden 78'2 cbcm Normalkali verbraucht. Diese entsprechen 78'2 × 0'06911 = 5'404 g = 54'04 Proc. kohlensauren Kalis, einschließlich des ganzen Kaligehaltes.

Aus diesen Thatsachen lässt sich die Zusammensetzung der löslichen Bestandtheile in folgender Art berechnen.

Aus 3) gehen die 0'6865 g schwefelsaurer Baryt mit dem Factor 0'7477 in 0'5133 = 5'133 Proc. schwefelsauren Kalis über.

Aus 4) gehen die 34'52 cbcm 1/10 Ag mit der Atomzahl des Chlor kaliums (× 0'007457) in 0'25721 g = 25'721 Proc. Chlor kalium über. In 5 haben wir die ganze Summe des kohlensauren Kalis zu 54'04 Proc. gefunden; davon gehen aber ab das schwefelsaure Kali, mit dem Factor 0'7934 in 4'0725 Proc. kohlensauren Kalis umgerechnet, und das Chlor kalium mit dem Factor 0'9288 ebenfalls, und zwar in 23'837 Proc. kohlensauren Kalis. Beide zusammen machen 27'9095 Proc. und von 54'04 abgezogen lassen sie 26'1305 Proc. CO₂KO.

In Nro. 2 fanden wir die ganze Alkalität:

= 78'4 × 0'06911 = 5'4182 g = 54'182 Proc. CO₂KO,

davon ziehen wir die 26'1305 wirkliches kohlensaures Kali aus 4) ab, so bleiben 28'0517 Proc. kohlensaures Kali, welche mit dem Factor 0'7669 in 21'503 Proc. kohlensauren Natrons übergehen.
Wir haben also erhalten:

26 1305 kohlensaures Kali,
21'5030 kohlensaures Natron,
5'1330 schwefelsaures Kali,
25'7210 Chlorkalium,
22'7100 Unlösliches und Feuchtigkeit aus 1).

101·1975.

S o d a.

Die Sodaanalyse hat von der Maassanalyse die grösste Hülfe erhalten, indem man fast alle zu stellenden Fragen durch diese Methode schnell und sicher lösen kann.

Einige Fragen interessiren in gleicher Art den Fabrikanten und Konsumenten, andere mehr den Fabrikanten allein.

Die reine alkalimetrische Bestimmung geschieht in den Fabriken fast allgemein durch Normalschwefelsäure, die man auf eine titirte Lösung von reinem kohlensauren Natron stellt (S. 83). Ich würde auch hier die Normalsalzsäure vorziehen.

Die zu prüfende Soda wird zu 5·3 g abgewogen, wo dann jeder Cubikcentimeter Normalsäure 1 Proc. reines kohlensaures Natron anzeigt. Besitzt man gute in fünfzeh Cubikcentimeter getheilte Büretten, so wügt man auch 2·65 g Soda ab, und jeder Cubikcentimeter Normalsäure ist dann gleich 2 Proc. kohlensauren Natrons.

1) Fresenius' Zeitschr. f. anal. Chem. 14, 184, Anmerkung.
In den Sodafabriken, wo man es nur mit Natron zu thun hat, wendet man gewöhnlich empirische Flüssigkeiten an, nämlich 10 g. wasserleeres kohlensaures Natron im Liter und eine darauf gestellte Schwefelsäure, von welcher also 100 cbcm = 1 g kohlensaures Natron sind. Man löst 5 g der zu prüfenden Soda zu 500 cbcm und nimmt daraus 100 cbcm zur Prüfung.

Da in den Sodafabriken die täglichen Analysen von einem gewöhnlichen Arbeiter ausgeführt werden, so ist die im ersten Theile beschriebene Methode der Alkalimetrie, erst mit Säure etwas zu übersättigen, die Kohlensäure weg zu kochen und dann mit Aetzkali rückwärts den Ueberschuss der Säure zu bestimmen, weniger beliebt. Es erlangen jedoch diese Arbeiter, die durch keine Spekulationen abgezogen werden, auch bei der ersten Methode, durch Übung eine solche Sicherheit im Erkennen, dass ihre Analysen genügend genau sind. Als Indicator kann man nur geöthethete Lackmuslösung empfehlen, da Kochenille bei dem häufigen Gehalte der Soda an Thonerde störende Farbenwechsel veranlasst.

Handelt es sich darum, den Gehalt an ätzendem Alkali zu bestimmen, so bedient man sich der Seite 103 beschriebenen Methode.

In den Sodafabriken wird jetzt auch viele kaustische Soda dargestellt. Sie bieten dem Seifensieder den Vorteil, dass er durch eine lösende Lösung ohne Kalk sich eine Seifensiederlauge bereiten kann. Sie wird in gleicher Weise, wie eben beschrieben wurde, analysirt. Man zersetzt in warmer verdünnter Lösung mit Chlorbaryum, filtrirt, oder lässt warm absetzen, und titrirt gebrochene Mengen der Flüssigkeit mit Normal-
asalzsäure. Die klare Flüssigkeit gibt den Gehalt an ätzendem Natron. Man berechnet nach Nro. 3 der Tabellen.

Eine gleich grosse Menge kaustischer Soda ohne Chlorbaryumzusatz mit Normalsalzsäure gemessen, gibt den ganzen Gehalt an reinem und kohlensaurem Natron. Zieht man die dem Natronhydrat entsprechenden Cubikcentimeter Normalsäure vom Ganzen ab, so bleibt die dem kohlensauren Natron entsprechende Menge übrig. Da die Seifensieder den Preis ihrer Alkalien auf den Preis der Soda beziehen, so wird das Natron-
hydrat auch häufig nach Nr. 4 der Tabellen auf kohlensaures Natron berechnet. Da nun 40 Natronhydrat gleichwertig mit 53 kohlensaurem Natron sind, so würde ein reines Hydrat oder 100 Hydrat gleich 132.5 kohlensaurem Natron sein, und es könnte leicht vorkommen, dass eine kaustische Soda mehr wie 100 Proc. kohlensaures Natron vorstellte, was, so sonderbar es auch klingt, doch begreiflich ist. Gewöhnlich ist dafür gesorgt, dass der Seifensieder sich darüber kein Kopfscherzen zu machen hat, wie ein Körper mehr als 100 Proc. Substanz enthalten könne. Soll die kaustische Soda auf Natronhydrat berechnet werden, so hat man im System 4 g abzuwägen; soll sie dagegen auf kohlensaures Natron berechnet werden, so müssen 5.3 g abgewogen werden, wenn die Cubikcentimeter der Normalsäure Procente vorstellen sollen. Das Natronhydrat lässt sich wegen seiner dichten oft schmierigen Form nicht zu einem bestimmten Gewicht abwägen; man muss deshalb ein ganzes Stück nehmen und sein Gewicht bestimmen. Eine Analyse dieser Art ist folgende:

Ein Stück Natronhydrat: 13.980 g. Es wurde gelöst und zu 500 cbem verdünnt. Davon 100 cbem genommen =

\[\frac{13.980}{5} = 2.796 \text{ g erfordernten 62.8 cbem Normalsalzsäure.} \]

Ferner 100 cbem mit Chlorbaryum kochend gefällt und heiss unter Glasbedeckung filtrirt und mit heissem Wasser ausgewaschen, bis rothes Lackmuspapier nicht mehr geblanet wurde, erforderte 60.2 cbem

\[\frac{2.408 \times 2.408}{2.796} = 86.124 \text{ Proc. Natronhydrat.} \] Das kohlensaure Natron entspricht 62.8 weniger 60.2 = 2.6 cbem Normalsäure = 2.6 \times 0.053 = 0.1378 g oder 4.928 Proc.

Es sind nur noch zwei Beimischungen der Soda zu besprechen, deren Bestimmung mehr den Fabrikanten interessirt, damit er aus den veränderten Verfahrensarten auf die Wirksamkeit seiner Methode schliessen könne. Diese Substanzen sind Schwefelnatrium und unterschweflig-saures Natron.

dringen lässt. Sobald jede Färbung aufhört, ist das Schwefelnatrium gefällt.

Alle Sodasorten enthalten etwas unzersetztes Kochsalz und Glaubersalz.

Den Chlorgehalt bestimmt man in einer kleinen Menge Soda durch Neutralisiren mit reiner Salpetersäure, Wegkochen der Gase und Ausmessen des Chlors durch Zehntel-Silberlösung und chromsaures Kalium. Wägt man 0,585 g Soda ab, so sind die Cubikzentimeter der Zehntel-Silberlösung Procente von Kochsalz.

Um der Neutralität der zu prüfenden Lösung sicher zu sein, kann man mit Zinkvitriol oder Bittersalz fällen, wo dann alle alkalischen Eigenschaften in den Niederschlag übergehen. Im Filtrat bestimmt man dann das Chlor.

Um bei allen diesen Filtrationen nicht auswaschen zu müssen, filtrirt man aus der 300 cbcm Flasche nur 100 cbcm ab, und nimmt dann die Zahl der gebrauchten Cubikcentimeter dreimal.

Die Schwefelsäure bestimmt man nach der Seite 129 beschriebenen Methode.
Rohe Soda oder Schmelze.

Gewöhnlich werden nur diese beiden Bestandtheile bestimmt. Das trockne kohlensaure Natron beträgt in guten Schmelzen 33 bis 36 Proc. Da die unterschweflige Säure nur durch Oxydation von Schwefelnatrium entsteht, so ist bei dieser ersten Untersuchung davon wenig oder nichts vorhanden.

Wenn man 10'6 g (nämlich zweimal 5'3 g Schmelzepulver abwägt, und aus der Literflasche 1/2 Liter zur Bestimmung des kohlensauren Natrons abgießt, so ist darin der Gehalt von 5'3 g Schmelze enthalten und jeder Cubikcentimeter Normalsäure ist gleich 1 Proc. reinen kohlensauren Natrons. Zieht man aber nur 250 obcm Lösung heraus, so ist darin der Gehalt von 2'65 g Schmelze und jeder Cubikcentimeter
Normalsäure stellt 2 Proc. kohlensaur es Natron vor. Dieselben Bedin-
gungen kann man auch durch andere Mengen Pulver und andere Mess-
flaschen erreichen, ohne dass sich das Resultat ändert.

In einer gut geführten Sodafabrik sollen die Normalflüssigkeiten
von dem Principal oder dem Chemiker des Etablissements selbst angefer-
tigt und beim Gebrauche ganz dem Zutritt der gewöhnlichen Arbeiter
etzogen sein. Die Normalschwefelsäure oder Salzsäure kann in grossen
Ballons oder in zylindrischen Flaschen aufbewahrt werden, und direkt
durch einen Heber in die Ab- und Zuflussbürette gelangen. Die Bürette
Selbst ist oben durch eine im Kork sitzende dünne Glasröhre geschlossen,
die mit einer Kautschukröhre mit dem Luftraume des Ballons im Zusam-
menhange steht. Der Ballon ist am besten in einem verschlossenen
Schranken enthalten, wodurch er zugleich den Einwirkungen der Menschen
und der Wärme entzogen ist. Die Röhren gehen durch passende Öff-
nungen in dem Boden oder den Seiten des Schrankes. Die Mündung der
Vorrathflasche ist in einer Weise geschlossen, dass sie ohne sichtbare Ver-
letzung nicht geöffnet werden kann.

In dieser Art kann sich der Vorsteher des Geschäfts die Sicherheit
verschaffen, dass bis zu seinem freiwilligen Zutreten in der Mischung der
Massflüssigkeiten nichts geändert werden kann. In jedem Falle ist diese
Ueberzeugung sehr angenehm, und wer davon freiwillig absieht, muss
sich die Folgen selbst beimesen.

Analyse der Sodarohlauge aus dem Klärselkessel vom 6. August 1858
der Fabrik Rhenania bei Aachen.

Die Rohlauge war mir vom Herrn Generaldirector Dr. Hasenclever
übersandt worden.

1) Specifiches Gewicht bei 14° R. 1'252.
2) 10 cbcm Rohlauge in einer Platinschale eingedampft und bis zum
schwachen Glühen erhitzt, hinterliessen 3'11 g = 31'1 Proc; 1 Liter
enthält also 311 g-festen Rückstand.
3) Der eingedampfte Rückstand von 2) mit Normal-Salzsäure gemessen
erforderte 56'2 cbcm. In dieser Menge ist das Schwefelnatrium mit
einbegriffen.
4) 10 cbcm Rohlauge mit Essigsäure neutralisiert und mit Zehntel-Jod-
lösung gemessen, erforderten davon 6'82 cbcm.
5) 10 cbcm Rohlauge mit schwefelsaurem Zinkoxyd gefällt, das Filtrat
mit Stärke und Zehntel-Jodlösung gemessen, erforderten 2'44 cbcm
davon.
6) 10 cbcm Rohlauge mit Essigsäure beinahe gesättigt, dann mit chrom-
saurer Kali und Zehntel-Silberlösung gemessen, erforderten davon
11'4 cbcm.
7) 10 cbcm Rohlauge mit Salzsäure gesättigt, dazu 13 cbcm Normal-
chlorbaryumlösung, und dann das Ganze mit kohlensaurem Ammoniak
entblafft.
niak gefällt, filtrirt und ausgewaschen. Der kohlensaure Baryt war gleich 12:6 cbcm Normalsalzsäure.

Aus diesen Daten, welche sämmtlich, bis auf die zur Kontrole dienende Bestimmung der Summe der Bestandtheile, durch massanalytische Operationen erhalten, berechnet sich die Zusammensetzung der Rohlauge in der folgenden Art.

Aus 5) 2 Atome wasserleeres unterschwefligsaures Natron wiegen 158. 1 cbcm Zehntel-Jodlösung ist also 0:0158 g unterschwefligsaurem Natron. Die in 5) gefundenen 2:44 cbcm sind also gleich 0:0386 g unterschwefligsaurem Natron.

Aus 4) Die 2:44 cbcm Zehntel-Jodlösung aus 5) von den in 4) gefundenen 6:82 cbcm abgezogen, lassen 4:38 Jodlösung, als dem Schwefelnatrium entsprechend. Das Atomgewicht des Schwefelnatriums ist 39, also 1 cbcm Zehntel-Jodlösung = 0:0039 g Schwefelnatrium. 4:38 cbcm Jodlösung sind also = 0:0171 g Schwefelnatrium.

Aus 6) 11:4 cbcm Zehntel-Silberlösung sind gleich 0:00585 \times 11:4 = 0:0667 g Kochsalz.

Aus 7) 13 weniger 12:6 lassen 0:4 cbcm Normalchlorbaryumlösung als dem wasserleeren schwefelsaurem Natron entsprechend. 0:4 \times 0:071 geben 0:0284 g schwefelsaures Natron.

Wir haben also gefunden:

Kohlensaures Natron	2:9553 g
Kochsalz	0:0667 g
Schwefelsaures Natron	0:0284 g
Unterschwefligsaures Natron	0:0386 g
Schwefelnatrium	0:0171 g

\[\text{Die Eindampfung gab 3:11 g.} \]

1 Liter enthält die 100fache Menge der obigen Zahlen. Berechnet man die Bestandtheile auf Procente der trocknen Salzmasse, so hat man:

Kochsalz	2:145 Proc.
Schwefelsaures Natron	0:913 Proc.
Unterschwefligsaures Natron	1:241 Proc.
Schwefelnatrium	0:550 Proc.
Analysenverlust	0:199 Proc.

\[\text{100:000 Proc.} \]

\[30^* \]
Man ersieht aus dieser Analyse, dass die erste Rohlauge schon fast 95 Proc. eines kohlensauren Natron enthält, und die gewöhnlichen Verunreinigungen, Kochsalz und Glaubersalz, in sehr kleinen Mengen vorkommen. Die Rohlauge enthielt eine kleine Menge Aetznatron, welches aber bei der ersten Eindampfung zur Trockne in kohlensaures Natron übergegangen war.

Sodamutterlauge.

Eine solche Sodamutterlauge von einem zweimonatlichen Betriebe hatte das specifische Gewicht 1,468.

10 cbcm dieser Mutterlauge wurden zu 500 cbcm verdünnt und davon jedesmal 50 cbcm zur Bestimmung der einzelnen Stoffe verwendet.

1) 50 cbcm = 1 cbcm der natürlichen Lauge mit ausgekochtem Wasser verdünnt, dann mit Essigsäure angesäuert und mit Jodlösung gemessen, erforderten 1,89 cbcm Zehntel-Jodlösung. Nach Abzug von 0,914 cbcm (aus 3) für unterschwefligsaures Natron) bleiben 0,976 cbcm
Wiedergewinnung des Schwefels aus Sodaresten.

\[\frac{1}{3} \text{ Jodlösung} = 0.0038064 \text{ g Schwefelnatrium in 1 cbcm; also im Liter 3.8064 g.} \]

2) 50 cbcm der verdünnten Flüssigkeit mit Normalsalzsäure zersetzte, erforderten 13.8 cbcm davon. Es gehen ab 0.0976 cbcm, weil das Schwefelnatrium ebenfalls alkalisч reagiert, und weil 0.0976 cbcm Zehntel-Jodlösung = 0.0976 Normal sind. Es bleiben also 13.702 cbcm Normalsalzsäure, als das Mass der Azetatsalze. Berechnen wir dies als Hydrat \((\text{NaO} + \text{Aq.} = 40)\), so entsprechen diese 13.702 cbcm 0.54808 g Natronhydrat, oder 54.808 g Natronhydrat in 1 Liter.

3) 50 cbcm mit schwefelsaurem Zinkoxyd gefällt, dann filtrirt und das Filtrat mit Zehntel-Jodlösung titirt, um das unterschwefligsaure Natron zu bestimmen, erforderten 0.914 cbcm Zehntel-Jodlösung. Das wasserleere unterschwefligsaure Natron wiegt 79, und da 2 At. dieses Salzes auf 1 At. Jod kommen (S. 244), so entspricht 1 cbcm Zehntel-Jodlösung 0.0158 g wasserleere Unterschwefligsaure Natron; also obige 0.914 cbcm = 0.0144412 g unterschwefligsaurem Natron oder 14.4412 g dieses Salzes im Liter.

4) 10 cbcm der ursprünglichen Lauge wurden mit Natronsalpeter geschmolzen, in Wasser gelöst und ein Theil des ätzenden Natrons mit Salzsäure gesättigt, wodurch das Eisenoxyd vollkommen herausfiel. Dieses wurde durch ein Filtrum abgeschieden, in Salzsäure ge- löst und nach Reduction mit Zink durch Chamäleon bestimmt. Es wurden 1.6 cbcm Chamäleon verbraucht, von welchem 40 cbcm = 1 g Eisendoppelsalz waren. Demnach ist 1.6 cbcm Chamäleon = \(\frac{1.6}{40}\) = 0.04 g Eisensalz = 0.0057 g metallischen Eisens = 0.00896 g Einfach-Schwefeleisen in 10 cbcm Rohlauge, also in 1 Liter 0.896 g Schwefeleisen.

5) Die stark verdünnte Lauge gab mit Chlorbaryum eine kaum bemerkbare Trübung, sie enthielt also nur unmerkliche Spuren von kohlensaurem und schwefelsaurem Natron, welche nach bekannten Methoden, so wie auch das Kochsalz bestimmt werden können.

Wiedergewinnung des Schwefels aus Sodaresten.

Die ausgelaugten Reste der Sodaschmelze enthalten ungefähr 80 Proc. von dem bei der Sodafabrikation verwendeten Schwefel in Gestalt eines basischen Kalciumsulfurets. Sie häufen sich in ungeheurem Massen an,

Die an der Luft aufgekehnten Sodareste gehen in langsamer Oxydation mit Erwärmung über und es bildet sich unterschwefligsaurer Kalk und lösliches Schwefelkalcium. Wegen der grossen in den Resten enthaltenen Menge Kalkes kann man nicht unmittelbar mit Säuren darauf wirken, sondern man muss einen Auszug machen, aus welchem der Schwefel gefällt wird. Unterschwefligsaurer Kalk durch überschüssige Salzsäure zerfällt nicht, wie das entsprechende Natronsalz, in Schwefel und schwefelige Säure, sondern es scheidet sich nur wenig Schwefel und schwefligsaure Säure aus, während sich trithionsaurer Kalk (CrO_3, S_3O_3) bildet; beim Kochen aber zerfällt dieser in schwefelsauren Kalk, Schwefel und schweflige Säure, nach der Gleichung:

$$CaO_3, S_3O_3 = CaO, SO_3 + S + SO_3.$$

Da sich nun gleichzeitig aus dem Schwefelkalcium, welches als Doppelschwefelkalcium angenommen werden kann, Schwefelwasserstoff entwickelt, so tritt die Ausscheidung des Schwefels ein, indem sich schweflige Säure und Schwefelwasserstoff zu Schwefel und Wasser umsetzen:

$$SO_3 + 2 SH = 3 S + 2 H_2O.$$

Es müssen sich also, wenn kein Schwefelwasserstoff und schweflige Säure gasförmig entweichen sollen, gleichzeitig 2 At. Schwefelwasserstoff und 1 At. schweflige Säure entwickeln. Hier fängt nun die Hilfe der Titrirmethode an. Es muss die langsame Oxydation der Sodareste so lange fortgesetzt werden, bis sich eine genügende Menge unterschwefligsaurer Kalk gebildet hat, um dieser Bedingung zu genügen. Lässt man die Oxydation weiter gehen, so vermindert sich wieder die Schwefelaußente, indem sich zuviel unterschwefligsaurer Kalk, schwefligsaurer Kalk, welcher nicht ausgezogen werden kann, und auch Gyps bildet. Es ist also nothwendig, einen Probeauszug zu machen und an diesem titrimetrisch diese Bedingungen und die Menge der zuzusetzenden Salzsäure zu ermitteln.

Der Auszug der oxydierten Sodareste enthält 1) ein Polysulfurat von Kalcium, 2) Schwefelwasserstoff-Schwefelkalcium und 3) unterschwefligsauren Kalk. Zuerst muss nun die unterschweflige Säure bestimmt werden.

1) Man fällt einen gemessenen Theil der Lösung mit essigsaurer Zinkoxyd, um Schwefelkalcium und Schwefelwasserstoff zu beseitigen, filtrirt, und misst mit $1/10$ Jodlösung.
Wiedergewinnung des Schwefels aus Sodaresten.

2) Ein anderer gleicher Theil der Flüssigkeit wird mit Stärkelösung (ohne Zinkchlorid bereitet, also mit Chlornatrium, oder ohne dieses frisch bereitet) versetzt und mit $\frac{1}{10}$ Jodlösung auf blau titriert. In dieser Zahl ist unterschweflige Säure, Schwefelkalkium und Schwefelwasserstoff enthalten.

Die beiden ersten Körper bleiben bei dieser Zersetzung neutral, dagegen der Schwefelwasserstoff erzeugt mit der Jodlösung eine äquivalente Menge Jodwasserstoff. Die Flüssigkeit wird also sauer; und dies ist auch der Beweis, dass Schwefelwasserstoff vorhanden ist. Um die freie Säure zu messen, wird die blane Farbe der Jodstärke mit einigen Tropfen unter- schweflgsauren Natronseben weggenommen, Lackmus zugesetzt und dann mit $\frac{1}{10}$ Aetznatron auf Blau titriert. Die Menge des Natrons ist das Aequivalent des vorhandenen Schwefelwasserstoffs; die in 1) verbrauchte Menge Jodlösung ist das Aequivalent der unterschwefligen Säure; die in 2) verbrauchte Menge Jodlösung weniger die in 1) und weniger der Natronlösung gibt den Kalk im Schwefelkalkium. Das Schwefelwasserstoff-Schwefelkalkium gebraucht nur 1 At. Säure zur Zersetzung, um 2 At. Schwefelwasserstoff zu entwickeln, und der unterschweflgsaure Kalk braucht ebenfalls nur 1 At. Säure. Da sich nun 1 At. schweflige Säure (SO_2) mit 2 At. Schwefelwasserstoff (2 SH) genan in $3S + 2HO$ zersetzt, so hat die Lauge die richtige Mischung, wenn die Jodmenge in 1) ein Drittel von der Jodmenge in 2) beträgt; denn unterschweflgsaurer Kalk gibt zuletzt 1 At. Schwefel + 1 At. schweflige Säure, und 1 At. Schwefelwasserstoff-Schwefelkalkium gibt 2 At. Schwefelwasserstoff; also gerade hinreichend, um 1 At. schweflige Säure zu zersetzen.

Schwefelwasserstoff-Schwefelkalkium erfordert aber 2 At. Jodlösung ($CaS_x + SH + 2J = CaJ + JH + S_x$), es beträgt also die Jodmenge in der zweiten Titirung das Dreifache von der ersten, weil die unterschweflige Säure mit darin gemessen ist.

Unterschwefligsaures Natron aus Sodaresten.

Es schliesst sich diese Untersuchung unmittelbar an das Vorhergehende an. Die langsame Oxidation der Sodareste, wobei sich unterschwefligsaurer Kalk bildet, wird weiter fortgesetzt, weil man keinen Schwefelwasserstoff gebraucht. Die Probeauszüge der Massen werden mit essigsaurem Zinkoxyd gefällt, filtrirt und dann mit \(\frac{1}{10} \) Jodlösung die unterschweßlige Säure gemessen. Je mehr Jodlösung man gebraucht, desto mehr Product hat man zu erwarten; es wird also die Oxidation fortgesetzt, so lange man bei dem erwähnten Titrirverfahren eine Zunahme der Jodlösung für gleiche Mengen gleich starker Lösung bemerkt. Der schliesliche wässerige Auszug wird kochend mit kohlensaurem Natron gefällt, filtrirt und zur Krystallisation eingedampft.

Gaswasser.

Das Gaswasser ist eine ammoniakalische stinkende Flüssigkeit von wenig Farbe. Sie enthält als wesentlichen Bestandtheil Ammoniak, worauf sich ihre Verwerthbarkeit gründet, sodann etwas Schwefelasmonium, Salmiak und unterschwefligsaures Ammoniak, Cyan- und Rhodanammonium.

Das Ammoniak ist nicht in freiem Zustande, sondern im gebundenen vorhanden, und selbst das flüchtige ist größstentheils als Bicarbonat darin enthalten.

Um den ganzen Ammoniakgehalt zu finden, kann man die Destillation oder die Silbermethode anwenden. Zur Destillation kann man sich des Apparates Fig. 122 bedienen. Eine wirkliche Ammoniakbestimmung zeigt das Verfahren am deutlichsten.

Es wurden verbraucht für das
der erste Destillat von 0 bis 26 cbcm = 26 cbcm Normaloxalsäure
der zweite 26 27.5 1.5
der dritte 27.5 27.6 0.1
vierte 27.6 27.61 0.01

Das fünfte Destillat wurde durch den ersten Tropfen Oxalsäure roth, folglich war die Austreibung des Ammoniaks beendigt. Da aber mit Fig. 122.

Röhrenkühler.

blauer Lackmustinctur gearbeitet wurde, so mussten die sämtlichen vereinigten Flüssigkeiten, welche 27.61 cbcm Normaloxalsäure erhalten hatten, mit Normalkali wieder blau gemacht werden. Dazu wurden 0.2 cbcm Normalkali verbraucht, folglich ist das Maass des Ammoniaks, welches durch die vollständige Zersetzung des Gaswassers erhalten wurde, gleich 27.41 cbcm; und diese sind gleich 27.41 mal 0.017 = 0.46597 g.

100 cbcm würden demnach 0.621 g und das Liter Gaswasser 6.21 g Ammoniak enthalten.

Da das Gaswasser nur nach Maass angegeben wird, so war es nicht nothwendig, sein spezifisches Gewicht zu bestimmen.

Die Silbermethode wird in der folgenden Art ausgeführt.

Man destillirt 100 cbcm Gaswasser mit Kalkmilch und fängt das Destillat in Salzsäure auf, die jedenfalls am Ende noch vorwalten muss, dampft zur Trockne ohne Verlust ein und erhitzt bis zu 110 bis 120° C. Man löst in destillirtem Wasser, filtrirt in eine 100 oder 200 cbcm Flasche, füllt bis zur Marke an, vermischt durch Schütteln und nimmt mit der Pipette einen beliebigen Theil heraus, den man mit chromsaurem Kali und Silber auf seinen Chlorgehalt prüft oder, da der Kalk Schwefel, Cyan, Rhodan und Kohlensäure zurückhält, kann man den trocknen Salmiak einfach wägen.
Die Bestimmung der einzelnen Bestandtheile, die mehr ein wissenschaftliches Interesse befriedigt, kann in folgender Weise geschehen.

1) Unterschweiflige Säure. Man schüttelt eine gemessene Menge mit Bleiweiss, um Schwefelwasserstoff zu binden, filtrirt und misst mit $\frac{1}{10}$ Jodlösung und Stärke aus.

2) Schwefelammonium. Eine andere Menge versetzt man mit Essigsäure und Stärke und misst mit $\frac{1}{10}$ Jod. Nro. 1 von 2 abgezogen gibt das Schwefelammonium. Es kann auch diese Trennung durch essigsaures Zinkoxyd geschehen.

Das Schwefelammonium bestimmt man durch Fällen mit einer alkalischen Zehntel-Zinklösung, bis Nitroprussidnatriumpapier nicht mehr pfirsichbläthroth gefärbt wird.

Das unterschweiflige Ammoniak bestimmt man dadurch, dass man das Schwefelammonium mit schwefelsaurem Zinkoxyd fällt, dann filtrirt, und im Filtrat mit Stärkelösung und Jodlösung die unterschweifliche Säure bestimmt (S. 268). Der Titer der Jodlösung kann auf reines unterschweiflsaures Natron mit Stärkelösung genommen werden.

Kalkstein.

In praktischer Beziehung handelt es sich meistens um den Gehalt an Thon und jenen Bestandtheilen, welche beim Brennen den Kalk hydraulisch machen. Die einfachste Methode, die Summe aller fremden Bestandtheile zu finden, besteht in einer Kohlensäurebestimmung nach
Gewicht in Apparaten, die zu diesem Zwecke später beschrieben werden. 22 Kohlensäure entsprechen 50 kohlensaurem Kalk und der Rest ist eben die Summe von fremden Stoffen. Wäge man 2.273 g Substanz ab, so geben die Centigramme Kohlensäure die Procente an kohlensaurem Kalk, weil 2.273 g kohlensaurem Kalk 1.00 g CO₂ enthalten.

Ob der Kalkstein einen hydraulischen Kalk geben werde, kann durch die Analyse allein nicht festgestellt werden, sondern dazu gehört wirkliches Brennen und Mörtelbereitung. Soll ein Phosphorsäuregehalt gesucht werden, so löst man eine grössere Menge (15 bis 20 g) in Salzsäure, setzt etwas Eisenchlorid zu, und fällt mit Ammoniak. Die Phosphorsäure ist jedenfalls im Niederschlag enthalten, aus dem sie durch Molybdänmethode bestimmt werden kann. Wenn der Kalkstein dolomitischer Natur ist oder Spatheisen enthält, so passt obige Methode nicht und man muss die gewöhnliche Gewichtsanalyse anwenden.

D o l o m i t.

B a r y t, S t r o n t i a n, K a l k.

Aus löslichen Salzen werden alle drei durch kohlensaures und reines Ammoniak und langeres Erwärmen gefällt.

Baryt wird von einem der beiden anderen, oder von beiden durch einfach chromsaures Kali in etwas ammoniakalischer Lösung bei ansehnlicher Verdünnung gefällt und als chromsaurer Baryt mit Eisdoppelsalz und Chamäleon bestimmt oder gewogen. Im Filtrat wird Strontian (oder Kalk) mit kohlensaurem Ammoniak gefällt und alkalimetrisch bestimmt, oder auch nach gelindem Glühen unmittelbar gewogen. Sind alle drei Erden vorhanden, so kann man ihre Lösung mit einer Mischung von 1 Theil schwefelsaurem und 2 Theile kohlensaurem Kali kochen, wodurch aller Baryt als schwefelsaurer, dagegen aller Strontian und Kalk als kohlensaure gefällt werden. Der Niederschlag wird ausgewaschen und in Salzsäure gelöst, wobei schwefelsaurer Baryt (Gewichtsbestimmung) zurück-
Natürliche Soole, gradirte Soole, Mutterlauge.

Die Untersuchung der natürlichen Soolen fällt fast mit jener der salinischen Mineralwasser zusammen. Bestimmung des specifischen Gewichtes in bekannter Weise; Summe der Bestandtheile durch Eindampfen unter Zusatz von gewogenen Mengen wasserleeren kohlensauren Natrons, Wiederauflosen in Wasser, wobei kohlensaurer Kalk, Bittererde, Eisen- oxyd etc. zurückbleibt, die in bekannter Weise getrennt werden.

Im Filtrat wird die Schwefelsäure nach Ansäuern mit Salzsäure durch Chlorbaryum gefällt. Das Chlor wird wegen seiner Menge nicht mit Silber bestimmt, oder in einer kleineren frisch abgewogenen Menge. Alle sel- tenen Bestandtheile, wie Kali, Brom, Jod, findet man nicht in der natür- lichen Soole, sondern in der gradirten oder der Mutterlauge.

Bei gradirter Soole verfährt man in gleicher Weise, aber mit kleineren Mengen Substanz. Es gibt übrigens natürliche Soolen, welche gesättigt sind und viel stärker als gradirte Soolen, welche niemals von den Dornen gesättigt herunterkommen.

Die eingedickte Mutterlange der Soolen enthält die Unreinigkeiten der Soole in grosser Menge, aber immer noch mit ansehnlichen Mengen Kochsalz vermischt. Bei der Untersuchung hat man gewöhnlich bestimmte praktische Zwecke vor Augen: die Darstellung von Brom-, Lithion- oder Magnesiasalzen.

Um das Brom zu bestimmen, destillirt man eine gewogene Menge mit Salzsäure und Braunstein und fängt das übergehende Brom in überschüssigem Ammoniak auf, wodurch es in Bromammonium übergeht. Man dampft zur Trockne ab und fällt mit titrirter Zehntel-Silberlösung, bis kein Niederschlag mehr entsteht. Dieses wird ausgewaschen und nach Verbrennung des Filtrums gewogen. Aus seinem Gewichte und dem be- kannten Gewichte des darin enthaltenen Silbers berechnet man das Brom nach Methoden, die schon oben (S. 361) auseinander gesetzt sind.

Kochsalz.

2) Schwefelsäure. Eine grössere gewogene Menge wird gelöst, filtrirt wenn erforderlich, mit Salzsäure versetzt und mit Chlorbaryum gefällt. Aus dem ausgewaschenen und geglühten Niederschlag wird auf Gyps berechnet. $SO_3, BaO \times 0.5837 = SO_3, CaO$.

4) Bittererde. Das Filtrat von 3 mit phosphorsauerem Natron-Ammoniak gefällt; der ausgewaschene und geglühte Niederschlag mit 0.36 multiplicirt gibt die Bittererde.

Pfannenstein der Salinen

Er ist ein Gemenge von Kochsalz, Glaubersalz, Gips, Bittersalz, kohlensaurem Kalkerde und Bittererde.

Von diesen Bestandtheilen hat nur Werth das Glaubersalz und Bittersalz. Man kann beide bestimmen, wenn man die Summe der Schwefelsäure und der Bittererde in den löslichen Bestandtheilen feststellt, wobei man allerdings gegen eine Beimischung von Gips auf der Hut sein muss.

Man wäge etwa 5 g des fein gepulverten Pfannensteins ab und erhitze gelinde in einem Platintiegel. Man erhält so den Wassergehalt der ganzen Probe.

Man nimmt eine neue Menge Pfannenstein von gleicher Grösse, löst in destillirtem Wasser warm auf, filtrirt vom zurückbleibenden kohlensauren Kalk und Bittererde ab, die auch in bekannter Weise getrennt werden, wäscvt aus, und fällt aus dem Filtrate den Kalk mit oxalsauerem Ammoniak. Den oxalsauren Kalk wäge man als kohlensauren oder man titriere ihn mit Chamäleon.

Im Filtrat falle die Bittererde mit phosphorsauerem Natron-Ammoniak und bestimme die Bittererde als pyrophosphorsaure mit 36 Proc. MgO, oder alkalmetricisch mit Säure.

Im fernen Filtrat falle bei stark vorwaltender Salzsäure die Schwefelsäure mit Chlorbaryum. Man erhält die Schwefelsäure als schwefelsauren Baryt. Es zeigt sich nun sogleich, ob die Schwefelsäure für die Bittererde gerade hinreicht, nachdem man die kleine Menge des Kalkes bereits mit der entsprechenden Menge Schwefelsäure abgezogen hat, oder ob noch schwefelsaures Natron im Gemenge vorhanden ist. In dieser Art erfährt man die technisch wichtigen Bestandtheile des Pfannensteins.
Zu einer vollständigen Analyse verfährt man in folgender Weise:
Man bestimmt erst den Wassergehalt durch Glühen in einem Platin-
tiegel.

Eine andere Menge wird fein zerrieben in siedendem Wasser gelöst, wobei kohlensaure Kalk- und Bittererde übrig bleiben, die in bekannter Weise, durch Lösung in Salzsäure, Ubersättigen mit Ammoniak (Eisen-
oxid?), Fällen mit oxalsaurem Ammoniak und im Filtrate mit phosphor-
saurem Natron-Ammoniak erhalten werden.

Aus der abfiltrierten Lösung fällt man nach Zusatz von Salmiak den Kalk des Gypses durch oxalsaures Ammoniak; im Filtrat davon die Bitter-
erde des Bietersalzes mit phosphorsaurem Natron-Ammoniak.

Eine andere Menge Pfannenstein wird in heissem Wasser gelöst und die Schwefelsäure mit Chlorbaryum gefällt.

Eine kleinere Menge kocht man mit kohlensaurem Natron, filtrirt, und bestimmt das Chlor mit $\frac{1}{10}$-Silberlösung. Natron wird aus dem Ver-
lust berechnet.

Kesselstein.

Es sind dies die vom Verdampfen des Wassers sich an den Kessel ansetzenden festen Stoffe. Sie enthalten keinen werthvollen Bestandtheil und man untersucht sie nur, um die nachtheiligen kennen zu lernen, wenn man sich dagegen schützen will. Unter diesen ist der gefähr-
lichste der Gyps, welcher eigentlich das Zusammenbacken zu steinharten Massen bewirkt.

Den Gyps bestimmt man, dass man gewogene Mengen des sein ge-
pulverten Kesselsteins mit gemessenen Mengen normalkohlensauren Kalis oder Natrons kocht. Eine Betupfung von rothem Lackmuspapier muss Bläueung hervorbringen, als Zeichen, dass eine genügende Menge kohlens-
auren Alkalis vorhanden ist. Im Filtrat bestimmt man den Rest des kohlensauren Kalis mit Normal-Salzsäure und die Differenz ist auf Gyps zu berechnen, und zwar auf waterleeren. 1 cm³ Normal-Kali = 0.068 g S O₃, Ca O. Eine andere durch kohlensaures Kali ausziehbare schwefel-
saure Verbindung, als Gyps, kann nicht vorhanden sein, da schwefelsaurer Strontian noch nicht in dieser Form vorgekommen ist. Die Menge des kohlensauren Kalkes bestimmt man am sichersten durch eine Kohlen-
säurebestimmung in einem der später zu beschreibenden Apparate.
Kali-Salpeter.

Für die directe Bestimmung der Salpetersäure gibt es bis jetzt noch keine zuverlässige und leichte Methoden, indem das beschriebene Verfahren der Messung durch Eisenoxydulsalze sowohl nach unseren, als auch nach Abel und Bloxam's¹) Versuchen nicht immer gleichbleibende Resultate gibt. Die Wirklichkeit des halbrafinirten Salpeters besteht wesentlich in der Bestimmung seiner Verunreinigungen, die in Chlor, Schwefelsäure, Kalk bestehen können.

Vorausgesetzt, dass das zu untersuchende Salz ganz in Wasser löslich sei, hat man erst seinen Gewichtsverlust durch Schmelzen im Platintiegel zu bestimmen. Man wägt 5 oder 10 g ab, und schmilzt in einem Platintiegel, auch in einer Platinschale, wobei weder ein Vorgang von organischen Stoffen, noch ein Verkniistern von Kochsalz stattfinden darf.

Die geschmolzene Masse löst man in heissem destillierten Wasser und prüft sie auf ihre Neutralität. Sie muss neutral sein. Man verdünnt sie zu 500 cbcm und nimmt zu jedem Versuche 50 oder 100 cbcm, die dann gleich 1 oder 2 g Salz sind.

In einer Portion bestimmt man das Chlor mit chromsaures Kali und Zehntel-Silberlauge; man berechnet auf Kochsalz. Wenn die Reactionen Schwefelsäure nachgewiesen haben, so bestimmt man diese gewichtsanalytisch.

Kalk fällt man mit oxalsauren Salzen und bestimmt durch Chamaeleo.

Wenn Schwefelwasserstoff und kohlensaures Natron keine Niederschläge geben, auch Chlor und Schwefelsäure berücksichtigt und bestimmt sind, so können andere als salpetersäures Alkalien nicht vorhanden sein. Es ist jedoch nicht entschieden, ob salpetersaures Kali oder Natron vorhanden ist. Dies kann aber überhaupt durch eine Bestimmung der Salpetersäure nicht ermittelt werden und es muss eine Kalibestimmung eintreten.

Eine zu technischen Zwecken benutzte Bestimmung der Salpetersäure in ihren Verbindungen mit Alkalien gründet sich auf die Verwandlung der salpetersauren Verbindung in kohlensaures Alkali, welches alkalimetrisch gemessen wird. Die Verbindung muss selbst neutral sein, und falls kohlensaures Alkali vorhanden wäre, genau mit Salzsäure gesättigt werden. Das zur Trockne gebrachte und durch Erhitzen entwässerte Salz wird abgewogen (1 bis 2 g), mit gleichviel Stärke innig verrieben, und dann mit der sechsffachen Menge feingeriebenen und abgeknisterten

¹) Quarterly Journ. of the chemical Society. Vol. IX.
Kochsalzes oder Chlorkalium vermengt. Das Ganze wird in einem Platin-
tiegel so weit erwärmt, dass die Zersetzung eintritt und nach Wegnahme
der Flamme bis zum Vollenden derselben sich überlassen. Die Masse
muss in jedem Falle schwarz erscheinen, wenn man sicher sein will, dass
alle Salpetersäure zerstört ist. Es wird in Wasser gelöst, filtrirt, aus-
gewaschen und das Filtrat mit Lackmüs und Normalsalzsäure ausgemessen.
Das Resultat ist meistens etwas zu schwach, weil bei der Verpuffung,
auch wenn sie sehr gelind ist, Spuren von kohlensaurem Alkali verflüch-
tigt werden.

1 g Kalisalpeter, 1 g Stärke, 5 g Chlorkalium erforderten nachher
9.5 ebcm Normalsalzsäure = 0.9605 g Salpeter statt 1 g.

1 g Kalisalpeter, 1.5 g Stärke, 6 g Chlorkalium erforderten 9.6 ebcm
Säure = 0.9707 g Kalisalpeter.

Gereinigter Salpeter.

Zur Schiesspulverfabrikation wird der Salpeter von den chemischen
Fabriken im Zustande grosser Reinheit geliefert. Die äusserste Schärfe
der Bestimmung geschieht nach Fresenius 1) in folgender Weise:

1) Wasserbestimmung. Eine gewogene Menge wird gepulvert in
einer Platinaschale, welche in einem Sandbade sitzt, stark erhitzt,
bis übergelagte Glasplatten keinen Anflug mehr zeigen. Der Ge-
wichtsverlust gibt die Feuchtigkeit. Die Erhitzung kann bis nahe
an das Schmelzen gehen.

2) Unlösliche Bestandtheile. 100 g werden in destillirtem Wasser
heiss gelöst, auf einem bei 100° getrockneten Filter gesammelt,
ausgewaschen und ebenfalls bei 100° gewogen.

3) Chlor. Das Filtrat von 100 g wird etwas mit reiner Salpetersäure
angesäuert, mit salpetersaurem Silberoxyd versetzt und im Dunkeln
absetzen gelassen. Das gesammelte Chlorsilber wird in gewöhn-
licher Weise bestimmt, oder noch feucht in Ammoniak gelöst und
auf einem Uhrglas eingetrocknet gewogen. Die titrimetrische Be-
stimmung bei so kleinen Mengen gelingt nicht.

4) Kalk. Andere 100 g werden unter Zusatz von 1.5 g Chlorkalium
in 100 ebcm Wasser heissgelöst und in etwa 500 ebcm reinen Alkohols
(von etwa 96 Proc.) unter Umführen eingegossen, der kristallinische
Niederschlag auf einem gut gewaschenen Filtrum gesammelt und
mit demselben Alkohol ausgewaschen. Der Weingeist wird ab-

Mohr's Titrirbuch.
VIII. Angewandter Theil.

destillirt, der Rückstand in wenig Wasser gelöst und wieder in Alkohol gegossen und dies noch einmal wiederholt. Das Filtrat ist jetzt eine weingeistige Lösung aller Kalk-, Bittererde- und Natronsalze, vorausgesetzt dass der Salpeter keine schwefelsauren Salze enthielt, was in der Regel nicht der Fall ist. Der Weingeist wird jetzt abdestillirt und mit Salzsäure die Nitrate in Chlorverbindungen verwandelt, indem man mit Salzsäure zur Trockne eindampft. Daraus wird der Kalk mit oxalsaurer Ammoniak gefällt und in gewöhnlicher Weise bestimmt.

5) Bittererde. Im Filtrat des Vorigen würde die Bittererde mit phosphorsaurem Ammon gefällt, wenn solche vorhanden wäre, was wohl niemals eintritt.

Natronsalpeter (Chilisalpeter).

Der nach Europa kommende Natronsalpeter ist schon einmal an Ort und Stelle raffiniert. Der natürliche Natronsalpeter ist sehr unrein und enthält oft nur einige Proc. salpetersaures Natron. Er kommt gar nicht in den Welthandel. Was wir also rohen Chilisalpeter nennen, ist die in Chili und Peru einmal raffinierte Waare. Die sicherste Analyse ist auch hier auf die fremden Stoffe gerichtet. Zunächst findet eine Bestimmung der Feuchtigkeit statt, indem man eine grössere Menge (50 g) bis zum anfangenden Schmelzen in einer Porzellan- oder Platinschale erhitzt und den Gewichtsverlust bestimmt. Dieselbe Menge von 50 g nimmt man zur Analyse. Man löst in einem Stielpfännchen kochend auf und filtrirt rasch zwei gleich schwere Filtra, die ineinander gesteckt sind, unmittelbar in die 250 cbcm Flasche mit vollständigem Auswaschen, was leicht geschehen kann. Nach Abkühlung und Anfüllen bis zur Marke nimmt man mit der Vollpipette 10 cbcm = 2 g des Salzes heraus und misst das Chlor mit $\frac{1}{10}$-Silberlösung und chromsaurem Kali. Man nimmt mit der entsprechenden Pipette 100 cbcm heraus, fällt sie kochend mit Chlorbaryum und bestimmt die Schwefelsäure aus dem Gewicht des Barytniederschlags; fernere 100 cbcm fällt man mit oxalsaurer Ammoniak und titrirt den oxalsauren Kalk mit empirischer Chamäleonlösung; im Filtrat versucht man, ob Bittererde durch das mikrokosmische Salz gefällt wird, und bestimmt die Bittererde aus dem geglühten Niederschlag. Jod oder Jodsäure kann nur in Mutterlaugen nachgewiesen werden, die aber nicht hierhin kommen.

Beispiel: 50 g roher Natronsalpeter verloren durch anfangendes Schmelzen 0·101 g = 0·202 Proc. Feuchtigkeit; Rest auf zwei gleich schweren Filtren = 0·097 g = 0·194 Proc. Das Salz zu 250 cbcm gelöst,
von 10 cbcm = 2 g Salz = 14.5 cbcm \(\frac{1}{10}\) Arg. = 0.094767 g Chlornatrium = 4.738 Proc. ClNa. 100 cbcm = 20 g Salz gaben 0.115 g schwefelsauren Baryt = 0.039441 g SO\(_3\) = 0.1972 Proc. SO\(_3\). 100 cbcm = 20 g Salz gaben oxalsauren Kalk = 3.9 cbcm empirischer Chämäleonlösung = 0.039 g Fe; \(\times 0.5 = 0.0195\) g CaO = 0.0975 Proc. CaO; keine Bittererde. Die 0.0975 Proc. CaO fordern 0.140 g SO\(_3\) und bilden damit 0.2375 Proc. Gyps; von der gesamten Schwefelsäure zu 0.1972 Proc. 0.140 abgezogen, lassen 0.057 g Schwefelsäure an Natron gebunden = 0.131 Proc. schwefelsaures Natron; also erhalten:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Füchtigkeit</td>
<td>0.202</td>
</tr>
<tr>
<td>Unlösliches</td>
<td>0.192</td>
</tr>
<tr>
<td>Chlornatrium</td>
<td>4.738</td>
</tr>
<tr>
<td>Gyps</td>
<td>0.2375</td>
</tr>
<tr>
<td>Schwefelsaures Natron</td>
<td>0.131</td>
</tr>
<tr>
<td>Salpetersaures Natron</td>
<td>94.4995</td>
</tr>
<tr>
<td>Total</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Die Alaune.

Die Thonerdealaune im krystallisierten Zustande bedürfen als Ganzes keiner Analyse und es fragt sich nur, ob sie Kali oder Ammoniak, oder wieviel von jedem, und ob sie Eisen als Verunreinigung enthalten.

Den Ammoniakgehalt bestimmt man nach bekannten Methoden durch Destillation und alkaliometrische Ausmessung des Destillats.

Ist die Flüssigkeit stark sauer, wie die rohe Alaunlauge, so hat man eine Bestimmung der Thonerde nothwendig, weil sich darauf die Menge des zuzusetzenden Niederschlagsmittels, schwefelsaures Kali oder Ammoniak, gründet. Die Feststellung der überschüssigen Säure hat in diesem Falle keinen Werth, da sie nach Aukrystallisirung des Alauns doch entfernt wird. Das von Erlenmeyer und Löwinstein zur Abstum-
pfung der Säure empfohlene phosphorsaure Bittererde-Ammoniak (S. 147) hat sich nicht bewährt, und man muss, abgesehen von allem Säureüberschuss, die Thonerde fallen und nach Gewicht bestimmen.

Krystallisirter Alaun kann keine freie Säure enthalten, wohl aber die in Kuchen verkäufliche schwefelsaure Thonerde und wässerige Lösungen. Zur Bestimmung der freien Schwefelsäure empfiehlt Fleischer das folgende Verfahren.

Man setzt der Lösung der schwefelsauren Thonerde neutrales schwefelsaures Kali hinzu, annähernd die Hälfte ihres Gewichtes, bringt Alles in Lösung und dampft stark ein, auf 20 bis 30 cbcm, lässt erkalten, und fügt die doppelte Menge des Volums an starkem Weingeist hinzu. Nach längerem Stehen bringt man den gebildeten Alaun auf ein Filtrum, wäscht mit Weingeist aus und bestimmt im Filtrat die freie Säure mit Normalalkali oder titirtem Barytwasser.

Knochenmehl, Phosphorit, Koproolith, Superphosphat.

A. Knochenmehl.

Chemiker. Sie kann durch die Menge der durch Siebe von bestimmter Maschengrösse durchgehenden Mengen bestimmt werden.

Das Knochenschlüssel wird bei 100° bis 105° getrocknet, gewogen und zuerst die organische Substanz zerstört, weil bei ihrer Gegenwart alle chemischen Fällungen verändert werden. Das Weissbrennen geschieht im schiefliegenden Platintiegel bei guter Hitze und unter öfterem Umrühren mit einer Stricknadel oder Glasstab. Gewichtsverlustbestimmung kann hier vorgenommen werden und gibt die Menge der organischen Substanz annähernd. Soll der Stickstoffgehalt des Knochenschlüssels bestimmt werden, so geschieht das durch eine Verbrennung mit Natronkalk und Ausmessung des Ammoniaks. Die gebrannte Knochenasche wird in möglichst wenig Salzsäure gelöst, mit oxalsaurem Ammoniak und essigsaurer Natron der Kalk kochend gefällt, filtrirt und im Filtrat die PO₃ mit Uran titriert oder mit Bittererdegegenenge gefällt und das Pyrophosphat gewogen. Wenn man 3 g in Arbeit genommen und in die 300 cbcm Flasche filtrirt hat, so kann man mit 100 cbcm = 1 g Substanz die Analyse vornehmen.

Für eine Versuchsstation passt dazu am besten die Einrichtung von Fig. 123. Man blasst durch das hängende Kaputschukrohr in die Flasche, welche die Uranlösung enthält, wodurch sich die Bürette füllt. Der Stopfen auf der Bürette hat einen Längsschnitt, durch welchen die Luft aus der Bürette entweichen kann. Sobald man aufhört zu blasin wirkt die Flasche als Heber und saugt alle Flüssigkeit aus der Bürette bis an den Nullpunkt der Trübung zurück. Die durch den Kork der Bürette durchgehende Glaseöhre lässt sich nämlich mit leichter Reibung auf diesen Punkt stellen.

Die Analyse ergibt folgende Thatsachen:

Feuchtigkeit, organische Substanz oder deren Stickstoffgehalt, Knochenasche und deren Phosphorsäuregehalt.

Gewichtsanalytisch kann man eine der Methoden wählen, die so gleich bei den Phosphoriten beschrieben werden.
B. Natürliche Phosphorite, von der Lahn, Sombrero, Bakerinsel, Mejillones, Estremadura etc.

Die Phosphorite sind natürliche Ausscheidungen aus Kalkgebirgen, in welchen letzteren aus den Schalen der Meeresaconchylien kleine Mengen phosphorsauren Kalkes ursprünglich vorhanden sind. Sie enthalten neben phosphorsaurem Kalke noch Eisenoxyd und Thonerde, Fluor, Jod und gewöhnliche mineralische Bestandtheile. Sie sind ohne Ausnahme so hart, dass sie weder als solche, noch im gepulverten Zustande als Düngestoff verwendet werden können, sondern sie werden im fein gepulverten Zustande mit Schwefelsäure aufgeschlossen und dann als Superphosphate verwendet. Um sie aber zu diesem Zwecke zu brauchen, muss der Fabrikant eine genaue Kenntniss von ihrer Zusammensetzung, insbesondere von ihrem Gehalte an der an Kalk gebundenen Phosphorsäure haben. Da es sich hier gewöhnlich um bedeutende Ankäufe von Rohmaterial handelt, so wird eine sehr genaue Bestimmung des Phosphorsäuregehaltes gefordert, und dazu allgemein die Gewichtsanalyse benutzt. Zunächst muss eine Durchschnittsprobe einer grösseren Partie im fein gepulverten Zustande vorhanden sein, was Sache der beiden Kontrahenten ist und den Chemiker nicht berührt.

Die Analyse der Phosphorite wird durch die nie fehlende Anwesenheit von Eisenoxyd verwickelt; zugleich enthalten sie andere ganz unwesentliche Beimengungen, welche aber die Resultate der Analyse sehr leicht fehlerhaft machen. Dahin gehören Fluorkalkium, Kieselerde, Thonerde. Es kommt also darauf an, sich gleich bei der Aufschliessung solcher Wege zu bedienen, wodurch diese störenden Stoffe möglichst beseitigt, oder unschädlich gemacht werden. Kieselerde fällt leicht mit allen Niederschlägen nieder, welche in einer Flüssigkeit entstehen, die hydrazische oder geloste Kieselerde enthält. Fluorkalkium kann aus der Auflösung in Salzsäure sich an andere Niederschläge anlegen und dieselben vermehren. Was die hierbei auftretenden Verbindungen betrifft, so haben wir die Eigenschaften derselben im Auge zu behalten und zwar dass phosphorsaurer Kalk in Essigsäure löslich ist, oder aus saurer und verdünnter essigsaurer Lösung nicht gefällt wird, dass dagegen phosphorsaurer Eisenoxyd und Thonerde in Essigsäure unlöslich, alle aber in Salpeter- oder Salzsäure löslich sind.

Zur Aufschliessung der Phosphorite kann jede der drei Mineralsäuren angewendet werden. Am vollständigsten geschieht die Aufschliessung durch Salzsäure, wobei sich alles bis auf den Quarz löst. Man hat an der durchsichtigen oft hochgelben Flüssigkeit ein sichtbares Zeichen der vollständigen Lösung. Salpetersäure fordert ein sehr fein gepulvertes Mineral, mehrmaliges Abgiessen und Erneuern der Säure. Es löst sich dabei nicht alles Eisenoxyd auf, wohl aber alle Phosphorsäure, woraus

Man hat vorzugsweise zwei Methoden die Phosphorsäure zu bestimmen: 1) gewichtsanalytisch als pyrophosphorsaure Bittererde mit 64 Proc. Phosphorsäure oder 2) durch Titrieren mit Uranlösung.

Da sich die an Kalk gebundene Phosphorsäure bei der späteren Superphosphatirung ganz anders verhält, als die an Eisenoxyd und Thonerde gebundene, so ist eine en bloc Bestimmung der Phosphorsäure ganz wertlos, wenn nicht die Menge der an Kalk gebundenen daraus erkannt werden kann. Ich bin deshalb der Ansicht, dass bei der Hauptanalyse nur die an Kalk und Bittererde gebundene Phosphorsäure bestimmt werde, und dass, wenn die an Eisenoxyd gebundene ebenfalls bestimmt werden soll, dies in einer besonderen Operation stattfinde. In diesem Sinne muss die Analyse so geführt werden, dass der Kalk und das Eisenoxyd, letzteres mit der an dasselbe gebundenen Phosphorsäure, zugleich entfernt werden.

Nach mehrfachen Abänderungen hat sich die folgende Art der Analyse als die sicherste und sehr leicht auszuführende ergeben.

1) 3 g feines Phosphoritpulver werden in einem Stielpfännchen mit gutem Ausguß in reiner Salzsäure aufgeschlossen, indem man das Gemenge bedeckt in einem leichten Kochen erhält. Dann fügt man eine etwas mehr als genügende Menge oxalsaures Ammoniak oder Kali hinzu, verdünnt etwas und lässt einige Zeit kochen, zuletzt setzt man essigsaures Natron zu, um die freie Salzsäure aufzunehmen und freie Essigsäure in die Flüssigkeit zu bringen. Dadurch wird der oxalsaure Kalk vollständig und das Eisenoxyd mit der entsprechenden Menge Phosphorsäure gefällt. Um zu erkennen, ob alles richtig gefällt ist, gießt man vorsichtig von der klar abgesetzten Flüssigkeit eine kleine Menge in ein Uhrglas und fügt einige Tropfen oxalsaures Ammoniak und reines Ammoniak hinzu. Wenn alles klar bleibt, ist die Fällung richtig gesehen. Man gießt die Probe mit Abspritzen zurück, verdünnt etwas und filtrirt in die 300 cbcm Flasche mit vollständigem Auswaschen des Filters, fällt bis an die Marke an, vermischt und nimmt mit der Pipette 100 cbcm = 1 g Phosphorit heraus in ein Becherglas, übersättigt eben mit Ammoniak und fällt dann mit ammoniakalischer und salmiakhaltiger Lösung von Chlormagnesium. Nach öfterem Umschwenken des Niederschlags

1) Auf 3 g reinen dreibasisch phosphorsauren Kalk würden 3'5 g oxalsaures Ammoniak genügen. Man wird also in den meisten Fällen je nach der Stärke des Phosphorits mit 2 bis 2'5 g oxalsauren Ammoniaks ausreichen.

2) Chlormagnesium, CMg₆HO = 101.4. Da die Phosphorsäure 2 At. Magnesia bindet, so kommen auf 71 PO₅ 203 Chlormagnesium. Enthält nun der Phosphorit
lässt man 3 bis 4 Stunden stehen, bringt den Niederschlag auf ein Filter, wäscht mit verdünntem Ammoniak aus und bestimmt das Gewicht der pyrophosphorsaurer Bittererde in bekannter Weise.

Die Urantitrurierung wird bei dieser nur selten vorkommenden und immer für grosse Anfälle geltenden Analyse zweckmässig ausgeschlossen. Der in Salzsäure gelöste phosphorsaurer Kalk kann allerdings bei starker Verdünnung und viel freier Essigsäure in letzterer gelöst bleiben, allein es scheidet sich leicht bei gelinder Erwärmung und ungentender Verdünnung etwas phosphorsaurer Kalk aus, der nachher nicht mehr in essigsaurer Lösung zu bringen ist. Die hier nötige starke Verdünnung muss schon allein die Ausfällung der PO₅ vor Abscheidung des Kalkes als unzweckmässig erscheinen lassen, denn die Uranreaction mit Blutlaugensalz hat in verdünnten Lösungen eine ganz andere Bedeutung als in konzentriert. Es ist deshalb durchaus vorzuziehen, den Kalk durch eine vorgängige Operation auszuscheiden.

Wird eine Bestimmung des Eisenoxides verlangt, so muss der Gang der Analyse etwas verändert werden. Mag das Eisenoxyd an PO₅ gebunden sein oder nicht, bei der späteren Superphosphatierung kommt es jedesmal mit ihr in Wechselwirkung, und wenn wir es durch den Gang der Analyse ausscheiden, so fällt es als neutrales Phosphat, Fe₂O₅, PO₅, heraus.

Man löst die 3 g Phosphorit in Salzsäure und filtrirt, wobei der Sand auf dem Filtrum zurückbleibt und bestimmt werden kann. Durch Zusatz von essigsaurem Natron scheidet sich das Eisenoxyd als ein schwach gefärbter Niederschlag aus. Dieses hat die obige konstante Zusammensetzung, wenn ein Überschuss von PO₅ in der Lösung war, und kann deshalb durch Bestimmung des Eisens gefunden werden. Man löst den Niederschlag in Schwefelsäure auf, reducirt mit Zink und bestimmt das Eisen mit empirischer Chamäleonlösung; Fe × 1.268 = PO₅. Es wird hier die PO₅ durch das Eisen bestimmt, was unter der Voraussetzung zulässig ist, dass die PO₅ in der Flüssigkeit vorwelse. Aus diesem Grunde ist die Methode unter Chamäleon nicht als eine Bestimmung der PO₅ aufgestellt worden.

Im Filtrat vom phosphorsauren Eisenoxyd fällt man den Kalk durch oxalsauren Ammoniak und kann nun aus dem oxalsauren Kalk, der jetzt rein ist, auch den Kalk bestimmen, sei es durch Glühen als kohlensauren, sei es unmittelbar durch Chamäleon nach S. 197.

Ich hatte in der vorigen Ausgabe die Ausfällung des Eisenoxides durch Blutlaugensalz ohne die mit ihm verbunden PO₅ empfohlen, bin

38 Procent PO₅, so enthalten 2 g desselben 0.68 g PO₅; diese erfordern (71 : 203 = 0.68 : 1.86) 1.89 g Chloramagnesium oder rund 2 g, eben so viel als Phosphorit angewendet wurde. In obiger Mischung enthalten 20 cbem gerade 2 g Chloramagnesium, wofür 25 cbem genommen werden. Bei oft sich wiederholenden Analysen ist es vortheilhaft, solche Maximale für anzunehmen, um nicht überflüssig viel Substanz wegzuwerten. Die mit Bittersalz bereitete Bittererdelsalz gibt meist etwas zu viel, da sich Schwefelsäure leicht mit niederschlägt.
aber davon zurückgekommen, weil diese PO₃ dem Fabrikanten von Superphosphat ganz wertlos ist, ihm vielmehr durch das sogenannte Zurückgehen unangenehme Differenzen veranlassen kann. Wenn es nur auf den Gehalt an PO₃ ankäme, so könnte eine Analyse von Vivianit, Wawellit, Raseneisenstein etc. einen ganz gleichen Reichtum an dieser Säure nachweisen, wie ächte Phosphorite.

Es lassen sich nun noch eine Anzahl anderer Gänge ausführen, die aber in Bequemlichkeit und Sicherheit vor dem an die Spitze gestellten nichts voraus haben.

Hier einige Resultate:

Ein sehr schöner Phosphorit, von dem jedesmal 2 g abgewogen wurden, ergab:

1. mit Salzsäure aufgeschlossen, Kalk und Eisen in einem Act gefällt
 \[1 \cdot 081 \text{ g PO₃, 2 MgO} = 34 \cdot 592 \text{ Proc. PO₃} \]

2. mit Schwefelsäure aufgeschlossen, erst Eisenoxid mit Blutlangensalz, dann im Filtrat Kalk gefällt gab
 \[1 \cdot 085 \text{ g PO₃, 2 MgO} = 34 \cdot 724 \text{ Proc. PO₃} \]

3. mit Salzsäure aufgeschlossen, das Eisen mit schwefligerem Natron reduziert, dann der Kalk durch oxalsaures Ammoniak gefällt gab
 \[1 \cdot 090 \text{ g PO₃, 2 MgO} = 34 \cdot 88 \text{ Proc. PO₃} \]

4. mit Salpetersäure aufgeschlossen, dann Eisen und Kalk zusammengefällt wie in 1. gab
 \[1 \cdot 065 \text{ g PO₃, 2 Mg} = 34 \cdot 08 \text{ Proc. PO₃} \]

Eine vollständige Analyse des Phosphorits kann folgende Thatsachen ergeben:

1. Feuchtigkeit als Glühverlust durch Wägen.
2. Kohlensäure als Verlust, durch verdünnte Salzsäure ausgetrieben, in einem der später zu beschreibenden Apparate.
VIII. Angewandter Theil.

6. Das Filtrat aus 5. würde mit Ammoniak allein die Bittererde als Doppelsalz geben, und das Filtrat davon

7. mit Magnesiummischung gefällt die an Kalk und Bittererde gebundene Phosphorsäure.

Knochenmehl, Phosphorit etc. 491

magnesium, 1 Salmiak, 8 Wasser und 4 Ammoniak. Dieser Niederschlag bleibt wieder 12 Stunden stehen und wird dann in bekannter Weise weiter behandelt und als pyrophosphorsaure Bittererde gewogen 1).

Diese Methode hat eine gewisse Ähnlichkeit mit der in der vorigen Auflage beschriebenen Blutlängensalzmethode. Bei letzterer wird das Eisenoxyd in einer in Säuren unlöslichen Verbindung, bei der Molybdänsäuremethode die Phosphorsäure in einer solchen ausgeschieden. Das Eisenoxyd ist die eigentliche Ursache, weswegen die Molybdänsäure zur Ausfällung genommen wurde, denn wäre bloss Kalk und Bittererde vorhanden, so würde man dieses Umweges nicht bedürfen. Da beide Methoden mit derselben Verbindung, dem phosphorsauren Bittererde-Ammoniak, endigen, so ist eigentlich das Prinzip richtiger, die fremden Stoffe auszufallen. Nach Fresenius wird die Phosphorsäure mit grosser Vorsicht ausgefällt und wieder in die Analyse hineingebracht. Alles, was nicht gefällt wurde, oder beim Auswaschen sich auflöste, ist Verlust. Nach meiner Methode bleibt die Phosphorsäure bis zur letzten Fällung, die bei beiden Methoden dieselbe ist, unberührt und ein Verlust ist in den sauren Flüssigkeiten ganz unmöglich. Verlängertes Auswaschen kann nur immer der Wahrheit näher führen, aber keinen Verlust bedingen, ausser im letzten Auswaschen, was bei beiden gleich ist. Der einzige entschiedene Vorzug der Molybdännsäuremethode ist der, das sie von der Gegenwart der Thonerde unabhängig macht; alle anderen Beimengungen lassen sich auf andere Weisen leichter beseitigen. Dagegen hat sie ganz entschiedene Nachtheile. Zunächst ist die ganze Ausscheidung der Phosphorsäure durch Molybdännsäure nur eine vorbereitende, eine Zwischenoperation. Wäre der gelbe Niederschlag von konstanter Zusammensetzung und leicht im wägbaren Zustande herzustellen, so wäre die grosse Menge der verbrauchten Molybdännsäure ein Vortheil, ein Mittel zu grösster Genauigkeit; in der vorbereitenden Arbeit ist aber die grosse Menge ein Nachtheil, ein Hinderniss, welches grössere Filter und mehr Waschflüssigkeit erfordert. Ein anderer Nachtheil liegt in der

langsam Abscheidung des Niederschlags und in der Unsicherheit, ob er vollständig abgeschieden ist. Von einem Fällungsmittel verlangt man mit Recht, dass ein Ueberschuss desselben im Filtrat durch den zu fällenden Stoff wieder angezeigt werde; das findet aber hier nicht statt, oder erst nach Stunden, und jede Prüfung dauert eben so lange, als die Hauptfällung selbst. Schliesslich kommt auch die ökonomische Rücksicht bei dem Preise von 5 Thalern für das Pfund Molybdänsäure zur Beachtung, und bewirkt, dass man mit kleinen Mengen arbeitet. Ein halbes Gramm ist eine zu kleine Menge zu einer genauen Analyse und das Resultat muss entschieden schärfer werden, wenn man 2 g zu demselben Endpunkte führt. Die Filterasche macht bei 0,5 g Phosphorit und den darin enthaltenen 0,125 bis 0,150 g Phosphorsäure einen viel bedeutenderen Fehler, als für die vierfache Menge.

Um die ganze Menge der Phosphorsäure zu bestimmen, empfiehlt sich die folgende, für alle Fälle dienliche Methode.

3) Scheidung durch Weingeist.

Um die fremden Beimengungen des Phosphorits auszuscheiden, kann man sich auch mit Vorteil des Weingeistes bedienen.

Man erhitzt bis zum Wegfliegen von dicken Schwefelsäuredämpfen, aber nicht bis zur vollständigen Trockne. Nach dem Erkalten giesst man 90 procentigen Weingeist auf die Masse, bedeckt mit einer Glasscheibe und lässt eine Zeitlang stehen. Man bringt den aufgeschlammten Gyps auf ein Filtrum, welches auf einem Destillirkölchen steht, und süss Schale und Filtrum mit Weingeist unter Bedeckung des Trichters aus, bis die ablaufende Flüssigkeit blanes Lackmuspapier nicht mehr röthet.
Den Alkohol destillirt man aus dem Kölbcchen ab, wozu man sich bei öfterer Wiederholung der Arbeit einen kleinen Röhrenkühlern zurecht macht.

Zu dem Rückstand setzt man Wasser, dann Ammoniak und fällt die Phosphorsäure mit der Bittererdemixtur. Von nun an verfährt man wie oben.

Eine Modification dieser Methode besteht darin, dass man in die weingeistige Lösung Ammoniak leitet, oder mit Ammoniak gesättigten Weingeist (Liquor Dosendi) hinzufügt, wodurch sich phosphorsaures und schwefelsaures Ammoniak abscheidet. Nach Absetzen der Salze giesst man den Weingeist ab, löst die Salze in Wasser und kann nun mit Uranlösung titriren, oder mit Bittererde fällen und wägen.

C. Superphosphat.

Die natürlichen fein gepulverten Phosphorite werden mit Schwefelsäure aufgeschlossen, wobei sie durch Bildung von hydratischem Gyps erstarrn und trocken werden. Da es hier wesentlich auf die Menge der in Freiheit gesetzten Phosphorsäure ankommt, so wird die kalte Auslangungsmethode allgemein angenommen. Wenn sich zur Zeit der Bestellung der Felder eine grosse Anzahl von Superphosphaten bei den Versuchstationen ansammelt, so ist eine rasche Bestimmung der PO₃ nothwendig, und man ist in der Lage eine Bestimmung in etwa einer Stunde machen zu müssen. Man muss deshalb von der vorherigen Entfernung des Kalkes absehen.

Man zerreibt 10 g Superphosphat in einem Mörser mit Wasser und schlämt die feine trübe Masse in einer Halbliterflasche oder Literflasche, bis der Mörser leer ist, oder nur Sandkörner enthält. Man füllt bis zur Marke an, schüttelt um, und lässt absetzen. 100 cbcm dieser Flüssigkeit enthalten den in Wasser löslichen Theil von 2 oder 1 g Superphosphat. Es werden 100 cbcm herausgenommen und sogleich eine durch Erfahrung ermittelte Menge Uranlösung und dann erstessigsaures Natron zugesetzt, um vorab den grössten Theil der Phosphorsäure mit dem Uranoxyd zu fällen. Man vollendet dann nach einiger Erwärmung unter der Uranbürette die Bestimmung, bis mit den Tropfen der Blutlangensalzlösung die erste schwache Färbung ins Bräunliche eintritt.
Um den Fehler zu vermeiden, der aus dem ungelösten Schlamm auf das Volum der Flüssigkeit übergeht, maße man genau 500 ccbm Wasser ab und zerreibe damit die 10 g Superphosphat in eine andere nicht geaichte Flasche, aus welcher man nach dem Absetzen die 100 ccbm herausnimmt, oder man fülle die 500 ccbm oder Literflasche genau bis an den Strich mit Wasser an, zerreibe die 10 g normalen Superphosphates mit Wasser aus dieser Flasche und gieße auch in dieselbe zurück, bis die 10 g ebenso verarbeitet sind, wie oben. Man macht dann an die jetzt etwas höher liegende Oberfläche der Flüssigkeit ein Hälfszeichen auf gummiertes Papier mit der Bezeichnung „10 g Superphosphat,“ welche Marke dann für fernere Analysen gilt.

2 g Superphosphat werden mit kaltem Wasser in einem Mörser zu Schlamm zerrieben und ausgesogen, bis das Filtrat nicht mehr sauer reagirt. Den Rest spritze man aus dem Trichter mit einer kleinen Spritflasche, worin 100 ccbm einer Lösung von zitronensaurem Ammoniak von 1°9 spezifischem Gewicht enthalten sind, in ein Becherglas und digerire 1,2 Stunde lang bei 30 bis 40° C. Dann wird filtrirt und der Rest auf dem Filtrum mit einer verdünnten Lösung von zitronensaurem Ammoniak ausgewaschen. Die Flüssigkeit wird in einer Platinschale zur Trockne

Um diese Verbrennung der Zitronensäure zu umgehen, kann man auch die zurückgegangene Phosphorsäure indirekt bestimmen, indem man einmal die gesammte Summe der Phosphorsäure (mit Salzsäure etc.) bestimmt (S. 492), dann die ungeschlossene in dem mit Wasser und nachher zitronensaurem Ammoniak behandelten Reste, weiter mit Salzsäure ausgezogene (c), und die in Wasser löschliche (a) in gewöhnlicher Weise. Die zurückgegangene ist dann b. Nun ist \(S = a + b + c \) also \(b = S - (a + c) \). Man hat also immer drei Bestimmungen auszuführen.

Es ist oben die verdünnte Essigsäure auch unter denjenigen Stoffen genannt, die ein nicht befriedigendes Resultat gegeben haben. Ich finde aber, dass eine starke Essigsäure sich sehr gut zu dem genannten Zwecke eignet, und da ihre Gegenwart das Einäschen nicht nothwendig macht, so wird das Resultat auf viel leichtere Weise gewonnen.

Naturlicher sehr fein gepulverter Phosphorit wird von Essigsäure nur unbedeutend angegriffen. Der kohlensaure Kalk löst sich vollständig und im Filtrat ist ziemlich viel Kalk, aber wenig Phosphorsäure. Ein sehr hochgradiger Phosphorit von hellgelber Farbe mit Essigsäure angesetzt und erwärmt gab ein Filtrat, aus dem nach dem Ausfallen des Kalkes Magnesiumxürt zuerst gar keine Trübung, nach einiger Zeit eine unbedeutende Fällung bewirkte. Ein anderer etwas dunkler gefärbter Phosphorit in gleicher Weise behandelt gab bei dem letzten Zusatze von Magnesiumxürt einen sehr geringen Niederschlag. Darnach ist das, was Essigsäure auszieht, kein unaufgeschlossener Phosphorit, und es würde sich als richtiger empfehlen, die Superphosphate nicht mit Wasser,
sondern mit Essigsäure auszuziehen. Es würde dann das absichtliche
Nachsuchen von zurückgegangener Phosphorsäure ganz vermieden, und
die Analysen würden um ein gutes Stück der Gerechtigkeit näher rücken.

Zu einer vollständigen Kenntnis des Werthes eines Superphosphats
würden zwei Analysen genügen:

1. Eine Bestimmung der durch Essigsäure ausziehbaren Phosphorsäure.
2. Eine Bestimmung der Gesamtphosphorsäure durch Aufschlüsselung
 mit Salzsäure, wie bei den natürlichen Phosphoriten nach S. 492.

Die Gesamtmengen weniger die in Essigsäure lösliche Phosphorsäure
gibt die unaufgeschlossene. Die erste Analyse kann ohne Weiteres durch
Titrieren mit Uran ausgeführt werden; die zweite durch Fällen des Kalkes
und Eisenoxydes mit Oxalsäure und Blutlangensalz, Fällen mit Magnesia-
mixtur und Bestimmung der PO₅ durch Lösung des letzten Niederschlages
in Essigsäure und Ausmassen mit Uranlösung.

Ein Superphosphat aus Zuckerhude ergab folgende Resultate:

1. 2 g mit Wasser ausgezogen gaben 0'360 g pyrophosphorsaure Magnesia = 11'52 Proc. PO₅
2. 2 g mit Essigsäure ausgezogen gaben 0'480 g pyrophosphorsaures MgO = 15'36 Proc. PO₅
3. 2 g mit Salzsäure ausgezogen gaben 0'641 g pyrophosphorsaures MgO = 20'05 Proc. PO₅
 Wir haben also aus 1 in Wasser lösliche . = 11'52 Proc. PO₅
 Zurückgegangene (2 minus 1) = 3'84 Proc. PO₅
 Unaufgeschlossene (3 minus 1) = 4'69 Proc. PO₅
 Summa 20'05 Proc. PO₅

Praktisch würden nur die beiden Bestimmungen 2. und 3. ausgeführt werden, und die Aufstellung wäre
Aufgeschlossene Phosphorsäure = 15'36 Proc. PO₅
Unaufgeschlossene Phosphorsäure = 4'69 Proc. PO₅

Will man auch den in Wasser unlösen Antheil der Phosphorsäure
bestimmen, so nimmt man den Schlamm in der Literflasche auf
in Filtrum, wäicht ihn ein wenig aus, und bestimmt die Phosphorsäure
wie bei natürlichen Phosphoriten.

D. Koprolithe.

Es sind dies Exkreme vorweltlicher Thiere, welche durch manng-
fache Infiltration sehr verändert sind. Sie sind steinhart und können
nur als Superphosphate zur Verwendung kommen. Sie enthalten noch
organische Substanzen, welche Blasenwerfen und Aufschäumen der Flüssigkeiten
bewirken; ebenfalls Fluorverbindungen. Es ist deshalb nothwendig, sie
vor der Analyse in einem Platinofen schwach zu glühen. Die gewogene
und dann geglühte Masse wird mit Salzsäure bis zum Verdampfen aufgeschlossen, sogleich Kalk und Eisenoxyd mit den Phosphoriten ausgeschieden und ebenso weiter verfahren. Wenn das Filtrat mit essigsaurem Natron einen sehr reichlichen und hellen Niederschlag bildet, so ist Thonerde zu vermuten, und es wird sich dann die Ausscheidung der Phosphorsäure mit molybdänsaurem Ammoniak, nach Fresenius (S. 490), oder nach der S. 492 mitgetheilten Methode empfehlen.

Es bleibt überhaupt zu einer guten Bestimmung bis jetzt nur das phosphorsaure Bittererde-Ammoniak nach längerem Absetzen übrig.

Guano.

Mohr's Titirbuch.

Beim Auflösen des Restes in Säuren darf kein starkes Brausen erfolgen, in welchem Falle der Guano mit Mergel oder Kalksteinpulver verfälscht wäre. Wäre dies der Fall, so könnte man den kohlensauren Kalk durch die Verlustmethode bestimmen. Ist das Aufbrausen nur gering, so führt es von der gewöhnlich vorhandenen kleinen Menge kohlensauren Kalkes her, dessen Bestimmung kein Interesse hat.

Der Guano ist nach Alter und Abstammung ein sehr verschiedenartiges Gemenge von löslichen und unlöslichen Stoffen. Es enthält die Phosphorsäure theils im wasserlöslichen Zustande, theils an Kalk gebunden und nur sehr wenig an Eisenoxyd. Durch allmäßige Bildung von Oxalsäure, die sich im Guano vorfindet, ist ein Theil Phosphorsäure vom

Guano.

Kalke ausgeschieden und mit Ammoniak und etwas Kali in Verbindung getreten.

Es hat weder eine wissenschaftliche noch praktische Bedeutung, die drei Arten des Stickstoffes einzeln zu bestimmen, da sie auch gleichwertig sind. Man bestimmt also den ganzen Stickstoffgehalt nach Warrentrap-Will mit hydratischem Natronkalk als Ammoniak und kann dabei die bei Ammoniakbestimmungen beschriebenen Methoden anwenden; oder man fängt das Ammoniak mit ungemessener Salzsäure auf, dampft zur Trockne ab und bestimmt das Chlor mit 1/10-Silberlösung und einfach chromsaurem Kali als Indikator.

Man löse 3 g Guano mit Salzsäure und etwas Wasser durch gelindes Kochen vollständig auf, setze 1 bis 1/5 g oxalsaures Ammoniak zu und löse dasselbe durch Umrühren rasch auf, dazu füge man 2 bis 2,5 g essigsaures Natron zu und halte das Gemenge längere Zeit nahe am Kochen. Der oxalsaure Kalk scheidet sich dadurch leichter ab, und reisst eine ansehnliche Menge Farbstoff mit nieder. Man hat nun zu prüfen, ob aller Kalk gefällt ist. Zu diesem Zwecke stellt man das Stielpännchen von der Flamme und lässt absetzen. Man kann aus dem spitzen Ausguss eine kleine Menge der klaren Flüssigkeit auf ein Uhrglas abgießen und prüft diese mit einigen Tropfen von oxalsaurem Ammoniak. Wenn hier kein Niederschlag mehr entsteht, so ist die Fällung des Kalkes vollendet und man filtrirt die Flüssigkeit in eine 300 cbm Flasche, wäscht aus und füllt nach dem Erkalten bis an die Marke an. Es entsteht häufig im Filtrat noch ein Niederschlag, der aber aus einer organischen Substanz besteht, welche kaum Einfluss auf das Resultat hat. Man nimmt mit der Pipette 100 cbm Flüssigkeit heraus, setzt Ammoniak zu und fällt mit salmiakhaltigem Chlormagnesium das Gemenge vollständig, lässt nach öfterem Umschwenken längere Zeit absetzen, und bestimmt, nach Aus-
VIII. Angewandter Theil.

waschen des Niederschlags mit verdünntem Ammoniak, die geglühte pyrophosphorsaure Bittererde (PO₅, 2 MgO) nach Gewicht in bekannter Weise oder alkalimetrisch nach Stolba (siehe Anhang).

Die Abscheidung des Kalkes ist nach diesem Verfahren eine Notwendigkeit; da sie aber keine besondere Arbeit veranlasst, weil doch einmal filtrirt werden muss, und dies hier zusammen geschieht, so ist die grössere Sicherheit mit keinem Verlust an Zeit und Mühe erkauf. Die Titirrung mit Uranlösung vor Ausfällung des Kalkes ist aus denselben Gründen zu verwerfen, die bei den Phosphoriten angeführt wurden. Sie lässt sich aber auch hier ausführen, wenn man den ausgewaschenen Niederschlag statt zu glühen in Essigsäure anflöst und dann mit Uranlösung ausmisst. Es sind dann alle fremden Salze entfernt, die einen Einfluss auf die Abscheidung des phosphorsauren Uranoxides ausüben können, und die Flüssigkeiten sind konzentriert, wenn man das Filtrum samt dem Niederschlag in ein Becherglas und, mit Essigsäure versetzt, unter die Uranbürette bringt.

Will man die in Wasser lösliche Phosphorsäure allein bestimmen, so nimmt man 10 g Guano, kocht mit Wasser aus und filtrirt mit Auswaschen, bis die Bittererdemixtur keine Trübung mehr veranlasst. Dieser Auszug enthält keinen Kalk, kann also gleich mit Bittererdegemenge gefällt werden. Der ausgewaschene Niederschlag wird durch Glühen als Pyrophosphat bestimmt.

Um den Kalk zu bestimmen, muss man den Guano erst glühen, und zwar mit kohlensaurem Natron und etwas Salpetre, wenn man zugleich die PO₅ bestimmen will. Man löst die geglühte Masse in Salzsäure durch Kochen auf und filtrirt; jetzt setzt man oxalsaures Ammoniak und essigsaurer Natron wie oben zu, und scheidet den oxalsauren Kalk durch ein Filtrum ab. Nach dem Auswaschen bestimmt man den Kalk durch empirische Chamoselösung (S. 197).

Bittererde kann bestimmt werden, wenn man die vom oxalsauren Kalk abfiltrirte essigsäure Lösung mit Ammoniak allein übersättigt, und den entstehenden Niederschlag wie oben bestimmt.

Es ist unmöglich, aus einer Schiffsladung Guano eine auch nur annähernd richtige Probe zu ziehen, welche den Durchschnittsgehalt gäbe. Selbst bei einem Sacke Peruguano ist dies unthunlich, wenn derselbe Knollen, Steine, Stengel, Stroh und andere Verunreinigungen enthält. Die Grosshandlungen in Hamburg verweigern deshalb jede Gewähr des Gehaltes, wenn aus dem Schiffe verkauft wird. Eine innige Mischung
würde nur möglich sein, wenn durch Absieben die groben Theile getrennt, vermahlen und dann wieder beigemengt würden. Allein auch dies ist bei der staubigen Beschaffenheit des Guanos und bei grossen Massen fast unausführbar. Für solche Probenahmen sind die analytischen Methoden, die wir jetzt befolgen, weitaus noch zu gut. Wir bestimmen die PO₅ der Probe auf 1/16 Proc. genau; die eines Sackes nicht auf 1 Proc., und die einer Schiffsladung kaum auf 3 Proc. sicher.

Die Mannigfaltigkeit der Guanosorten ergibt sich aus folgenden Analysen.

<table>
<thead>
<tr>
<th></th>
<th>Asche</th>
<th>In Wasser lösliche PO₅</th>
<th>Unlösliche PO₅</th>
<th>Gesamte PO₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peruguano. Durchschnitt</td>
<td>33—35 %</td>
<td>8 %</td>
<td>7.5 %</td>
<td>10.5 %</td>
</tr>
<tr>
<td>Guanilla</td>
<td>5.2</td>
<td>8.2752</td>
<td>9.1008</td>
<td>17.370</td>
</tr>
<tr>
<td>Punta de Lobos</td>
<td>4.2</td>
<td>9.9344</td>
<td>5.4896</td>
<td>15.424</td>
</tr>
<tr>
<td>Pavillon de Pica</td>
<td>39-0</td>
<td>6.6928</td>
<td>8.3712</td>
<td>14.464</td>
</tr>
<tr>
<td>Mejillones</td>
<td>86.4</td>
<td>0.0832</td>
<td>34.368</td>
<td>34.284</td>
</tr>
</tbody>
</table>

Der mit Schwefelsäure aufgeschlossene Guano ist eine auf den Geldbeutel des Landwirthes berechnete Erfindung. Der natürliche Guano bedarf nach feiner Vertheilung durchaus keiner Aufschlussung durch Säure, wie die diichten Phosphorite. Alles ist in ihm in der lockersten leichtest assimilirbaren Form vorhanden. Der Fabrikant hat den Vortheil, dass durch Bildung von hydratischem Gyps das Gewicht ansehnlich vermehrt wird, und der Bauer bezahlt die Schwefelsäure, die er gar nicht nothwendig hat, oder die er im gemahlenen Gyps (100 Pfd. = 0.60 M.) weit wohlfeiler haben kann.

Bei Untersuchung von menschlichen Exkrementen und den daraus fabrikmässig dargestellten Düngepräparaten, welche unter dem Namen Poudrette, Urat, Urinat etc. im Handel vorkommen und welche sehr stark Verfälschungen ausgesetzt sind, kommt es immer auf eine Bestimmung der Phosphorsäure und des Ammoniaks an, wozu bereits genügende Anleitung gegeben ist. Wären die Dünger zu besonderen Zwecken, wie zum Weinbau, empfohlen, so muss jedenfalls eine Bestimmung des Kalis hineingesogen werden.
Gyps.

Wenn man sein geriebenen Gyps mit kohlensaurem Natron digerirt, so wird derselbe zersetzt und es bildet sich kohlensauren Kalk. Das kohlensaure Natron hat so viel an Alkalität verloren, als der vorhandenen Schwefelsäure entspricht. Auf 86 wasserhaltigen Gyps kommen genau 53 kohlensaures Natron. Man hat also nur den nicht zersetzten Theil des kohlensauren Natrons alkaliometrisch zu bestimmen.

a. Restmethode.

Man wäge 3 g Gyps ab, füge dazu 2'65 g ausgetrocknetes, frisch erhitztes und chemisch reines kohlensaures Natron, digerire längere Zeit, fülle das Ganze in eine 300 cm³ Flasche und lasse absetzen. Von der klaren Flüssigkeit messe man 100 cm³ ab und bestimme den alkaliometrischen Werth mit Normalsalzsäure.

2'65 g kohlensaures Natron sind im Systeme = 50 cm³ Normal. Die dreifache Menge der auf 100 cm³ Flüssigkeit verbrauchten Cubikcentimeter ziehe man von 50 cm³ ab und berechne den Rest auf Gyps, indem die Cubikcentimeter mit 0'086 multiplicirt werden, oder auf wasserleeren schwefelsauren Kalk, indem mit 0'068 multiplicirt wird, oder auf Schwefelsäure, indem mit 0'040 multiplicirt wird.

b. Direkte Bestimmung.

Digerire eine gewogene Menge Gyps mit überschüssigem kohlensauren Natron, filtrire, wasche aus und bestimme den kohlensauren Kalk alkaliometrisch mit Normalsalzsäure und Normalalkali.

Aus dem Filtrat kann mit Salzsäure und Chlorbaryum die Schwefelsäure nach Gewicht bestimmt werden, oder maassanalytisch: sättige das kohlensaure Natron genau mit Salpetersäure, digerire die Flüssigkeit mit kohlensaurem Baryt und freier Kohlensäure (S. 129, a), filtrire und bestimme das kohlensaure Alkali mit Normalsalzsäure.

Sulfat.

Unter diesem Namen erscheint das rohe kalciniirte schwefelsaure Natron im Handel, welches zur Fabrikation von Glas verwendet wird.
Chlorkalium und Chlornatrium.

Es kommt vorzüglich auf folgende Punkte an:

1) Unlösliche Stoffe, gewöhnlich abgekratzte Theile der Herdsohle. Man löst 5 bis 10 g in warmem Wasser und filtrirt. Die Stoffe bleiben auf dem Filtrat.

2) Freie Säure. Das Filtrat aus 1) wird mit Zehnte-Aetzkali und Lackmus gemessen.

Chlorkalium und Chlornatrium.

<table>
<thead>
<tr>
<th>Verbrauchte Zehntel-Silberlösung in Cubikoentimetern</th>
<th>Procentgehalt an Chlornatrium</th>
<th>Verbrauchte Zehntel-Silberlösung in Cubikoentimetern</th>
<th>Procentgehalt an Chlornatrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.3</td>
<td>0</td>
<td>39.3</td>
<td>30</td>
</tr>
<tr>
<td>36.4</td>
<td>1</td>
<td>39.8</td>
<td>35</td>
</tr>
<tr>
<td>36.5</td>
<td>2</td>
<td>40.3</td>
<td>40</td>
</tr>
<tr>
<td>31.6</td>
<td>3</td>
<td>40.8</td>
<td>45</td>
</tr>
<tr>
<td>36.7</td>
<td>4</td>
<td>41.3</td>
<td>50</td>
</tr>
<tr>
<td>36.8</td>
<td>5</td>
<td>41.8</td>
<td>55</td>
</tr>
<tr>
<td>37.3</td>
<td>10</td>
<td>42.3</td>
<td>60</td>
</tr>
<tr>
<td>37.8</td>
<td>15</td>
<td>42.8</td>
<td>65</td>
</tr>
<tr>
<td>38.3</td>
<td>20</td>
<td>43.8</td>
<td>70</td>
</tr>
</tbody>
</table>

Aus dieser Tafel ersieht man schon, dass bei dieser Methode nicht viel Segen ist, da $\frac{1}{10}$ cm Silberlösung über ein ganzes Procent Chlornatrium entscheidet. $\frac{1}{10}$ cm ist aber an sich schon eine nicht mehr scharf zu bestimmende Grösse. Ausserdem dürfen keine fremde Salze, keine Sulfate vorhanden sein, weil man dann die Summe der Chloride nicht kennt. Das Ausfallen der Schwefelsäure mit einem Barytsalz nutzt auch nichts, da die Schwefelsäure an sich nicht hindert, sondern nur die Summe der Chloride unsicher macht. So hat auch Fresenius (dessen Zeitschrift f. analyt. Chemie I, 110) dies Verfahren schon verworfen, indem er berechnete, dass eine Beimengung von 2 Proc. schwefelsaurer oder salpersaurer Salze einen Fehler von 7 Proc. Chlornatriumgehalt bedingt. Es bleibt also doch nichts übrig, als eine der oben erwähnten Kalibestimmungen.

Schiesspulver.

Analysen von Schiesspulver haben fast allen Werth verloren, nachdem sich durch Untersuchungen herausgestellt hat, dass alle unsere Voraussetzungen über die Zusammensetzung und den Vorgang bei der Explosion falsch sind. Man nahm die theoretische Zusammensetzung des Schiesspulvers zu 1 At. Salpeter, 1 At. Schwefel und 3 At. Kohlenstoff an und rechnete auf dem Papiere aus, dass daraus 3 At. Kohlenäsür,
Schiesspulver. 505

1 At. Stickstoff als Gase, und 1 At. Schwefelkalium (KS) als Rückstand, Pulverschleim, bleiben müsse, und dass 1 g dieses normalen Pulvers 330°9 cbcm bei 0° und 760 mm Druck geben müssten. Statt dessen enthalten die Pulvergase neben Kohlensäure eine ansehnliche Menge Kohlenoxydgas; ein Theil Kohle bleibt unverbrannt und der Rückstand enthält nur Spuren von Schwefelkalium, dagegen viel schwefelsaures Kali und ungefähr die Hälfte Kohlensaures Kali, und die Pulvergase nehmen nicht einen Raum von 330°9 cbcm, sondern von 226°5 cbcm ein. Die Verbrennungsprodukte sind innerhalb gewisser Grenzen ganz unabhängig von der Körnung des Pulvers, und die Explosion übt eine nivellirende Wirkung aus, wodurch Pulversorten von sehr ungleicher Zusammensetzung gleiche Produkte und auch gleiche Wirkung geben 1). Es ist also mit einer noch so genauen Analyse nichts gewonnen, weil man keine Schlüsse darauf bauen kann.

Nachdem das Filtrum getrocknet ist, zieht man den Schwefel mit Schwefelkohlenstoff oder Schwefelammonium aus und erhält als Rest die Kohle bei 100°C getrocknet nach Abzug des Filtrums. Der Schwefel kann durch Verdampfen der Lösung oder aus der Differenz erhalten werden.

schwefelsaure Baryt wird noch einmal mit Salzsäure behandelt und nach
dem zweiten Glühen und Erkalten gewogen.

Oder nach Linck: Man zieht zuerst den Schwefel mit Schwefel-
kohlenstoff aus, dann den Salpeter durch Wasser und bestimmt beide ein-
zein; die Kohle als Rest oder durch eine Verbrennungsanalyse, welche
wohl kaum die Mühe lohnt.

Der ausgezogene Salpeter kann auf Chlor und Schwefelsäure geprüft
werden.

Zeolith e.

Es sind dies natürliche Silicate, welche Wasser als Bestandtheil ent-
halten, und ausserdem Thonerde, Alkalien und Erden. Das Wasser spielt
die Rolle einer Basis und sie sind im natürlichen Zustande sehr basische
Silicate, welche sich sämtlich im gepulverten Zustande durch bloße Be-
handlung mit Salzsäure zersetzen lassen, einige kalt, die anderen in der
Wärme. Die Kieselerde scheidet sich in denjenigen, welche wenig Kiesel-
erde enthalten, gallertartig aus oder bleibt bei verdünnten Säuren gelöst;
b ei jenen, welche mehr Kieselerde enthalten, im sandigen Zustande.

Das Wasser kann selbst aus den ganzen Kristallen durch Hitze aus-
getrieben werden, weil es in chemischer Verbindung enthalten ist und
weil von aussen nach innen durch Entweichen des Wassers Kanäle ent-
stehen, durch welche das nachrückende Wasser entweichen kann. Es
unterscheidet sich also wesentlich von dem kleinen Wassergehalt der Au-
gite, Hornblenden, Feldspat, Granite, Grünsteine etc., welches als flüs-
siges Wasser in engen vollkommen umschlossenen Hohlräumen, Poren,
enthalten ist und nur durch Sprengen derselben, durch Hitze oder durch
Schmelzen ausgetrieben werden kann. Um zu begreifen, wie der Granit
bei der Schmelzhitze des Feldspates noch 1 1/2 Proc. Wasser zurückhalten
können, oder wie in Phonolithen der Feldspat innig gemengt mit Zeo-
lithen, welche 10 bis 14 Proc. chemisch gebundenes Wasser enthalten,
bestehen können, muss man Plutonist sein. Durch Austreiben des Wassers
aus den Zeolithen ist ihre ganze Zusammensetzung geändert. Die Kiesel-
erde bleibt nun mit dem vorhandenen Antheil feuerbeständiger Basen
zurück und bildet damit höhere Silicate, welche durch Salzsäure nicht
mehr zersetzt werden. Aus diesem Grunde muss man zur Wasserbestim-
mung und zur Analyse der Zeolithen verschiedene Mengen Substanz ver-
wenden. Die Wasserbestimmung geschieht gewöhnlich durch Gewichts-
verlust gewogener Mengen im bedeckten Platintiegel, kann aber auch
direct geschehen durch Aufnahme des Wassers in einer Chlorkalziumröhrle,
in welchem Falle die Wasseraustreibung aus grobem Pulver im Schiffchen
in einer Verbrennungsröhre stattfindet, und wo durch einen Aspirator zu-
letzt ein Strom trockner Luft über die Substanz nach der Chlorkalcium-
röhre hingeführt wird.

Zur Analyse wird feines Pulver angewendet und dasselbe mit Salz-
säure im Wasserbade zur Trockne gebracht, dann aber eine Zeit lang
etwas höher erhitzt, um allen Gehalt an Wasser auszutreiben. Ohne
diese Vorsicht löst sich immer etwas Kieselerde und findet sich dann in
allen Niederschlägen. Man pflegt auch die Eindampfung zur Trockne
mit frischer Säure zweimal vorzunehmen. Die mit Salzsäure aufgeweichte
Kieselerde wird in bekannter Weise ausgewaschen, getrocknet und nach
vorsichtigem Glühen erst bei bedecktem, dann bei offenem Tiegel, nach
dem Erkalten über Chlorkalcium, gewogen.

Aus dem Filtrat wird Thonerde und Eisenoxyd kochend durch Am-
moniak gefällt, beide in bekannter Weise getrennt und bestimmt.

Aus dem Filtrat von der Thonerde wird Kalk mit oxalasarem Am-
moniak, aus diesem Filtrat Bittererde mit phosphorsaurem Natron-Ammo-
niak gefällt, wenn keine Alkalien vorhanden sind.

Sind Alkalien, aber keine Erdens vorhanden (Mesotyp), so wird das
Filtrat von der Thonerde eingedampft und als Chlormetall, nach Ver-
flüchtigung des Salmiaks, nach Gewicht bestimmt. Hierin ist nur durch
Chlorplatin das Kali zu bestimmen, wenn solches vorhanden.

Sind Alkalien und Erdens zugleich vorhanden, so wird das Filtrat
von der Thonerde zur Trockne gebracht, der Salmiak verflüchtigt und
der Rest mit festem kohlensaurem Ammoniak und flüssigem Ammoniak
behandelt. Dadurch werden Kalk und Bittererde, letztere als Doppelsalz,
gefällt und nur die Alkalien lösen sich auf. Das Auswaschen geschieht
mit gesättigter Lösung von kohlensaurem und reinem Ammoniak. Die
beiden Erdens werden durch oxalaseres Ammoniak getrennt, die Chlor-
alkalimetalle durch Glühen bestimmt.

Augit, Hornblende.

Beide sind annähernd Monosilicate von Eisenoxydul, Kalk, Bitter-
erde mit oder ohne Thonerde. Über ihre atomistische Formel ist man
unsicher, weil der oft vorhandene, oft fehlende Gehalt an Thonerde sich
jeder Berechnung entsieht. Die in Felsarten (Basalt, Dolerit, Diorit,
Syenit etc.) vorkommenden Augite und Hornblenden sind sämtlich thon-
erdehaltig. Sie enthalten keim chemisch gebundenes Wasser, aber wohl
in Poren eingeschlossenes. Vor dem Schmelzen lassen sie sich nicht durch
Digestion mit Salzsäure zersetzen, obschon etwas Eisen als Oxydoxydul

Feldspath.

Da in den meisten Fällen Kali und Natron zugleich vorkommen, so tritt noch eine Trennung beider Alkalien oder eine Bestimmung des Kalis allein hinzu.

Wenn der Feldspath Kalk enthält, so entsteht durch Schwefelsäure Gips, welcher sich theilweise löst, grösstentheils aber zurückbleibt. In diesem Falle zersetzt man den Rückstand mit kohlensaurem und reinem Ammoniak, wodurch nur die Alkalien ausgezogen werden, samt der
Schwefelsäure, alles übrige bleibt zurück; dieser Rest wird dann in Salz-
säure gelöst; Thonerde und Kalk werden in bekannter Weise getrennt.
Viel einfacher geht die Arbeit, wenn man die Schwefelsäure vermei-
det und die Fluorverbindungen mit Salzsäure zersetzt, oder wenn man
gleich, nach A. Mitscherlich, das geglühnte Pulver mit Flussäure und
Salzsäure zersetzt, zur Trockne verdampft, mit kohlensaurem und reinem
Ammoniak die Alkalien auszieht, die als Chloride gewonnen werden, und
den Rest wie oben behandelt.

In ganz gleicher Weise wie die Feldspathe werden die kristallini-
schen Silicatfelsarten, die Granite, die Melaphyre und Phonolithe, analy-
sirt. Diese en bloc Analysen haben zwar keinen wissenschaftlichen Werth,
weil man drei bis sechs Mineralien in unbekannten Mengen darin hat, weil
einzelne Bestandtheile, wie Kalk, Eisenoxydul, oft von zwei bis drei Min-
eralien herrühren. Dagegen ist oft der Gehalt an Kali von Interesse, um
zu wissen, ob ein solches Gestein durch seine Verwitterung dem Boden
Stoffe abgeben könne, die beim Ackerbau nützlich sind. In diesem Falle
kann man die Analyse auch auf diesen Bestandtheil beschränken und
wählt dazu auch die einfachste Methode: Schmelzen mit Kalkhydrat und
Chlorkalium, Ausziehen mit kohlensaurem und reinem Ammoniak,
Abscheiden der Kieselerde und Bestimmung des Kalis durch Chlorplatin.

Kohlensäure.

<table>
<thead>
<tr>
<th>Gramme Kohlensäure</th>
<th>sind gleich Cubikcentimeter bei 0°C u. 760 mm</th>
<th>Cubikcentimeter Zehntel-Silberlösung</th>
<th>sind gleich Cubikcentimeter Kohlensäure bei 0°C u. 760 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>508.48</td>
<td>1</td>
<td>1.119</td>
</tr>
<tr>
<td>2</td>
<td>1016.26</td>
<td>2</td>
<td>2.237</td>
</tr>
<tr>
<td>3</td>
<td>1525.45</td>
<td>3</td>
<td>3.356</td>
</tr>
<tr>
<td>4</td>
<td>2033.92</td>
<td>4</td>
<td>4.475</td>
</tr>
<tr>
<td>5</td>
<td>2542.40</td>
<td>5</td>
<td>5.593</td>
</tr>
<tr>
<td>6</td>
<td>3050.88</td>
<td>6</td>
<td>6.712</td>
</tr>
<tr>
<td>7</td>
<td>3559.36</td>
<td>7</td>
<td>7.830</td>
</tr>
<tr>
<td>8</td>
<td>4067.84</td>
<td>8</td>
<td>8.949</td>
</tr>
<tr>
<td>9</td>
<td>4576.82</td>
<td>9</td>
<td>10.068</td>
</tr>
</tbody>
</table>
Kohlensäure.

In den chemischen Laboratorien werden zwei im Prinzip verschiedene Methoden der Kohlensäurebestimmung nach Gewicht angewendet:

Die Absorptionsmethode gestattet den ganzen Entwicklungssapparat abzutrennen und nur die Absorptionsröhren zu wägen. Letztere Methode wurde von Kolbe wieder hervorgezogen und von Fresenius in gleichem Sinne befürwortet.

Es ist nicht zu leugnen, dass beide Methoden gleich richtige Resultate geben können und auch bei den Beleganalysen gegeben haben; da gegen bietet die Verlustmethode eine viel grössere Sicherheit dar, dass kein grosser Fehler begangen worden ist. Es ist nämlich viel leichter und sicherer, die ganze Menge der vorhandenen Kohlensäure aus einem Gefäss herauszutreiben, als sie in ein bestimmtes Gefäss hineinzutreiben. Wenn durch Diffusion oder kleine Undichtheiten Kohlensäure an einer unrichtigen Stelle entweicht, so beträgt bei dem ersten Verfahren der Fehler nur die Menge der mitgenommenen Feuchtigkeit, bei dem zweiten aber die ganze Summe der entwichenen Kohlensäure. Ebenso wenn Kohlensäure in dem Lufträume des Entwicklungsgefäßes zurückbleibt, so ist beim ersten Verfahren der Fehler nur der Unterschied des specifischen Gewichtes der Kohlensäure und der atmosphärischen Luft, im zweiten Falle aber die ganze Summe der zurückgebliebenen Kohlensäure. Wenn man bedenkt, dass die Gewichtsverlustmethode, in der rochesten Art ausgeführt, in einem offenen Becherglass mit daneben stehender Säure 1) und ohne alle Wasserkorrection ganz ertragliche Resultate gibt, so ist keine Frage, dass sie die gröstcn Garantien der Richtigkeit in sich trägt, und nachdem die Technik auch Wagen hergestellt hat, welche bei ansehnlicher Belastung noch kleine Gewichte anzeigen, so möchte diese Methode das bisher behauptete Übergewicht auch ferner bewahren.

Von den dazu verwendeten Apparaten, welche alle auf die Austrock-
VIII. Angewandter Theil.

nung der Kohlensäure vor dem Entweichen Bedacht nehmen, sollen hier nur die zweckmäßigensten aufgeführt werden.

Bei Analysen von Dolomit, Galmei, Spatheisenstein, Braunspat muss die Flüssigkeit in A erwärmt werden, und das Wägen darf nicht vor dem vollständigen Erkalten auf die Zimmertemperatur stattfinden. Man saugt
nach dem Wägen nochmal Luft durch, um zu sehen, ob sich das Gewicht nicht mehr verändert. Der Apparat ist im Ganzen etwas schwer wegen der grossen Menge Schwefelsäure, und man kann ihn dadurch leichter machen, dass man die Schwefelsäure in eine dünne und lange Flasche bringt, oder dass man sie durch ein Chlorkalziumrohr ersetzt, wie in Fig. 125 dargestellt ist. Auch ist die Kugelröhre durch einen Quetschhahn hier geschlossen. Dieser Apparat ist sehr leicht und gibt sehr genaue Resultate, wenn nicht gekocht werden muss. Der einzige Nachtheil besteht in dem möglichen zufälligen Ausfließen einiger Tropfen Säure, ehe man gewogen hat, und wovon man auch keine Kenntniss haben kann, wenn man es nicht zufällig beobachtet hat. Um auch diesen Vorwurf zu vermeiden, habe ich folgenden sehr einfachen Apparat construirt, welcher gestattet, mit der grössten Ruhe und Sicherheit zu wägen. In Fig. 126 ist a die Zersetzungsflasche von etwa 100 ehem Inhalt, 95 mm hoch und etwa 55 mm Dicke im Bauche. Die Glasröhre b ist 95 mm hoch und 15 mm im äusseren Durchmesser und dient zur Aufnahme der Salzsäure. Die Glasröhre c ist 95 mm hoch und 20 mm im äusseren Durchmesser und dient zur Aufnahme der konzentrirten Schwefelsäure, womit die Röhre nur etwa zur halben Höhe angefüllt wird. Die Röhre zwischen

\[\text{Fig. 125.} \]

\[\text{Fig. 126.} \]

\[\text{Compendiöser Kohlensäureapparat.} \]

\[\text{Kohlensäurebestimmungsapparat.} \]

\[\text{a und b geht in beiden Gefässen bis nahe an den Boden, dagegen die Röhre zwischen a und c geht bloss in der Schwefelsäure, c, bis nahe an den Boden und endigt in a nicht unter dem Stopfen. Es ist zweckmässig, sich vorher doppelt gebohrte Kautschukstopfen auszusuchen und danach die Röhren und ihre Verbindungen zu richten. Nachdem die gewogene Substanz mit etwas Wasser in a eingefüllt ist und die Röhre b mit Salzsäure, die Röhre c zur Hälfte mit konzentrirter Schwefelsäure gefüllt ist, tarirt man den Apparat. Um die Entwicklung einzuleiten,} \]

\[\text{Mohrs Titiribuch.} \]

Der Apparat Fig. 127 von Heinrich Rose bietet ebenfalls alle Vortheile dar, kann in jeder Grösse dargestellt werden und ist zum Aufhängen an das Häckchen der Wage bestimmt. Die Röhre b ist mit mässig starker Salzsäure gefüllt, a enthält die Substanz, und c ist mit Chlorkalkium gefüllt. An das Ende d wird der Aspirator angelegt, während man an das darunter befindliche Ende von b ein provisorisches Chlorkalkiumrohr ansetzt, welches nicht mit gewogen ist. Der von Bunsen 1) zuletzt beschriebene Apparat ist eine Modifcation des Rose’schen.

Die eben beschriebenen Apparate haben einen gemeinschaftlichen Fehler, dass die Zulassung der Säure nicht ruhig und sicher genug vor sich geht, besonders bei jenen, wo die Säure übergasagt wird. Die Entwicklung der Kohlensäure geht dann zu stürmisch vor sich und

1) Fresenius' Zeitschr. f. anal. Chem. 10, 403.
ihre Austrocknung ist unsicher. Um dies zu vermeiden habe ich an
dem ursprünglichen Apparate von Fresenius und Will einen Glashahn
angeschoben, so dass dieser jetzt allen Anforderungen entspricht und
bei Proben die genauesten Resultate, sehr häufig im Atomgewichte, ge-
gaben hat.

Zwei kleine Kölbchen von 50 mm Durchmesser und 60 mm Höhe sind
in der abgebildeten Weise durch eine Glaspumpe in Verbindung. Die
Kugelröhre, welche die Salzsäure enthält, ist mit
einem Glashahn versehen,
welcher die tropfenweise
Zulassung derselben ge-
stattet. Das zweite Kölb-
chen enthält konzentrierte
Schwefelsäure mit etwas
Nordhäuser versetzt, oder
bloß letztere, und zum
Überfluss sitzt noch eine
Röhre mit entwässertem
Kupferäthyl darauf. Beim
Gebräuche bringt man zu-
erst Wasser durch einen
spitzen Trichter in die
Kugel und lässt dasselbe
bis an den Glashahn ab-
laufen, so dass der untere
Theil der Kugelröhre vom
Hahn abwärts mit Wasser gefüllt ist; man schliesst den Hahn und giesst
starke aber nicht mehr rauchende Salzsäure darauf, jedensfalls in etwas
überschüssiger Menge.

Man bringt nun die gewogene Substanz mit etwas Wasser in das
Kölbchen, setzt den ganzen Apparat auf die Wage und gleich ihn auf
der Schale links mit Granaten oder trocknem Seeasen aus. Dann dreht
man den Hahn sehr wenig, so dass erst das Wasser und später die Salz-
säure tropfenweise mit längeren Pausen ausfliesst. Sobald die Kohlen-
säureentwicklung so ruhig vor sich geht, dass die Blasen einzeln und
zählbar durch die Schwefelsäure gehen, überlässt man den Apparat sich
selbst, ohne ihn zu berühren. Nach einer Stunde oder später findet man
die Säure ausgeflossen und die Zersetzung vollendet. Man hat nur noch
die in der Flüssigkeit absorbierte und in den Hohlräumen enthaltene
Kohlensäure zu entfernen. Zu diesem Zwecke verbindet man das Knie-
röhrenchen der Kupferäthylröhre mit einem Aspirator und die Spitze der
Säurekugel mit einem Chlorkalziumrohr oder einer Schwefelsäureflasche
und lässt einen langsamen Strom trockner Luft durch den Apparat gehen.
Bei Erwärmung des Zersetzungskölbchens erhält man regelmässig etwas
zu hohe Resultate, weil die äussere Fläche des Glases ihren hygroskopischen Zustand ändert. Wenn Erwärmung zur Zersetzung nothwendig ist, wie bei Spatheisen, Magnesit, kohlensäurehaltigen Basalten u. a., so erwärmt man das Zersetzungskolbchen mit Substanz und etwas Wasser vorher, ehe man die Tara nimmt. Nachdem eine halbe Stunde lang trockne Luft durchgesaugt ist, bestimmt man den Gewichtsverlust auf der bis dahin unberührten Wage.

Zu einer neuen Analyse hat man nur das Zersetzungskolbchen zu reinigen; die übrigen Theile können zu sehr vielen Analysen ohne Erneuerung verwendet werden. Die Kupfervitriolröhre lässt sich durch Erhitzen wieder austrocknen, was bei Chlorkalkium nicht angeht, da es schmilzt.

Es ist auffallend, wie grosse Mengen Substanz man in den kleinen Kolbchen von 55 ccm Inhalt zersetzen kann. Die Kugel fasst 27 bis 28 ccm und der ganz montirte Apparat mit Substanz und Säure wiegt zwischen 140 und 150 g. Hier einige Resultate.

4 g isländischer Doppelspath. Gewichtsverlust vor dem Aussaugen 1'680 g; kalt ausgesogen 1'760 g (richtig); warm ausgesogen 1'776 g.

4 g doppelt kohlensaures Natron kalt ausgesogen gaben 2'095 g CO₂, berechnet ebensoviel;

3-153 g frisch gegluhtes kohlensaures Natron gaben 1'303 g CO₂, berechnet 1'308 g.

Eine früher von Persoz ¹), später von Vollhardt empfohlene Bestimmung der Kohlensäure durch Austreibung mittels schmelzenden doppelt chromsauren Kalis steht gegen die zuletzt beschriebene Methode bedeutend zurück. Soll sie im Platintiegel ausgeführt werden, so schliesst sie alle nicht absolut trockne, alle auf einem Filtrum befindlichen Körper aus, und die Zersetzung der Carbonate von Erden ist sehr unsicher; solie in einer Gläseröhre nach Art der organischen Analyse geschehen, so ist sie weit umständlicher und zeitraubender, als die Zersetzung durch Salzsäure, welche keinen einzigen Fall ausschliesst, und nachher auch keiner weiteren Prüfung, ob die Zersetzung vollständig sei, bedarf, welche Prüfung bei Persoz' Verfahren niemals fehlen darf und im Falle, dass sie einschlägt, das Object unbrauchbar gemacht hat.

Um die Kohlensäure direct zu bestimmen, kann man sich des Apparates Fig. 129 bedienen. Entwickelungsfälsche und Kugel mit Salzsäure wie oben, dann folgt eine Chlorkalkiumröhre und zuletzt eine Röhre mit Natronkalk. Dieser Apparat darf nach Ausführung des Versuches und Abkühlung nichts an Gewicht verloren und gewonnen haben. Die Ge-

¹) Fresenius' Zeitschr. f. anal. Chem. 1, 83; Comptes rendus 33, 239; Diagr. polyt. Journ. 61, 440.
wichtszunahme der Natronkalkröhrre gibt das Gewicht der absorbirten Kohlensäure.

Nach allem scheint die Kohlensäurebestimmung in fester Verbindung nach dem Gewichte grosse Vorzüge der Einfachheit und Schnelligkeit zu bieten. Fig. 129.

Directe Wägung der Kohlensäure.

keit gegen alle titrimetrischen Methoden zu gewähren. Um sie mit grösster Sicherheit zu gebrauchen, macht man Probestpunkte mit 3 bis 4 g reinem kohlensaurem Kalk, isländischem Doppelspat oder kristallinischem carrarischen Marmor und beobachtet Zeit und Bedingungen, wo die Wägung genau das richtige Quantum von 44 Proc. Kohlensäure anzeigt. Ähnliche Versuche macht man mit kleinen Mengen von kohlensaurem Kalk, von 0,2 bis 0,3 g. Die Richtigkeit des Resultates ist um so zweifelhafter, je kleiner die zu bestimmenden Mengen Kohlensäure sind, weil die unvermeidlichen Fehler von der Grösse des Volums und der Oberfläche der Apparate abhängen. Es muss deshalb der Apparat in einem richtigen Grössenverhältniss zur Probe stehen, d. h. möglichst klein und leicht sein.

2. Gebundene Kohlensäure nach Volum.

Die Bestimmung des aus einer gegebenen kohlensauren Verbindung durch Säuren entwickelten Gases ist mit Anwendung des näher zu beschreibenden Apparates eine so ungemein leichte Operation, dass es nahe lag, dieselbe zu einer maassanalytischen zu gestalten, um daraus praktischen Nutzen zu ziehen. Hat man die in einem Körper enthaltene Kohlensäure entwickelt, so erhält man dieselbe mit Wasserdampf gesättigt unter einem bestimmten Drucke und von einer bestimmten Temperatur. Der Physiker bringt an dem gemessenen Volum die Korrektionen der Feuchtigkeit, des Barometerstandes und der Temperatur an um das Volum der Kohlensäure im trocknen Zustande bei 760 mm Druck und bei 0°C. zu erhalten. Wir suchen uns von diesen Korrektionen, welche zehnmal so-
VIII. Angewandter Theil.

viel Zeit als die Operation der Entwicklung und Messung hinwegnehmen, dadurch frei zu machen, dass wir gleich vorher oder nachher eine bestimmte Menge einer reinen kohlensauren Verbindung in demselben Apparate und unter genau denselben Umständen zersetzen, und das daraus entwickelte kohlensaure Gas messen. Wollen wir den Gehalt eines Körpers an Kohlensäure bestimmen, so nehmen wir zum Gegenversuch und als Titersubstanz eine solche Menge reinen kohlensauren Kalk, welcher annähernd ebensoviel CO₂ enthält, als die Probe selbst.

Wir haben nun zunächst den Zersetzung- und Messapparat Fig. 129 genauer zu betrachten.

Zum Messen dient eine hochgradige Bürette von 150 bis 200 cbcm Inhalt in 1/5 cbcm geteilt. Ihr oberes Ende ist durch einen Kautschukstopfen mittels der zweimal gebogenen Röhre mit einer Kautschukröhre in Verbindung, welche selbst an den Entwicklungspannrat befestigt ist. Letzterer ist in der einfachsten Form ein zylindrisches Gläschen von ungefähr 35 cbcm Inhalt und 20 mm weitem Halse. Durch den Hals kann eine kleine Glashöhre von 19 mm äusserer Weite eingelassen werden, welche eine Marke von 4 cbcm hat. Dieselbe nimmt bis an diese Marke die 4 cbcm Salzsäure auf, und sie kann in dem Gläschen aufrecht stehend gestellt werden. Die zu prüfende Substanz liegt trocken auf dem Boden des Entwicklungspannratates. Der in der Zeichnung von Fig. 130 angebrachte Zersetzungspannrat ist mehr für das Azotometer berechnet, kann aber auch, wenn die Kölben genügend klein sind, zum vorliegenden Zwecke benutzt werden.

die absorbirte Kohlensäure immer die gleiche Menge, welche von der Temperatur, dem Barometerstand und der Menge der Flüssigkeit abhängt.

Fig. 180.

Kohlensäurebestimmung.

 Nehmen wir immer die gleiche Menge Salzsäure und halten auch die
Temperatur gleich, so kann man die Wirkung des Luftdruckes ausser Acht lassen. Um den konstanten Fehler zu finden, prüft man ungleiche Mengen kohlensauren Kalkes und berechnet daraus den Fehler.

Beispiel: 0·2 g kohlensaurer Kalk gaben 44·2 cbcm CO₂; 0·5 g gaben 116·2 cbcm. Setzen wir den konstanten Fehler = x, so ist:

\[
\begin{align*}
44\cdot2 + x &= 0\cdot2 \\
116\cdot2 + x &= 0\cdot5
\end{align*}
\]

woraus:

\[
0\cdot5 (44\cdot2 + x) = 0\cdot2 (116\cdot2 + x),
\]
oder:

\[
22\cdot1 + 0\cdot5 x = 23\cdot24 + 0\cdot2 x
\]

\[
0\cdot3 x = 1\cdot14, \text{ woraus } x = 3\cdot8.
\]

Es wären also jeder Messung 3·8 cbcm hinzuzuaddiren, und führt man das aus, so ist 44·2 + 3·8 = 48 und 116·2 + 3·8 = 120 und 48 : 120 = 0·2 : 0·5, also das Verhältniss richtig. Allgemein, wenn man das kleinere Gewicht mit p (parvus) und das grössere mit m (magnus) bezeichnet und die entsprechenden Mengen Kohlensäure K (klein) und G (gross) nennt, so ist:

\[
x = \frac{pG - mK}{m - p}.
\]

An einem anderen Tage war der konstante Fehler 4·5 cbcm und 0·5 g Doppelspath entwickelten 118 cbcm Kohlensäure.

Mit diesen Angaben sollten 0·3 g Doppelspath, welche 69·5 cbcm CO₂ entwickelten, bestimmt werden.

118 + 4·5 macht 122·5 cbcm; und die 69 cbcm + 4·5 geben 73·5 cbcm. Nun ist 122·5 : 0·5 = 73·5 : x; woraus:

\[
x = \frac{36\cdot75}{122\cdot4} = 0\cdot3;
\]

also genau die genommene Menge.

Als Titersubstanz hat man gekörnten Doppelspath oder ebensolchen carrarischen Marmor in Glashörchen zu 0·5 g vorher abgewogen. Man stösst den Marmor in einem blanken Mörser zu feinem Pulver und schlägt durch ein Messingdrahtsieberhchen hindurch, bis alles durchgegangen ist. Dann schlägt man dieses Pulver auf einem noch feineren Siebe ab, durch welches blos der Staub durchgeht. Das auf dem Siebe Bleibende hat die Beschaffenheit von feinem Schiesspulver, und läuft glatt von schwarzem Papier oder dem Wägeschiffchen ab. Es dürfen keine grössere Körnchen darin enthalten sein, welche längere Zeit zur Aufflösung erfordern, und dadurch eine Absorption in der Messröhre veranlassen würden. Sobald eine gewogene Menge der feingepulverten Probe durch die Säure zersetzt ist und das Wasser in beiden Röhren im Gleichgewicht steht, dauert es 5 bis 6 Minuten, ehe man die erste Spur von Absorption, d. h. Steigen der Flüssigkeit, in der Messröhre bemerkt. Man hat also gleich abzulesen, wenn die Flüssigkeit einmal stillsteht. Um der Ab-
sorption entgegenzuwirken, habe ich das Wasser mit einer Schichte Petroleum bedeckt, auch Salzlösungen angewendet, aber ohne merkbaren Nutzen, da man reichlich Zeit hat, vor jeder merkbaren Absorption den Stand zu notiren.

Es gibt ferner noch ein einfaches Mittel die Richtigkeit der Analyse zu sichern. Man nimmt nach Ausspruch des ersten Versuches eine solche Menge der Probe, dass sie annähernd ebensoviel CO₂ entwickelt, wie das halbe Gramm Marmor. 1 g NO₃-Marmor gaben 118 ccm CO₂; 1 g Lös, der auf kohlensauren Kalk untersucht werden sollte, gab 36.6 ccm CO₂, wir haben also 36.6 : 1 = 118 : x; also $x = \frac{118}{36.6} = 3.2$ g. Man wägt also 32 g Lös ab, entwickelt die CO₂ und berechnet die jetzt nur kleine Abweichung beider Zahlen auf den Titer des Marmors.

Ein anderes Prinzip zur Bestimmung der Kohlensäure in natürlichen Kalksteinen, Erden, Mergel und dergl. ist von Dr. Pinkus vorgeschlagen worden. Er misst die Spannung der entwickelten Kohlensäure durch eine gehöbene Quecksilbersäule bei gleichbleibendem Volum, während in dem vorhin beschriebenen Apparate dies Volum bei gleichbleibender Spannung gemessen wird.

Der Apparat von Pinkus besteht aus einer zweihalsigen Flasche Fig. 131), von denen der eine fast horizontal steht und mit einem sehr
VIII. Angewandter Theil.

Eine denselben Zweck erreichende Konstruktion ist in Fig. 132 (a. v. S.) abgebildet. Die grosse Flasche enthält selbst das Quecksilber, und dies wird durch den Druck des entwickelten Gases in die Glasröhre hineinge trieben. Auf dem Quecksilber liegt eine Schicht starker aber nicht rauchender Salzsäure bis zu einem Striche. Man misst die Quecksilber säule von dem Niveau in der Flasche bis zu der Höhe in der Glasröhre nach Millimetern aus, und erhält so den Druck des Gases. Der Versuch wird in der Art angestellt, dass man die zu untersuchende abgewogene Probe in Filtrirpapier einwickelt, in den Halz der Flasche einsteckt, und dann mit einer Bewegung sowohl das Papierkonvolut heranschiebt, als auch zugleich die Flasche schliesst. Das Quecksilber beginnt sogleich zu steigen, und steigt, bis alle kohlensauren Salze zersetzt sind. Es erreicht dann die höchste Höhe und sinkt nachher wegen eintretender Absorption etwas herunter. Die Operation ist ungemein einfach und leicht auszuführen, sowie auch die Zahlen sehr gut abzulesen. Eine Unsicherheit entsteht durch die zunehmende Absorption, für die man wegen der sich ändernden Zusammensetzung der Flüssigkeit keine Rechnung tragen kann. Pinkus empfiehlt, um die Absorption zu vermindern, die Säure mit quartzigem Sande zu vermischen.

Die gehobene Quecksilbersäule ist das Mass der Druckes der Luft im Apparate. Da die Quecksilberröhre gegen den Inhalt der Flasche sehr klein ist, so nimmt man an, das innere Volum bliebe konstant. Unter dieser Voraussetzung ist die Druckhöhe gleich der Spannung der Luft im Apparate. Dieser Druck entsteht aus dem einfachen Barometerdrucke, den die Luft bei Schliessung des Apparates hatte, und dem in denselben Raum komprimirten kohlensauren Gase. Gesetzt, das Luftvolum in der Flasche beträge 200 cbcm und es entwickelten sich aus dem kohlensauren Salze auch 200 cbcm, so ist der innere Druck gleich 2 Atmosphären, und das Quecksilber muss in der senkrechten Röhre um eine Barometerhöhe steigen. Entwickeln sich nur 100 cbcm kohlensaures Gas, so ist der innere Druck 300, wenn der äussere 200 ist. Es verhält sich alsdann 200:300 = 760 mm : 1140 mm, d. h. der innere Druck ist 1140 mm. Ziehen wir davon 760 mm ab, so bleiben 380 mm als die Steighöhe des Quecksilbers in der Röhre, welche 100 cbcm kohlensaures Gas anzeigt. Man ersieht also, dass je kleiner die Flasche ist, desto höher das Quecksilber für eine gleiche Menge kohlensaurer Verbindungen steigen müsste; und dass man bei einem grossen Lufträume in der Flasche durch Vermehrung des Gewichtes der Probe jede beliebige Höhe erreichen kann.
Kohlensäure.

Es sollte nun scheinen, als ob man die Scala sowohl theoretisch aus den eben entwickelten Sätzen, als auch praktisch durch Anwendung verschiedener gewogener Mengen einer kohlensauren Verbindung aufstellen könne. Es lässt sich die Scala jedoch nicht theoretisch feststellen, weil die Absorption ein Hinderniss in den Weg stellt.

Ich habe dieserhalb mehrere Versuche angestellt. 0,5 g reiner kohlensaurer Kalk hob in drei Versuchen die Quecksilbersäule auf 357 358 und 359 mm, also im Mittel auf 358 mm. Das Thermometer zeigte 20° C und das Barometer 763 mm. Der leere Inhalt der Flasche war 236 cbem. Obige 0,5 g kohlensaurer Kalk enthalten 0,22 g Kohlen säure, und diese nehmen bei 0° C und 760 mm einen Raum von 111,86 cbem ein, nach Rose’s Tafeln. Korrigirt man erst auf 20° Cent.,
so erhält man 118 cbem
Dann auf 763 mm korrigirt = 116,3"
und endlich auf Feuchtigkeit 118,89"

Der Druck im Apparate verhält sich also zum äusseren = 236 : 236 + 118,89 oder 236 : 354,89 = 763 : 1147.

Ziehen wir 763 mm von 1147 mm ab, so bleiben Übert Druck 384 mm, während der Versuch 358 mm gegeben hat. Es fehlen also 26 mm, die auf Rechnung der Absorption und des grösseren Ausdehnungskoeffizienten der Kohlensäure gegen Luft kommen.

In ganz gleicher Art fehlten bei 1 g kohlensaurem Kalk 71 mm Quecksilberhöhe. Daraus folgt, dass man die Scala nicht theoretisch anfertigen könne. Es bleibt also nur eine praktische Aufstellung übrig.

3. Freie Kohlensäure.

a. In der atmosphärischen Luft.

Die überaus zahlreichen Versuche, die Saussure nach diesem Verfahren angestellt und veröffentlicht hat, sind so übereinstimmend, wie nicht

VIII. Angewandter Theil.

die seitdem gemacht worden sind, und zeugen mindestens für
dessen Verlässlichkeit. Als später Brunner\footnote{Poggendorff's Annal. d. Phys. u. Chem. Bd. 24, S. 569.} seine Methode beschrieb,
mitteilt des Aspirators Luft durch eine Anzahl Röhren zu leiten, welche
Absorptionsmittel für Wasser und Kohlensäure enthalten, hat man sich
allgemein dieser letzteren zugewendet.

Das Verfahren von Saussure wird in den meisten Lehrbüchern der
Chemie kaum mehr beschrieben, und es finden sich auch keine Zahlen-
resultate ausser seinen eigenen vor, die nach denselben erhalten worden
wären. Die Unbequemlichkeit, einen 20 Liter fassenden Ballon leer zu
pumpen, Stunden lang zu schütteln, und noch viele Tage die Absorption
abzuwarten, endlich der sehr kostspielige Apparat hatten dieser Methode
keinen Eingang verschafft. Gleichwohl existierten auch keine Analysen
nach dem mit so vielem Beifalle aufgenommenen Brunner’schen Ver-
fahren, und als Hlasiwetz im Jahre 1856 das Brunner’sche Verfahren
zu einer Reihe von Untersuchungen anwenden wollte, fand er die Zahlen-
resultate unter sich so schwankend und so wenig mit den anerkannten
Thatsachen der Wissenschaft in Übereinstimmung, dass er es als voll-
kommen unbrauchbar verwerfen musste. Bei genauer Prüfung der ein-
zelnen Theile des Apparates fand er als Hauptfehlerquellen:

1. Dass die Schwefelsäure der Trocknenapparate Kohlensäure absorbiert.

2. Dass die Kalilauge, welche die Kohlensäure aufzunehmen be-
stimmt ist, Sauerstoff absorbiert.

3. Dass die Menge der Kohlensäure viel zu gering ist, um die
Wägungen so vieler Glasgefäße, die zusammen eine Oberfläche von
7 Quadratdecimeter haben mögen, als sicher erscheinen zu lassen.

Als er an die Stelle der Schwefelsäure Chlorkalzium zur Austrock-
nung der Luft anwandte, fand er, dass der ozonisirte Sauerstoff der Luft
häufig Chlor aus dem Chlorkalzium austrieb, und dass das Gewicht der
Chlorkalziumröhrren nach dem Versuche oft leichter als vor demselben
war, weil das Aequivalent des Chlors 4\(^1/2\) mal so gross als das des
Sauerstoffs ist. Als Hlasiwetz mir privatim von diesen Thatsachen
Kenntniss gab, theilte ich ihm ein Verfahren mit, was ich eben ausgeführt
hatte, mit der Aufforderung, dasselbe zu seinen Zwecken zu gebrauchen.
Dies ist denn auch durch Dr. Hugo v. Gilm unter Leitung von Hlasiwetz
geschehen und in den Sitzungsberichten der Wiener Akademie der Wissen-
chaften (Bd. 24, S. 279) mitgetheilt worden.

Das Verfahren besteht darin, dass man atmosphärische Luft vermit-
telst ausfiessenden Wassers durch eine lange, etwas geneigte Glasröhre,
welche ein Gemenge von Aetzkali und Baryhydrat im klar filtrirten Zu-
stande enthält, hindurchsaugt, den gebildeten kohlensauren Baryt, aus-
gewaschen, mit Salzsäure löst, das Chlorbaryum zur Trockne bringt und
dann das Chlor nach Zusatz von Glaubersalz mit Zehntel-Silberlösung
und chromsaurem Kali bestimmt.
Der Absorptionsapparat ist in Fig. 133 dargestellt. Das Rohr hat zwei ungleiche Schenkel, welche jedoch so gestellt sind, dass ihre oberen Enden in einer horizontalen Linie liegen.

VIII. Angewandter Theil.

beinahe voll ist, kann man das Wasser gerade bis an die Marke anlassen. In jedem Falle kann eine geringere Menge Wasser in der Flasche durch kleinere Messglasflaschen ausgemessen werden. An den Gasometer bringt man ein kleines Quecksilbermanometer an, welches den inneren negativen Druck gegen den atmosphärischen Druck anzeigt.

Ein solches Manometer (Fig. 134) besteht aus einer zweischenkigen Glasröhrle, deren eines Ende mit dem Inneren des Gasometers, das äussere mit der Luft in Verbindung steht. Man misst den Unterschied der beiden Quecksilberniveaus in Millimetern aus, und korrigirt damit das Volum des ausgeflossenen Wassers auf den vorhandenen Barometerstand. Ausser der Temperatur wäre noch eine Korrektion auf Feuchtigkeit zu machen. Die atmosphärische Luft ist nicht mit Wasser gesättigt; sie wird es aber, indem sie in den Apparat tritt, wobei sie sich ausdehnt. Würde man die atmosphärische Luft als ganz trocken annehmen, so würde man zu stark korrigiren. Bis jetzt ist diese Korrektion noch nicht angebracht worden, weil sie eben sehr schwierig ist. Man könnte die Luft durch eine vorgelegte Röhre mit entwässertem Kupfer- vitriol ganz austrocknen und dann die vollständige Feuchtigkeitskorrektion anbringen.

Die Absorptionsflüssigkeit bereitet man sich in der Art, dass man in ein dünnes Aetzkali Barytkrystalle 1) bringt, durch Erwärmen löst, und nun sogleich filtrirt. Da das Aetzkali immer etwas kohlensaures Kali enthält, so entsteht ein Niederschlag von kohlensaurem Baryt, welcher den Vortheil hat, die Flüssigkeiten mit diesem Körper zu sättigen, so dass jede neu gebildete Menge kohlensauren Baryts sich ausscheiden muss.

Nachdem man den Aspirator oder Gasometer mit Wasser, die Röhren und Flaschen mit der Absorptionsflüssigkeit gefüllt hat, versucht man die Dichtigkeit des Apparates, indem man das Kautschukrohr rechter Hand mit einem Quetschhahne schliesst, und Wasser aus dem Aspirator ausfliessen lässt. Es tritt jedenfalls ein Wasserstrahl aus, theils von der Ausdehnung der im Apparate enthaltenen Luft, theils von einem geringen Zusammenschlagen der Wände des Aspirators. Allein dieser Wasserstrahl

1) Die Krystalle des Baryhydrats bereitet man sich am leichtesten dadurch, dass man aus möglichst reinem kohlensaurem Natron flüssiges Aetznatron bereitet, und dies ohne weitere Konzentration mit Glashebern in Flaschen abzieht. Von diesem Aetznatron kann man den alkaliometrischen Werth durch Titiriren ermitteln und nun das Acquivalent krystallisirtes Chlorbaryum dafür berechnen. Man bringt eine beliebige Menge dieses Aetznatrons in einem gusseisernen Grapen zum Kochen, setzt dann die berechnete Menge Chlorbaryum zu und kocht auf. Man entfernt das Gefäss vom Feuer und lässt bedeckt absetzen, ohne vollständig abkühlen zu lassen. Sobald die Flüssigkeit klar genug ist, zieht man sie vorsichtig mit reinen Glashebern in weithalsige Flaschen ab. Nach vollständigem Abkühlen setzt die Flüssigkeit eine verhältnissmässig grosse Menge Aetzbarryt ab, welche man auf Trichtern sammelt, etwas abspritzt und dann auf der Zentrifugalmaschine trocken schwingt, wenn eine solche vorhanden ist.
muss bald schwächer werden, dann in Tröpfeln übergehen und auf ein-
mal aufhören. Fliesset ununterbrochen Wasser aus, so ist der Apparat
undicht. Man sucht diese Stelle, indem man vom Aspirator aus die ein-
zeln Kautschukröhren von aussen zukneift, wodurch der weitere Theil
des Apparates abgeschnitten wird. Man findet so, ob die Undichtheit an
den Korken der Flaschen, an den Kautschukröhrenverbindings oder im
Aspirator selbst liegt. Sobald der Apparat dicht ist, bemerkt man die
Zeit des Anfangs des Versuches, den Barometerstand und später die Tem-
peratur des ausfließenden Wassers. Die Temperatur der Luft hat keinen
Einfluss, weil sie sich im Apparat mit der Temperatur des Wassers und
der Wände ins Gleichgewicht stellt, und das ausfließende Wasser nur
von dem Volum der Luft im Aspirator selbst abhängig ist. Man regulirt
den Ausfluss des Wassers so, dass nur einzelne kleine Blasen im Absorp-
tionsrohre aufsteigen, und dass keine Flüssigkeit aus einem Gefässe ins
andere übergerissen werde. Bei den ersten 2 bis 3 Litern Wasserausfluss
bemerkt man kaum eine Trübung in der Barytfüssigkeit, dann aber stellt
sie sich ein und nimmt rasch zu, so dass der kohlensäure Baryt in dicken
Flocken in der Flüssigkeit schwimmt. Man läset mindestens 20 Liter
Luft durchgehen, ehe man den Versuch beendigt. Wenn die dem Aspi-
rator zunächst stehende kleine Flasche ganz klar geblieben ist, so kann
man sicher sein, dass alle Kohlensäure in der Röhre absorbiert worden ist.
Man bereitet sich nun ein kleines Filtrum aus gut durchlassendem Pa-
pier vor, und befeil etwas destillirtes Wasser durch Kochen von aller
Kohlensäure. Auch ist es zweckmässig, dieses Waschwasser durch Schüt-
teln mit kohlensäurem Baryt mit diesem Körper zu sättigen, um jede
Lösungskraft auf diesen Körper zu beseitigen. Man löst nun den Ab-
sorptionsapparat ab, giesst erst den Inhalt der ersten Flasche, wenn sie
trübe ist (sonst nicht), auf das Filtrum, dann den Inhalt der Absorptions-
röhre aus dem schwansenalsartig gebogenen Ende. Die Gefässe spült
man mit dem ausgekochten noch heissen Wasser und bringt die Wasch-
flüssigkeiten auf das Filtrum. Den Niederschlag wäsch man eben-
falls mit heissem Wasser rasch aus, bis die ablaufende Flüssigkeit rothes
Lackmuspapier nicht mehr bläuet, indem man den Trichter in den Zwi-
schenzeiten mit einer Glasplatte bedeckt hält. Wenn dies zur Genüge
geschehen ist, spritzt man den Niederschlag von dem Filtrum in eine
Platinschale, wäscht die Absorptionsröhre mit sehr verdünnter reiner Salz-
säure aus, bringt diese Flüssigkeit ebenfalls in die Platinschale und
dampft im Wasserbade zur Trockne ein. Das Ausziehen des Filtrums
mit Salzsäure ist zu vermeiden, weil die darin festgesetzten Barytantheile
nicht zur Analyse gehören.

Die eingetrocknete Masse muss etwas stärker erhitzt werden, um
diese Spur freier Säure auszutreiben. Man löst nun das Chlorbaryum in
einem Becherglase auf, zersetzt es durch tropfenweise zugesetzte Lösung
von reinem schwefelsauren Natron, bis dies in einem kleinem Ueberschusse
vorhanden ist. Man setzt nun chromsaures Kali zu, und titirt das Chlor
mit Zehntel-Silberlösung. Wenn man das Chlorbaryum nicht durch schwefelsaures Natron zersetzt, so müsste man es ganz durch chromsaures Kali zersetzen, wobei sich hellgelber chromsaurer Baryt bildet, der zwar auch die Austittrierung nicht verhindert, aber doch mehr stört, als der ganze weisse schwefelsaure Baryt.

Die verbrauchten Cubikcentimeter Zehntel-Silberlösung mit 0'0022 multiplicität geben die Kohlensäure in Grammen. Diese verwandelt man nach der ersten vorgedruckten Tafel (Seite 510) in Cubikcentimeter von normalen Konstanten, d. h. 0'0 C. und 760 mm Druck. Um diese Operation abzukürzen, ist in der zweiten, diesem Artikel, vorgedruckten Tafel diese Verwandlung schon für die ersten neun ganzen Zahlen des Zahlen-systems voraus ausgeführt. Man berechnet also damit die Cubikcentimeter Zehntel-Silberlösung direkt in Cubikcentimeter kohlensaures Gas von 0C. und 760 mm Luftdruck. Die durchgesaugte Luft ist ebenfalls auf diese Konstanten reduziert worden, und indem man das Volumen der Kohlensäure in das der Luft + Kohlensäure dividirt, erhält man das procentische Volumverhältnis der Kohlensäure in der Luft selbst.

Nach diesem Verfahren wurden von Herrn Hugo v. Gilm 19 Kohlensäurebestimmungen gemacht, welche zwischen 3'82 bis zu 4'58 Volumtheile auf 10000 Volumtheile Luft sich bewegen, und im Mittel 4'15 Volum CO₂ auf 10000 Luft ergaben, eine Zahl, die mitten in den Saussureschen Angaben liegt. Die Uebereinstimmung dicht hintereinander vorgenommener Versuche ist wirklich überraschend, und es scheint hiermit ein sehr leichtes und ganz zuverlässiges Verfahren gegeben.

Es sei mir erlaubt, drei von mir nach demselben Prinzip ausgeführte Versuche anzuführen, von denen der erste im Juli 1856 stattfand.

In acht Messungen waren 40294 cbcm Wasser ausgeflossen. Der mittlere Druck im Aspirator betrug 761'7 mm Barometerstand weniger 25'7 mm des Manometers, also 736 mm; die mittlere Temperatur betrug 14'4° C.

Das aus dem kohlensauren Baryt erhaltene Chlorbaryum war gleich 18'9 cbcm Zehntel-Silberlösung gefunden worden.

Die Berechnung stellt sich nun so:

\[
\frac{40294 \times 0'736}{760} = 39022 \text{ cbcm.}
\]

Diese von 14'4° C. auf 0° korrigirt sind = 36'960 cbcm von normalen Constanten.

Die 18'9 cbcm Zehntel-Silberlösung sind = 18'9 \times 0'0022 = 0'04158 Gramm Kohlensäure und diese nehmen ein Volum von 21'143 cbcm von normalen Konstanten ein. Da diese Kohlensäure in der Luft enthalten war, so muss sie noch dazu addirt werden, und die Luft betrug 36981'142 cbcm. Wollen wir nun die Volumen CO₂ in 10000 messen, so haben wir:

\[
36981,142 : 21'143 = 10000 : x
\]
Kohlensäure. 529

\[x = \frac{211430}{36981.142} = 5.7. \]

Demnach enthieilt die Luft 5.7 Volum Kohlensäure in 10'000 Volumen, eine Zahl, die ebenfalls bei Saussure vorkommt, jedoch schon zu den höheren gehört. Die Luft war nicht vom freien Felde genommen, sondern der Versuch in einem Hofe mitten in der Stadt Coblenz angestellt.

Bei einem zweiten einen Monat später angestellten Versuche wurden für 20000 cbcm Luft von normalen Constanten 9 cbcm Zehntel-Silberlösung = 10'068 cbcm Kohlensäure erhalten. Dies giebt 5'03 Theile auf 10000.

Am 23. März 1872. 25 Liter Luft = 7'6 cbcm 1/10 Silberlösung = 8'5012 cbcm CO₂ von normalen Constanten, oder 3'4 Volum auf 10000.

b. In ausgeathmeter Luft.

Die Bestimmung der ausgeathmeten Kohlensäure kann leicht in den Kreis massanalytischer Operationen gezogen werden, da man eine sehr genaue Bestimmung der Kohlensäure in der Silbermethode hat. Es kann hier vorausgeschickt werden, dass die Respirationsliteratur ungemein reich und vollständig ist, und dass die Versuche von Scharling, Andral und Gavarret, Regnault und Reiset, Vierordt, Valentin und Anderen in wissenschaftlicher Beziehung fast nichts zu wünschen übrig lassen. Sie bestimmen ebensowohl die ganze Menge der in einer gewissen Zeit ausgeathmeten Kohlensäure, als auch den procentischen Antheil dieser Luft an Kohlensäure. Alle diese Beobachter arbeiteten mit sehr complicirten und kostspieligen Apparaten. Es kommt jedoch hierauf gar nichts an, wenn es sich darum handelt, feststehende unbesteigete Thatsachen für die Wissenschaft zu gewinnen. Anders stellt sich jedoch die Frage, wenn in einzelnen Fällen zu physiologischen oder pathologischen Zwecken aus der Bestimmung der ausgeathmeten Kohlensäure Nutzen gezogen werden soll. Es kann nicht jedem Arzte, welcher solche Fragen stellen will, zugemuthet werden, solche kostbare Apparate anzuschaffen, und es schien wünschenswerth einfache, leicht zu handhabende und doch sicher arbeitende Instrumente zu solchen Zwecken zu besitzen. Bei den hierüber angestellten Versuchen stellte es sich vorerst als unzweifelhaft heraus, dass es nicht möglich ist, die Luft, sowie sie aus den Lungen kommt, ohne Weiteres durch die Absorptionsapparate zirculiren zu lassen. Der durch den Widerstand der Flüssigkeit veranlasste Druck bringt bei dem Ausathmenden ein so unnatürliches und unbehagliches Gefühl hervor, dass man diesen Versuchen, wenigstens in Rücksicht auf die Menge der ausgeathmeten Luft, nicht das geringste Zutrauen schenken könnte. So dann ist die Absorption der mit einem permanenten Gas stark verdünnten Kohlensäure so langsam, dass bei der grossen Menge der ausgeath-
meten Luft dieselbe nicht lange genug in den Apparaten verweilen kann, sondern von der nachfolgenden fortgedrängt wird, ehe sie ihre Kohlensäure abgegeben hat. Als vier mit Kalibaryt gefüllte Absorptionsflaschen hinter einander gestellt wurden, zeigte die letzte noch bedeutende Fällungen. Bei einer noch grösseren Anzahl war der Widerstand gar nicht mehr zu überwinden. In einem im Gleichgewichte schwebenden Respirometer (Fig. 135) athmete ich in einem Zuge 3300 bis 3600 ccbm Luft aus, und füllte bei ruhigem Atmen einen Gasometer von 47 Liter Inhalt in vier Minuten. Es würde dies auf die Stunde 705 Liter Luft betragen.

Fig. 135.

Solche Mengen können allerdings nicht binnen einer Stunde durch Apparate von noch handlichen Dimensionen durchgetrieben werden. Es stellte sich also als nothwendig heraus, die Messung der ausgeathmeten Luft und ihre Analyse zu trennen. Was nun die Messung betrifft, so könnten wir diesen Theil den Physiologen und Aerzten überlassen. Da jedoch diese Apparate sehr selten vorkommen, so dürfte eine Anleitung zu ihrer Konstruktion und ihrem Gebrauch nicht ungern von Manchem gesehen werden. Ein solches Instrument, welches auch den Namen Respirometer trägt, weil man die Kapacität der Lungen damit messen kann, ist ein im Gleichgewicht schwebender Gasometer (Fig. 135) mit graduierter Glocke.
Kohlensäure. 531

Wenn man den Stopfen bei m löst, so sinkt die Glocke herunter,

Um den Kohlensäuregehalt dieser Luft zu bestimmen, schliesst man die Einathmungsrohre durch eine Klemme ab, oder man knickt das el-
Kohlensäure. 533

tische Rohr scharf um, wodurch es sich von selbst luftdicht schliesst, und befestigt den Absorptionsapparat (Fig. 132, S. 525) an die dünnere Röhre des Gasometers, beschwert den Kopf der Glocke mit Gewichten und drückt die Luft durch den Absorptionsapparat hindurch. Die Spannung der inneren Luft erkennt man an dem Unterschiede der beiden Wasserniveaus. Es lässt sich auch das kleine Manometer (Fig. 133, S. 526) auf dieser Ausblasungsrohre anbringen, wodurch man die Spannung der inneren Luft über die äussere in Millimetern von Quecksilber ablesen kann. Die Ablesung der durchgetriebenen Luft geschieht an der Glocke selbst, und die Bestimmung des kohlensäuren Baryts durch Silber, wie oben bei der atmosphärischen Luft beschrieben worden ist. Damit die Flüssigkeit im Gasometer selbst keine Luft absorbire, ist es zweckmässig, den Gasometer vorher mit ausgeatmetem Luft gefüllt stehen zu lassen. Auch wendet man als sperrende Flüssigkeit Salzlösungen an, etwa von Kochsalz, Chloralkali, Chlorzink, welche Salzlösungen weniger Kohlensäure absorbiren.

Wenn man auf die Messung der ganzen Summe der ausgeatmeten Luft verzichtet, und nur den procentischen Gehalt an Kohlensäure ermitteln will, so kann man mit einem viel kleineren Apparate zum Ziele kommen.

Man bediene sich zu diesem Zwecke einer Literflasche, welche mit ausgeatmeter Luft gefüllt wird. Diese Flasche ist leer (Fig. 136) und wird durch eine weite Glasröhre mit Luft gefüllt. Man sorge dafür, dass der neben der Einathmungsrohre befindliche freie Raum des Halses der Flasche keinen grösseren Querschnitt als die Röhre selbst habe, indem man diese dick genug wählt. Man nimmt das freie Ende der Röhre in den Mund und atmet stark in die Flasche, während man beim Einathmen die Röhre einen Augenblick aus dem Munde nimmt. Die ausgeatmete Luft verdrängt die in der Flasche enthaltene Luft vom Boden anfangend nach oben, und wenn gleich hier eine Vermischung stattfindet, so muss doch bald, da die neu hinzukommende Luft wieder ausgeatmet ist, die Flasche mit dieser Luft vollkommen gefüllt sein. Zweckmässig ist es, die Flasche verkehrt, mit der Öffnung nach unten, zu halten, weil alsdann das kondensirte Wasser von

Fig. 136.
VIII. Angewandter Theil.

selbst abfließt. Während man die Einatmungsröhre auszieht, bläst man noch stark in die Flasche, so dass beständig ein Strom Luft zum Halse hinausgeht. Im selben Augenblicke, wo man die Einatmungsröhre entfernt, setzt man die mit Kalibaryt gefüllte Glasröhre (Fig. 137), die mit einem Kautschukrohr und Quetschhahn versehen ist, auf die Flasche und schliesst so die innere Luft vollkommen ab. Öffnet man nun den Quetschhahn an dieser Röhre, so fließt etwas Absorptionsflüssigkeit in die Flasche und träubt sich im Augenblicke. Durch diese Absorption entsteht in der Flasche eine Luftverdünnung und bei einer zweiten Öffnung des Quetschhahns strömt die Absorptionsflüssigkeit im Strahle in die Flasche. Durch Umschwenken und Stehenlassen bewirkt man in kurzer Zeit eine vollständige Absorption der Kohlensäure, und da die Flasche hermetisch verschlossen ist, kann man den Versuch jede beliebige Zeit stehen lassen. Bei genügendem Schütteln ist die Absorption in 1/4 Stunde zuverlässig beendet, und man kann zur Bestimmung des kohlensauren Baryts übergehen. Da der gelöste Baryt leicht während der Arbeit Kohlensäure aufnimmt, und auch Substanz an das Filtrum abgeben kann, so ist es zweckmässig, den noch gelösten kaustischen Baryt mit verdünnter Essigsäure so weit abzustumpfen, bis die Pettenkofer'sche Probe mit Curcummapapier keinen braunen Kranz mehr zeigt. Man bereitet sich ein kleines Filtrum auf einem mit einer Glasplatte zu bedeckenden Trichter vor, giessst den Inhalt der Flasche auf dieses Filtrum, spült mit heissem, frisch ausgekochtem Wasser nach und süssst vollständig aus. Man löst nun den kohlensauren Baryt in Salzsäure auf, filtrirt und verfährt wie oben bei der atmosphärischen Luft. Es ist nun wohl der Mühe wert, bei einem neuen und so sehr abgekürzten Verfahren einige wirkliche Versuche zu registrieren.

Eine vollgeatmete Flasche fasste 970 ccbm und zeigte beim Abschliessen 19° C. bei 752 mm Barometerstand. Korrigiren wir die 970 ccbm von 752 mm auf 760 mm, so geben sie 959,8 ccbm und von 19° C. auf 0° C. 893 ccbm.

Der kohlensaure Baryt in Chlorbaryum verwandelt und mit schwefelsaurem Natron im Ueberschuss zersetzt, gebrauchte 27·4 ccbm Zehntel-Silberlösung. Diese entsprechen 27·4 \times 0·0022 = 0·06028 g Kohlensäure und diese nehmen ein Volumen von 30'651 ccbm ein.

Nun ist 893 : 30'65 = 100 : 3'43.

Die ausgeatmete Luft enthielt also 3'43 Volum Procent kohlensaures Gas.

Bei einem zweiten Versuche mit derselben Flasche wurden 27·3 ccbm Zehntel-Silberlösung, also fast ganz dieselbe Menge gebraucht.
Eine Flasche, welche genau bis an den Stopfen 1000 cbcm enthielt, gab bei 750 mm Bar. und 20° C. eine Menge kohlensauren Baryt, welcher durch 30·15 cbcm Zehntel-Silberlösung gemessen war. Nach Anbringung aller Korrektionen berechnet sich die Kohlensäure zu 3·67 Proc. des Volums der Luft, sehr nahe mit den ersten Versuchen übereinstimmend.

Eine Flasche, welche genau 1 Liter fasste, erhielt 10 cbcm Barytwasser (= 37·6 cbcm 1/10 Oxalsäure) und wurden nach 2 Stunden zum Rückmessen 4·8 cbcm 1/10 Oxalsäure verbraucht. Es waren also gesättigt 32·8 cbcm 1/10 Oxalsäure und diese entsprechen 36·69 cbcm CO₂ = 3·669 Procent.

Wenn man die ausgeatmete Kohlensäure kleiner Thiere bestimmen will, so kann man sich dazu leicht einen passenden Apparat verschaffen. Es gibt Luftpumpenglocken mit zwei gegenüberstehenden Tubuli, deren man sich beim Durchschlagen des elektrischen Funkens durch Gasarten und durch das Vacuum bedient. Eine solche auf einem geschliffenen Glasteller stehende Glocke (Fig. 138) nimmt das Thier samt seiner Nah-

Fig. 138.

Respiration kleiner Thiere.
pirator in Verbindung. Man kann zu diesem Zwecke den Respirometer aus Fig. 129 anwenden, indem man das engere Kautschukrohr anlegt, das weitere aber verschließt, und die Schalen mit schweren Gewichten belastet, wodurch er zum Aspirator wird.

Da die Bestimmung der Kohlensäure nach diesen Methoden so ungemessen schärft ist, so liessen sich eine Menge interessanter Fragen noch einmal an dieselben stellen, z. B. die Bestimmung der ausgestrahlten Kohlensäure von Insekten, Larven, von reifen Früchten, von Pflanzen bei Nacht etc. und es dürfte nicht schwer fallen, mit Beibehaltung des Prinzips leicht die Apparate zu den einzelnen Zwecken passend zu machen.

4) Bestimmung der freien Kohlensäure in einer Flüssigkeit mit Spannung.

Hat man die Aufgabe, die ganze Menge der Kohlensäure in einer mit Druck übersättigten Flüssigkeit zu bestimmen, so darf man den Stopfen nicht lösen, weil sonst ein Theil der Kohlensäure entweichen würde. Dieser Fall kann vorkommen bei künstlichen Mineralwasser, bei Champagner, bei gegeohrenem Bier, Sodawasser etc. Man muss in diesem Falle den Kork, womit die Flasche verschlossen ist, in einer Weise durchbohren, dass keine Spur des Gases entweichen kann. Es gibt im Handel solche Hähne, welche dazu dienen, den Champagner aus liegender Flasche ohne Verlust von Kohlensäure bis zu Ende auslaufen zu lassen. Sie bestehen aus einer unten spitz auslaufenden und geschlossenen Messingrohre (Fig. 139), welche oben mit einem gewöhnlichen Hahn versehen ist, und deren unteres hohles Ende aussen mit einem darüber gelöteten Drahte in Gestalt eines Stopfenziehers eine steil steigende Schraube vorlauft. Man bohrt die etwas befettete Röhre mit starkem Drucke durch den Kork, bis die am unteren Ende zwischen den Schraubengängen befindlichen kleinen Löcher in den Hohlraum der Flasche durchgedrungen sind. Der Hahn bleibt bis dahin geschlossen und wird erst langsam geöfnet, wenn derselbe mit der Absorptionsvorrichtung in Verbindung gesetzt ist. Durch sehr sorgfältiges Drehen kann man die Gasentwicklung so weit mässigen, dass vollkommene Verschluckung stattfindet. Bei den hier anscheinlich grossen Mengen von Kohlensäure würde sich die Absorption in Chloralkali-Ammoniak, Kochen und Bestimmen des kohlensauren Kalkes, nach Gewicht oder alkaliometrisch, empfehlen, weil dabei keine Austrocknung des Gases nothwendig ist.
Man kann hierbei die sich freiwillig entwickelnde Kohlensäure getrennt von der durch Kochen entwickelten bestimmen, indem man nach Aufhören der freiwilligen Entwicklung den Hahn schliesst und eine neue Absorptionsflasche vorlegt und dann durch Kochen die Entwicklung vollendet. Man erhält so zwei Portionen von kohlensaurem Kalk, deren bloße Gewichtsbestimmung nach Verbrennen des Filters das Resultat giebt. Es ist für einen überflüssigen Umweg zu halten, aus diesem kohlensauren Kalk die Kohlensäure durch die Verlustmethode zu bestimmen oder denselben in Chlorkalcium zu verwandeln und das Chlor mit Silber zu bestimmen.

Eine denselben Dienst leistende Vorrichtung (Fig. 140) ist von Roch-
Analyse der Mineralwasser.

wichtigen und wesentlichen Bestandtheile bestimmt und die unbestimm-
baren nur als Spuren aufgeführt werden, oder aus dem wissenschaftlichen,
wen man alles aufsucht, wozu die Wissenschaft bis dahin die nöthigen
Mittel gewährt. Ein wissenschaftliches Interesse ist selbst hieran nicht
geknüpft, denn es ist eben gar nichts daran gelegen, ob zu den vielen
als Seltenheiten vorkommenden Stoffen noch ein neuer, bisher noch nicht
aufgefundenen kam, selbst wenn es Platin oder Palladium wäre. Man
pflegt deshalb auch jetzt schon bei der vollständigen Analyse die Auf-
suchung der unbestimmmbaren Stoffe einer ganz besonderen von der Ana-
lulye getrennten Arbeit zu überweisen. Diese Aufsuchung der Minima ist
zwar eine sehr mühsame, den ganzen Scharfsinn des Chemikers in An-
spruch nehmende, aber nichtsdestoweniger fast immer ganz nutzlose
Arbeit, wenn in der Analyse neben den Gewichtsbestimmungen ein gan-
zener Schweif von „Spuren“ zum Prunke aufgeführt werden kann.

Die natürlichen Mineralwasser zerfallen ihrer Zusammensetzung nach
in zwei grosse Klassen, nämlich 1) die alkalischen und 2) die salinischen.
Der bezeichnende Bestandtheil der ersten Klasse ist kohlensaures Natron,
der der zweiten Klasse Kochsalz, Chlormagnesium, Chlorkalkium ohne
kohlensaures Natron. Die alkalischen sind durch Auslauung von kry-
stellinischen Silicatfelsenarten (Basalt, Dolerit, Granit etc.) durch kohl-
ensaures Wasser entstanden; die salinischen durch Ausziehung von Stein-
salzlagerung durch reines oder kohlensaures Wasser. Die alkalischen Mineral-
wasser enthalten neben dem kohlensauren Natron noch schwefelsaures
Natron und Kochsalz und in Kohlensäure gelöste Kalkerde, Bittererde,
Eisenoxydul.

Die salinischen Mineralwasser enthalten neben Kochsalz noch Chlo-
kalkium, Chlormagnesium und in Kohlensäure gelöste Kalkerde, Bitter-
erde, Eisenoxydul, wie die ersten. Die Bitterwasser enthalten als wesent-
lischen Bestandtheil schwefelsaure Bittererde.

Kieselerde, Thonerde, Kali, Fluorkalkium, schwefelsaurer Baryt und
Strontian und andere sind in Wasser gelöst, kommen in beiden Klassen
vor und bedingen weder einen Unterschied noch eine Qualität des Min-
egralwassers.

Die Analyse beider Arten von Mineralwasser ist verschieden, wenn
man sie ohne Weiteres als solche angreift. Die alkalischen sind leichter
tu analysieren, weil durch blosses Vertreiben der Kohlensäure die Alkali-
und Erdsalze von einander getrennt werden. Es scheiden sich nämlich
die in Wasser löslichen drei Natronsalze von den unlöslichen kohlens-
auren Erdsalzen.

Bei den salinischen findet dies durch Kochen nicht statt. Ich habe
jedoch schon vor vielen Jahren (a. Rose’s Analytische Chemie. 3. Auflage
1834. 2. Th. S. 563) die Methode eingeführt, die salinischen Mineral-
wasser nach dem Abkochen der kohlensauren Erden durch einen gewo-
genenen Zusatz von reinem kohlensauren Natron in alkalische zu verwan-
deln. Als dann ist der Gang der Analyse für beide vollkommen gleich.

Man pflegt die Bestandtheile der Mineralwasser ziemlich allgemein auf 10000 Thle. Mineralwasser zu reduciren. Als solche Theile nehmen wir Cubikecentimeter und nicht Gramme, aus den eben entwickelten Gründen. Die Zahl 10000 hat sich als sehr bequem herausgestellt, weil dabei die Hauptbestandtheile, wie Kochsalz, kohlensaures und schwefelsaures Natron, kohlensaures Kalk, als ganze Zahlen auftreten, welche sich dem Gedächtniss leichter als Decimale einprägen. Sonst hat man auch vielfach die Analysen in Granen im Pfunde ausgedrückt. Wie unzweckmässig dieses Verfahren ist, geht schon daraus hervor, dass bei der Einführung des Zollpfundes zu 500 g, wobei das Verhältniss des Granen zum Pfunde ein ganz anderes geworden ist, alle diese Analysen umgerechnet werden müssen, wenn sie nicht geradezu als falsch erscheinen sollen. Die auf 10000 Theile berechneten Analysen behalten immer ihr richtiges Verständniss und beziehen die Gramme auf 10 Liter oder Kilogramm. Um die auf das Pfund in Granen berechneten Analysen auf 10000 Theile zu reduciren, damit sie mit anderen Analysen vergleichbar werden, kann man sich der folgenden kleinen Tafel bedienen. Das alte Pfund zu 16 Unzen enthält $16 \times 480 = 7680$ Gran;

1 Gran ist also $\frac{1}{7680}$ Pfund. Nach dem Satze $\frac{1}{7680} = \frac{x}{10000}$ ist

$x = \frac{10000}{7680} = 1.302.$
Wir haben also:

<table>
<thead>
<tr>
<th>Grane im Pfunde</th>
<th>Gramme in 10000 cbcmm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.302</td>
</tr>
<tr>
<td>2</td>
<td>2.604</td>
</tr>
<tr>
<td>3</td>
<td>3.908</td>
</tr>
<tr>
<td>4</td>
<td>5.208</td>
</tr>
<tr>
<td>5</td>
<td>6.510</td>
</tr>
<tr>
<td>6</td>
<td>7.813</td>
</tr>
<tr>
<td>7</td>
<td>9.115</td>
</tr>
<tr>
<td>8</td>
<td>10.417</td>
</tr>
<tr>
<td>9</td>
<td>11.717</td>
</tr>
</tbody>
</table>

und umgekehrt für Liebhaber des alten Systems sind:

<table>
<thead>
<tr>
<th>Gramme in 10000 cbcmm</th>
<th>Grane im Pfunde</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.768</td>
</tr>
<tr>
<td>2</td>
<td>1.536</td>
</tr>
<tr>
<td>3</td>
<td>2.304</td>
</tr>
<tr>
<td>4</td>
<td>3.072</td>
</tr>
<tr>
<td>5</td>
<td>3.840</td>
</tr>
<tr>
<td>6</td>
<td>4.608</td>
</tr>
<tr>
<td>7</td>
<td>5.376</td>
</tr>
<tr>
<td>8</td>
<td>6.144</td>
</tr>
<tr>
<td>9</td>
<td>6.912</td>
</tr>
</tbody>
</table>

Bestimmung der gesammten, der gebundenen und freien Kohlensäure.

Diese Bestimmung geschieht nach den im vorigen Kapitel gegebenen Darstellungen. Die ganze Menge der Kohlensäure wird am besten nach Gewicht bestimmt, indem man 150 bis 200 cbcmm Mineralwasser in eine mit kohlensäurefreiem Ammoniak und Chlorcalcium oder Chlorstrontium bereits versehene Flasche einfließen lässt, zum Kochen erhitzt, vom Nieder-
schlag abfiltrirt, den ausgewaschenen Niederschlag sammt Filtrum in einem Kohlensäurebestimmungsapparat (Fig. 128, S. 515) bringt, mit Salzsäure die Kohlensäure austreibt und ihr Gewicht bestimmt. Das Verfahren ist einfacher, als wenn man den kohlensauren Kalk mit titrirter Salzsäure und Kali ausmisst. Eine Wägung gibt das Gewicht der gesamten Kohlensäure. Die Summe der gebundenen Kohlensäure wird aus dem Resultate der Analyse berechnet, und da diese gleich der halb gebundenen ist, so findet man die freie, wenn man die ganz gebundene zweimal von der Gesamtsumme abzieht.

Es wäre nun noch etwas über das Fassen des Mineralwassers an der Quelle zu sagen.

Fig. 141.

Ich bediene mich zu dieser Operation des nebenstehenden Apparates, Fig. 141. Eine kugelförmige Pipette, welche bis an eine Marke 300 bis 500 ccm fasst und mit destillirtem Wasser ausgewogen ist, wird mit dem Daumen oben geschlossen und unter die Oberfläche des Mineralwassers geführt. Dann zieht man den Daumen weg und lässt das Wasser von unten eindringen, während oben die Luftblasen entweichen. Man lässt die Pipette ganz voll werden, zieht sie heraus und lässt bis an den Strich ablaufen. Nun hält man die Spitze der Pipette in die mit Ammoniak und Chlorkalcium versehene Flasche unter die Oberfläche dieser Flüssigkeit, und lässt durch Öffnen des oberen Endes das Mineralwasser auslaufen. Es entsteht sogleich ein bedeutender Niederschlag von kohlensaurem Kalk, welcher sich bis zur Untersuchung zu Hause vollkommen abgesetzt hat. Man erwärmt die Flasche noch einmal in heissem Wasser, lässt abkühlen und bringt den Niederschlag auf ein Filtrum. Die fernere Behandlung ist schon oben beschrieben.
Analyse der Mineralwasser.

Kann man wegen zu grosser Tiefe nicht an die Oberfläche des Wassers gelangen oder will man das Wasser aus noch grösseren Tiefen schöpfen, zu welchen man nicht mit dem Arme gelangen kann, so beeinste ich mich der Vorrichtung, Fig. 143 (s. f. S.).

ist. Die Schnur \(d \) mit Schlinge geht um den Hals der Flasche, an welchem diese versenkt wird. Macht man vom Halse der Flasche an in die Schnur \(d \) Knoten von \(\frac{1}{2} \) Fuss Entfernung, so kann man die Tiefe des Einflusses unter dem Wasserspiegel in Mass angeben.

Das Füllen dieser Flasche geschieht in der folgenden Art: Man schiebt den Blechkegel mit dem Gewichte über die Flasche, befestigt den Bindfaden \(d \) mit der Schlinge an deren Hals und setzt dann den Kork mit seinem Zubehör fest auf die Flasche. Nun lässt man den Bindfaden \(d \) und die Kautschukröhre \(a \) durch die linke Hand gleiten und hält in der rechten lose den an den Kork der Röhre \(b \) gebundenen dünnen Faden \(c \). Wenn das Gewicht den Boden des Brunnens berührt oder überhaupt die Vorrichtung tief genug gekommen ist, zieht man mit einem leichten Ruck den Stopfen von der Röhre \(b \) ab. Es dringt alsdann das Wasser ein und füllt die Flasche vollständig.

Man zieht den Kork ab, giesst einige Gürse Wasser ab und pipettiert genau 10 oder 20 cbcm Ammoniak dazu, verstopft die Flasche und markirt aussen mit einem Bleistiftstrich auf einem
Papierstreifen die Höhe des Flüssigkeitsmeniscus, wenn die Flasche hori-
izontal steht.

Diese Füllungen gehen sehr leicht, und der ganze Apparat dazu ist
zusammenlegbar und transportable.

Man füllt in der gleichen Art die übrigen Flaschen, welche man bei
sich hat.

Da man sich dieser Apparate meistens nur auf Reisen bedient, so ist
es wichtig, alle Utensilien dazu in einem Kasten vereinigt zu haben. Die-
selben sind:

1. Vier bis fünf Kochflaschen von etwa 20 bis 22 mm weitem Halse
und 400 bis 500 cbcm Inhalt.

2. Eine Pipette von 300 bis 400 cbcm Inhalt in einem blechernen
Futteral, Fig. 144. Ohne dies Futteral würde man sich möglicherweise
in der Lage sehen, an Ort und Stelle, nach gemacht der
Reise, nicht operieren zu können. Die schiefen Seiten des
Futterals sind mit mehrfachen durchbrochenen und aus-
geschnittenen Papierstreifen belegt, damit die Pipette
weich ruhe. In den Boden des Deckels ist eine Kaut-
schukplatte gekittet, welche die Pipette leicht anrückt
und jedes Schütteln verhindert.

3. Eine Flasche mit reinem kohlensäurefreien Am-
moniak und so weit, dass die Pipette Nro. 4 hinein-
geht.

4. Eine 10 cbcm-Pipette in 10tel cbcm geteilt.

5. Der Senkapparat (Fig. 143), den man jedoch,
 wenn die Quelle nicht tief und mit der Hand zugäng-
lich ist, entbehen kann. Derselbe besteht, ausser der
Kochflasche von Nro. 1:

a. aus dem Blechkegel mit Gewicht,
b. der Schnur am Halse, mit Knoten,
c. dem Korke und Zubehör, bestehend aus den zwei
darin sitzenden Glasröhrchen, der Kautschukröhre
und dem Bindfaden mit Abziehkork.

Zum Aufbewahren der gefallten trüben Flüssigkeit
kann man gewöhnliche Arzneigläser von zylindrischer
Form und sogenanntem doppelten Glase mit Kork und
Champagnerknoten fest geschlossen gebrauchen.

Man kann aber auch den Niederschlag vom kohlensauren Kalk durch
Filtration getrennt allein mit nach Hause, nehmen, in welchem Falle man
eine kleine Spirituslampe mit Stativ, Filter und Trichter notwendig hat,
sowie destilliertes Wasser zum Auswaschen; und wollte man die Bestim-
mung sogleich an der Quelle vornehmen, so hatte man noch titrierte Salz-
säure und Kaliflüssigkeit, Lackmuspapier und eine Bürette notwendig,
da die Gewichtsbestimmung jedenfalls auf der Reise mehr Schwierig-
keiten bereitet.
Die fernere Behandlung der Niederschläge zur Bestimmung der Kohlensäure ist im vorigen Kapitel genau beschrieben.

Im Allgemeinen ist der Gehalt der Mineralwasser an freier Kohlensäure eine sehr veränderliche Größe, welche vom Barometerstande abhängt, und deren Bestimmung eigentlich gar nicht so viel Mühe wert ist, als sich die Chemiker damit gegeben haben, um haarscharfe Zahlen zu erhalten. Wird das Wasser versendet oder in ein Glas eingegossen, so passt keine Analyse mehr, und dennoch geschieht das Erste in den meisten, das Letzte in allen Fällen.

Es hat deshalb auch ein gewisses Interesse, die Menge der Kohlensäure zu kennen, welche das versendete Wasser noch im Krug oder der Flasche hat. Es kann dies durch die folgende Methode geschehen. Man wählt einen konischen Kautschukstopfen mit zwei Löchern, Fig. 145, der in die Mineralwasserkrüge passt, welche eine ziemlich gleiche Weite von 20 bis 22 mm haben. Durch eine Öffnung geht eine Blaseröhre eben nur durch den Stopfen; durch die andere ein doppeltgebogenes Heberrohr, welches bis auf den Boden des Kruges und ausserhalb eben so weit hinabreicht 1). Die Vorlegeflasche ist mit Chlorcalcium-Ammoniak versetzt und damit gewogen. Man öffnet den Krug durch einen Stopfenzieher, setzt sogleich die Hebervorrichtung mit Kautschukstopfen fest und den äusseren Schenkel in die Messflasche und bläst in den Krug. Das Wasser steigt nun leicht über und der Heber fließt von selber weiter, bis man zur rechten Zeit die ganze Vorrichtung aus Krug und Flasche herauszieht. Das Wasser kommt so vom Boden der Flasche mit seinem ganzen Gehalt an Kohlensäure. Die Messflasche wird wieder gewogen, um das Gewicht des Mineralwassers zu erhalten, und dann in bekannter Weise durch Aufkochen etc. weiter behandelt.

Die freie Kohlensäure muss auf das Volum des natürlichen Wassers

1) Ist in der Zeichnung verfehlt.

Gesetzt, es wären 21:76 g Kohlensäure in Volume zu verwandeln, so ist

\[
\begin{align*}
20 & \text{ g} = 10169\text{,6} \text{ cbcm} \\
1 & \text{ } = 50848 \text{ cbcm} \\
0:7 & \text{ } = 355936 \text{ cbcm} \\
0:06 & \text{ } = 305088 \text{ cbcm}
\end{align*}
\]

also 21:76 g = 110645248 cbcm

Dividirt man nun diese Cubikcentimeter durch das Volum des Wassers, in Cubikcentimeter oder Gramm ausgedrückt, so erhält man die Angabe, dass ein Volum Wasser so viel Volum kohlensaures Gas bei 0° und 760 mm Bar. enthalte.

Bestimmungen der festen Bestandtheile.

Jede Analyse eines Mineralwassers enthält eine Bestimmung der Summe der festen Bestandtheile zur Kontrolle der nachherigen eigentlichen Analyse. Besitzt man eine Platinschale von ungefähr 100 mm Durchmesser, so dient diese am besten zu einer solchen Bestimmung. Man

wägt die Platinschale genau, nachdem man sie eben aus der Chlorkalzium-
glocke herausgenommen hat. Die Wage muss vorher gleichschwebend
gemacht sein. Das Gewicht der Schale notirt man im Kasten der Wage
selbst. Man gibt nun mit einer 100 cbem Pipette dieses Mass von
Wasser hinein. Fasst die Schale diese Menge nicht, so nimmt man nur
50 cbem zuerst, und fügt nachher, wenn diese Menge beinahe verdunstet
ist, noch einmal 50 cbem hinzu. Das Verdampfen des Wassers muss ohne
Kochen und Spritzen geschehen: Am sichersten nimmt man gleich im
Anfang ein Wasserbad, indem man die Platinschale auf dem Rand eines
passenden Gefässes setzt. Auch kann man eine entfernte kleine Wein-
geist- oder Gasflamme, ein Nürnberger Nachtlicht oder einen warmen
Trockenraum dazu benutzen. Wenn die Masse trocken geworden ist,
lässt man sie noch eine Zeit lang an demselben Orte stehen und erhitzt
sie dann in einem eisernen Löffel in Sand eingesetzt so lange, bis eine
aufgelegte Platte von dickem Spiegelglas keinen Anflug mehr zeigt.
Wenn die Salzmasse noch feucht ist, entsteht leicht Verlust durch Spritzen.

Die heisse Schale setzt man unter die Chlorkalziumglocke, lässt sie
abkühlen und wägt sie dann mit dem Inhalt genau aus. Durch Abzug
der Schale erhält man den Inhalt in Grammen. Man macht gern diese
Operation noch einmal, um aus der Übereinstimmung der Zahlen einen
Anhaltepunkt für die Zuverlässigkeit derselben zu erhalten.

Nach diesem Verfahren kann man aus 100 cbem Wasser die Summe
der festen Bestandtheile mit grösserer Schärfe bestimmen, als man sonst
bei viel grösseren Mengen Wasser im Stande war; denn man kann die
schärfste analytische Wage anwenden und hat gar keine Verluste zu be-
fürchten. Es ist ganz unmöglich die in einer grösseren Porzellan-
schale eingegengen Stoffe in eine kleinere Schale ohne Verluste zu übertragen,
da die kohlensauren Erden fest anhaften und durch ihre weisse Farbe
nicht wahrgenommen werden, und ebenso unmöglich ist es, in einer Por-
zellanschale, deren Gewicht das des Inhaltes viele hundert Male über-
steigt, die Gewichtsbestimmung selbst vorzunehmen. Zur wirklichen Ana-
lyse werden grössere Mengen Mineralwasser von 5 bis 10 Liter verwendet.

Beim Eindampfen der kohlensauren Natron und Bittererde haltigen
Mineralwasser bildet sich ein Doppelsalz von beiden Bestandtheilen, wel-
ches durch Wasser nicht zerstört wird, sondern es löst sich Bittererde
auf und kohlensaures Natron bleibt im Rückstande zurück. Das Filtrat
reagirt unendlich lange alkalisch. Dieses Doppelsalz wird durch Glühen
zerstört, so dass nur kohlensaures Natron sich auszieht und reine Bitter-
erde übrig bleibt. Da man nun nicht leicht eine Platinschale besitzt,
welche gross genug ist, ein oder zwei Liter Mineralwasser darin absau-
dampfen, und dann am Ende noch eine solche Schale schwer zum Glühen
zu bringen ist, so muss das Glühen in einer kleineren Platinschale ge-
schehen. Um dies möglich zu machen, muss man während des Abdampfens
die Bildung eines Niederschlages verhindern, welcher von der Porzellan-
schale nicht leicht zu entfernen ist. Man dampft also das Mineral-

Die Lösung der ameisensauren Erdsalze und der Natron salze filtrirt man in die Platinschale, dampft zur Trockne im Wasserbade ein, erhitzt allmählich stärker und zuletzt zu gelindem Glühen. Die Salzmasse ist gewöhnlich etwas grau, enthält aber keine nennenswerten Mengen Kohle.

Durch Kochen mit destilliertem Wasser lösen sich die Natronsalze auf und ein Rest bittererde scheidet sich ab, der in einem kalten Filtrat gelöst bleibt und erst durch nachheriges Kochen gefällt wird, dann aber eine neue Filtration verlangt. Indem man heiss filtrirt, erhält man die drei Natronsalze im Filtrat und die Erdsalze und das Eisenoxyd auf dem Filtrum.

Bestimmung der in Wasser löslichen Säle.

Dieselben sind kohlensaures und schwefelsaures Natron und Chlor natrium und kleine Mengen Kali.

Man hat eine ansehnliche Zahl Verfahrensarten, diese drei Salze zu bestimmen.

Man dampft sie noch einmal ein, um ihre Summe zu erhalten. Dies geschieht in derselben Platinschale und lässt eine grosse Schärfe zu. Man erhitzt bedeckt, aber nicht bis zur Glüh hitze, lässt unter der Chlorkalzium glocke erkalten und wägt aus. Es ist nothwendig, die Summe der Bestandtheile zu wissen, wenn man einen Bestandtheil, beispielsweise das kohlensaure Natron, aus der Differenz bestimmen will. Für den Fall, dass man dies nicht beabsichtigt, ist es immer sehr gut, diese Summe der Kontrole wegen zu kennen. Von den besseren Bestimmungsmethoden mögen hier einige folgen:

2) Man bestimmt das Chlor direct mit chromsaurem Kali und Zehntel Silberlösung; dann versetzt man eine gleiche Menge Wasser mit Salz-

3) Man verdünnt die löslichen Salze zu 300 cbcm und bestimmt in 100 cbcm das kohlensaure Natron durch Titrieren mit Zehntel-Salzsäure, in anderen 100 cbcm das Chlor mit Zehntel-Silberlösung, in den letzten 100 cbcm die Schwefelsäure mit Salzsäure und Chlorbarium nach Gewicht.

4) Alle drei aus der ganzen Menge gewichtsanalytisch.
Man bringt die Lösung der Salze zum Kochen und fällt mit neutralem essigsauren Kalk; es fällt kohlensaurer Kalk, dem kohlensauren Natron entsprechend, nieder. Durch Kochen wird er dicht (Arragonit) und lässt sich leicht auswaschen.

Im Filtrat fällt man mit essigsaurem Baryt die Schwefelsäure; im Filtrat von diesem mit Silberlösung das Chlor als Chlorid Silber, welches gewogen wird. Wenn viel Schwefelsäure vorhanden ist, so muss die erste Flüssigkeit ansehnlich verdünnt und das Auswaschen mit essigsaurer Baryt geprüft werden, bis dieser keine Trübung mehr gibt.

Der kohlensaure Kalk wird, nachdem man zuerst das Filtrum verbrannt hat, nur stark erhitzen, aber nicht gegläut. Wenn sich kohlensaurer Kalk so fest ans Glas gesetzt hat, dass man ihn mit einer Feder nicht lösen kann, so löst man ihn in einigen Tropfen Ameisensäure, bringt diese Lösung in den Platintiegel, verdampft und glüht und verbrennt dann zugleich das Hauptfiltrum. Kohlensaurer Kalk $\times 1\cdot06$ (nämlich $\frac{53}{50}$) ist gleich kohlensaurem Natron. Das Resultat ist sehr nahe richtig, wegen der geringen Löslichkeit des kohlensauren Kalzes gewöhnlich etwas zu schwach. 1781 g kohlensaures Natron gaben 1678 g kohlensauren Kalk, welcher sich auf 1779 g kohlensaures Natron berechnet.

Oder 5) die kochende Lösung der drei Salze fällt man mit essigsaurer Baryt in kleinem Überschuss, filtrirt, wäscht aus. Den Niederschlag spritzt man in ein Becherglas, setzt Salzsäure zu bis zum Auflösen des kohlensauren Baryts und filtrirt. Auf dem Filtrum bleibt schwefelsaurer Baryt gleich dem schwefelsauren Natron, SO_3, $\text{BaO} \times 0\cdot609 = \text{SO}_3$, NaO. Das Filtrat mit Schwefelsäure gefällt, gibt schwefelsauren Baryt, entsprechend SO_3, $\text{BaO} \times 0\cdot455 = \text{CO}_3$, NaO dem kohlensauren Natron. Im ersten Filtrat vom kohlensauren und schwefelsauren Baryt fällt man das Chlor titrimetrisch oder nach Gewicht.

Oder 6) wenn die Summe der löslichen Salze bekannt ist, übersättigt man mit Essigsäure, fällt die Schwefelsäure heiss mit chlorfreiem essigsauren Baryt, im Filtrat das Chlor mit Silberlösung, und berechnet das kohlensaure Natron aus der Differenz.

Ein kleiner Gehalt an Kali findet sich in den meisten Mineralwässern.
Man verwendet zu seiner Bestimmung eine besondere und gewöhnlich grössere Menge des Wassers von mehreren Litern.

Man dampft mit etwas Barytwasser zur Trockne ein. Der Ueberschuss des Baryts zieht Kohlensäure an und wird unlöslich. Man löst heiss auf, filtrirt, setzt Chlorplatin zu und verdampft im Wasserbade zur Trockne. Die Salzmasse zieht man erst mit etwas schwächerem Weingeist, zuletzt mit stärkerem aus und bestimmt das Chlorplatinalkalium nach Gewicht, nachdem das Filtrum vorher gewogen war.

Bestimmung der in Wasser unlöslichen Bestandtheile.

Wenn man nach der oben beschriebenen Methode die Kieselerde mit Ameisensäure abgeschieden hat, so enthalten die von der Auflösung der Natronsalze übrig bleibenden unlöslichen Bestandtheile wesentlich den kohlensauren Kalk, die Bittererde und das Eisenoxyd.

Gewöhnlich löst man Alles in Salzsäure auf, fällt das Eisenoxyd mit Ammoniak, dann im Filtrat den Kalk mit oxalsaurem Ammoniak, dann in diesem Filtrat die Bittererde mit phosphorsaurem Natron-Amoniak.

Der oxalsaure Kalk wird durch schwaches Glühen im offenen Tiegel in kohlensauren verwandelt und als solcher gewogen. Es ist analytischer Unverstand den kohlensauren Kalk durch starke Hitze zu kausticiren, denn erstlich wird das Gewicht von 50 auf 28 vermindert, so dass jeder Fehler (Filterasche) einen grösseren Einfluss hat, sodann hat man kein anderes Mittel, die vollständige Kausticirung zu bestätigen, als dass man Säure aufgießt, und wenn jetzt Aufbrausen eintritt, so muss man von neuem auflösen, fällen, auswaschen, trocknen, glühen und dann vielleicht noch einmal.

VIII. Angewandter Theil.

Schwefelwasser.

Sehr sichere Bestimmungen können durch Fällungen mit Metallen ausgeführt werden. Mit Salzsäure versetztes arseniksaures Natron wird mit einer grösseren gemessenen Menge des Schwefelwassers in einer gut verschliessbaren Flasche gemischt und längere Zeit stehen gelassen, damit sich der Niederschlag von Schwefelarsen am Boden sammle. Man zieht die klare Flüssigkeit mit einem Heber ab, bringt den Niederschlag auf ein Filtrum, wäscht aus, löst ihn dann durch Ammoniak vom Filtrum und lässt in eine kleine Platinschale laufen. Nach vollständigem Verdampfen und Austrocknen bestimmt man das Gewicht, da man das der Schale kennt. Es ist dies sicherer und leichter als auf einem getrockneten Filtrum zu wägen; $\text{As}_2\text{S}_3 \times 0\text{.}414 = \text{SH}$. Oder man fällt mit Kupferchlorid und lässt absetzen, darauf Abgiessen der klaren Flüssigkeit, Sam-meln und Auswaschen des Niederschlages. Man spritzt denselben vom Filter oxydirt mit Euchlorin oder Bromwasser, fällt mit Chlorbaryum und bestimmt den schwefelsauren Baryt nach Gewicht; $\text{SO}_3\text{BaO} \times 0\text{.}1545 = \text{SH}$. Man kann annehmen, dass in allen Schwefelwassertern, welche viel freie Kohlensäure enthalten, der Schwefelwasserstoff im freien, blos absorbirten Zustande vorhanden sei und deshalb auch kein Schwefelnatrium bestehen kann. In diesem Falle ist auch das Natron als Bicarbonat vorhanden, welches gegen die Jodstärke indifferent ist.
Salinische Mineralwasser.

1) Zur Bestimmung der Summen der Bestandtheile pipettirt man 100 ccm in die Platinschale, setzt gewogenes 1 bis 2 g trocknes, chemisch reines kohlensaures Natron zu, so dass die Flüssigkeit alkalisich reagirt, und notirt die zugesetzte Menge kohlensauren Natrons. Man dampft zur Trockne ab, ohne Umrühren und Spatel, erhitzt zuletzt im Sandbade bis die kalte Glasplatte keinen Anfug mehr zeigt und bestimmt das Gewicht des Restes, wenn er unter der Chlorcalciumglocke keine Gewichtsabnahme mehr zeigt. Nach Abzug des kohlensauren Natrons erhält man das Gewicht der Bestandtheile rein. Das kohlensaure Natron verwandelt das Chlor magnesium und Chlorcalcium in kohlensaure Bittererde und Kalk, welche nicht hygroskopisch sind und auch bei der Erhitzung keine Salzsaure verlieren, wie das Chlor magnesium.

2) Zur Analyse dampft man 1 Liter in einer Porzellanschale auf ein kleines Volum, aber nicht zur Trockne ein, filtrirt, und erhält die Erdsalze und Eisen auf dem Filtrum. Trennung wie oben (§. 551).

3) Das Filtrat von den Erden wird eingeengt mit einer konzentrierten Lösung von kohlensaurem und reinem Ammoniak gefällt, und nach längerem Stehen mit einer ebensolchen ausgewaschen 1). Die Stärke dieser Flüssigkeit ist ungefähr: 180 ccm Ammoniak von 0.92 spezifisches Gewicht (oder 390 ccm von 0.96) und 230 g anderthalb kohlensaurem Ammoniak zu 1 Liter gelöst. Nachdem die erste Fällung mit dieser Flüssigkeit in einem gewissen Ueberschuss bewerkstelligt ist, bringt man auf ein Filtrum und wäscht mit einer verdünnten Lösung derselben Flüssigkeit nach, bis die abfallenden Tropfen auf Platinblech fast ganz verdunstet.

5) Die eingedampften Flüssigkeiten der ammoniakalischen Lösung zur Trockne gebracht und gegläut, geben Kochsalz und schwefelsaures Natron.

6) Aus einer besonderen Portion bestimmt man die Schwefelsäure allein und berechnet sie auf schwefelsaures Natron. Zieht man dies von 5) ab, so bleibt Chlorornatrium direct bestimmt, während man es sonst nur aus dem Chlorgehalt berechnete.

7) Eine Chlorbestimmung im Ganzen dient nur zur Kontrolle.

8) Kali, mit Barytwasser, wie oben (§. 551).

Fresenius 2) bemerkt, dass durch blosses Kochen der salinischen Mineralwasser nicht alle kohlensaure Bittererde niederfalle. Es geschehe

1) Vergl. Pogg. 104, 482.
VIII. Angewander Theil.

dies nicht aus reinem Wasser, noch weniger, wenn dasselbe Kochsalz, am
wenigsten, wenn es Salmiak enthält, welcher sich bei aufmerksamer Prü-
fung wohl in allen salinischen Wassern finden lasse. Im Falle Ammoniak-
salze vorhanden sind, dürfte es überhaupt unmöglich sein, die in Kohlen-
säure gelöste Bittererde und den Kalk zu bestimmen, indem beide die
Ammoniaksalze bei der Siedehitze zersetzen und Ammoniak austreiben.
Ohne diese Rücksicht möchte es wohl genügen, das Mineralwasser soweit
einzudampfen, als es ohne Zersetzung des Chlormagnesiums geschehen
kann, und dann die ausgeschiedenen Erden zu trennen und zu bestim-
men. Das Ammoniak kann man nur in einer grösseren Menge des
Mineralwassers, etwa 2 Liter, bestimmen. Man versetzte sie mit etwas
reiner Salzsäure zu deutlich saurer Reaction, und kocht in einer Re-
torte zu einem kleinen Volum ein. Das Abdampfen in offener Schale
würde in einem Laboratorium, wo ammoniakalische Dämpfe immer sirkuliren, nicht frei von Einwürfen sein, dagegen in freier Luft ohne er-
hebliche Gefahr. Die kleine Menge Flüssigkeit bringt man mit Natron-
hydrat in eine Destilliergeräthschaft, und legt zwei Absorptionsflaschen
mit reinem destillirten Wasser vor, welches vorher mit Kochenilletinctur
geprüft ist und dieselbe nicht violett färbt. Man treibt dann das Ammo-
niak durch Destillation aus, und titriert es mit $\frac{1}{10}$ Oxalsäure und
Kochenilletinctur. Als Bestandtheil des Mineralwassers hat das Ammo-
niak keinen Werth.

Zur Bestimmung des specifischen Gewichtes der Mineralwasser muss
man sich grösserer Mengen Wassers bedienen, da die Abweichung vom
destillirten Wasser nicht gross ist, also bei kleinen Mengen kaum deut-
llich genug hervortritt. Bei einer genügend starken und zugleich em-
pfindlichen Wage kann man die 500 cbcm Flasche anwenden. Gasreiche
Mineralwasser müssen durch Schütteln in einer nicht ganz gefüllten
Flasche so weit abgearbeitet werden, dass sie keine Gasblasen mehr ab-
setzen. Das Einhalten der richtigen Temperatur, wobei die Flasche ge-
sicht ist, darf nicht übersehen werden. Es ist dies ein Vorzug der mit
vollem Gewichte geiachten Flaschen (vgl. S. 45), dass man sie zu diesem
Zwecke verwenden kann. Nach dem Wägen sieht man noch einmal zu,
ob sich keine Gasblasen an das Gefäss abgesetzt haben, im anderen Falle
schüttelt man sie lose und wägt von Neuem. Je enger der Hals der
Flasche ist, desto schärfer kann die Bestimmung geschehen. Fresenius¹)
hat zu diesem Zwecke eine im Halse ausgezogene Flasche mit Theilung
empfohlen, die sich ganz gut dazu eignet. Mit einer dünnen Pipette kann
man den Stand des Wassers auf Haarschärfe stellen. Das specifische Ge-
wickt der Mineralwasser ist im Ganzen eine sehr unbedeutende That-
sache mit der man nichts machen kann.

Alle Mineralwasser enthalten neben ihren Hauptbestandtheilen, auf
welche sich ihre Heilwirkung gründet, kleine Mengen von Stoffen, deren

Analyse der Mineralwasser.

Salpetersäure. Eindampfen zu einem kleinen Volum, und aus einer Retorte mit Zink und Eisenfeile durch Destillation mit Aetzkali als Ammoniak ausscheiden, welches, in Salzsäure aufgesangen, zur Trockne gebracht, mit Chlorplatin gefällt wird und als Chlorplatinkalium oder Platin bestimmt wird, oder auch mit 1/100 Silberlösung titriert werden kann.

In Betreff der Aufstellung der Bestandtheile eines Mineralwassers ist mit Sicherheit anzunehmen, dass bei vollständiger Lösung jede Basis mit jeder Säure in Verbindung ist. Eine Lösung von 1 Atom schwefelsauren Natron und 1 Atom Chlorkalium ist ganz gleich einer Lösung von 1 Atom schwefelsauren Kali und 1 Atom Chlornatrium. Geschmack, spezifisches Gewicht, Dampfspannung, Verhalten bei Kälte und Verdunstung ist bei beiden Lösungen absolut gleich und man muss annehmen, dass in dieser Lösung die vier genannten Salze vorhanden sind, aber ihre Mengen lassen sich nicht bestimmen. Man muss deshalb bei Aufstellung ein Prinzip annehmen, wenn auch nur ein willkürliches, und das natürlichste ist, dass man sie nach ihrer Schwerlöslichkeit ordnet. Unter den genannten vier Salzen ist schwefelsaurer Kali das am schwersten lölsliche und wir stellen deshalb die vier Salze als schwefelsaures Kali und Chlornatrium auf. Wäre mehr Schwefelsäure als Kali vorhanden, so würde auch noch
VIII. Angewandter Theil.

ein Theil des Natrons als schwefelsaurer erscheinen. Findet sich Baryt
vor und Schwefelsäure, so würde der Baryt als schwefelsaurer aufgeführt
werden. Bunsen hat eine solche Reihenfolge von 43 Salzen aufgestellt,
welche mit schwefelsaurem Baryt anhebt und mit dem leichtlöslichsten
Salze, Jodkalkium, endigt, und wenn darnach verfahren würde, so müsste
eine ziemlich gleichförmige Aufstellung erfolgen.

Es ist dagegen eine Unsitte, die kohlensauren Verbindungen als Ei-
carbonate aufzustellen, weil man die Bicarbonate der Erden gar nicht als
solche rein kennt, und die der Alkalien immer Wasser enthalten, einen
Körper, der in wässeriger Lösung keine Bedeutung hat. Meistens werden
die Analytiker von den Eigenthümern der Quellen zu diesem Verfahren
veranlasst, um mit desto grösseren Zahlen prunken zu können. Ebensol
ist es unsinnig, die freie halbgebundene Kohlensäure zu den festen oder
feuerbeständigen Bestandtheilen zu addiren. Zieht man die Kohlensäure
der einfachen Carbonate von der Summe der Kohlensäure ab, so bleibt
die freie und halbgebundene; und zieht man die ganz gebundene CO2
zweimal von der Summe ab, so bleibt die freie, durch blosse Absorption
festgehaltene übrig.

Was nun die Literatur dieses Zweiges der Analyse betrifft, so ist
auch hier, wie in so vielen anderen Feldern der Chemie, Berzelius als
bahnbrechend zu bezeichnen, durch seine classische Untersuchung der
Karlbadener Quellen, in Gilbert's Annalen Bd. 74, S. 113. Von ihm ist die
systematische Fällungs methode eingeführt und bis auf den heutigen Tag
beibehalten worden; ebenso hat er zuerst eine grosse Menge seltener und
de kleiner Bestandtheile entdeckt, wodurch die Auf merksamkeit auf diese
Minima gelenkt wurde. Fresenius hat diese Analyse vielfach durch
neue Methoden bereichert bei seinen vielen Analysen von Mineralwasser
und darunter die des vormaligen Herzogthums Nassau, welches beinah
von jeder Art die besten Quellen der Erde besitzt. Bunsen hat in
seiner Instruction zur Untersuchung der badischen Mineralwasser alle
Hilfsmittel der Wissenschaft vereinigt, um höchst mögliche Genauigkeit
und Sicherheit zu erzielen. Seine Methoden, Correctionen und Berech-
nungen gehen weit über das praktische Bedürfniss, und zeigten bei den
meist sehr schwachen Mineralwassern Badens, was man in diesem Zweige
leisten kann.

Untersuchung von Brunnen-, Quell- und Flusswasser.

a. Allgemeine Analyse.

Am besten dient dazu eine Platinschale von 80 bis 85 mm Durchmesser, die bei dieser Grösse auf der feinsten analytischen Wage ausgewogen werden kann. Das Wasser misst man in einer enghalsigen 500 cbcm-Flasche ab, giesset davon etwas in die Schale und stärst nun die Flasche in die Flüssigkeit um, natürlich unter der Bedingung, dass nichts verloren gehe. Vorher hat man sich bereits ein Gestell zurecht gemacht, wo die Platinschale auf einem Triangel über einer kleinen Flamme, die Halbliter-Flasche aber in einem anderen Triangel oder Ringe darüber schwebt, so dass der Hals der Flasche abwärts gerichtet unter dem Wasser steht. Sehr bequem dient daher die Nachfüllflasche nach Anleitung von Fig. 146. Man sündet nun die Flamme an und beginnt die Ver dampfung. Allmählich rückt man die schwebende Flasche so hoch, dass die Oberfläche des Wassers in der Schale möglichst hoch ohne Gefahr des Ueberflüssens steige. Die Ver dampfung geht sehr rasch, indem die Halbliter-Flasche sich nach Massgabe des Ver dampfens ausleert. Wenn sie leer ist, spült man sie mit etwas destillirtem Wasser nach. Die vollständige Ver dampfung muss nun ohne Sieden vor sich gehen. Man erreicht dies durch Ent fernung der Flamme, oder dadurch, dass man gerade über der Flamme ein messinges Drahtnetz von dichtem Gewebe und von der Grösse des Durchmessers der Schale anbringt. Nachdem alles eingedampft ist, beobachtet man, ob die rückständige Masse weiss ist, oder gelblich gefärbt von Eisenoxyd, oder gefärbt von humosen Stoffen. Bei einer vorläufigen Prüfung hat man untersucht, ob der feste Rückstand verdünnes Aetznatron gelb färbt oder nicht. Im letzteren

Fig. 146.

Nachfüllflasche.
VIII. Angewandter Theil.

Ist das Lackmuspapier nicht gebläut worden, so ist kein kohlensaures Natron, wahrscheinlich aber Gips vorhanden. Man titrirt nun den Chlorgehalt allein und berechnet ihn als Kochsalz.

Die übrigen Stoffe, welche in sehr kleiner Menge vorhanden sind und keine so scharfe Bestimmungen zulassen, werden aus grösseren Mengen Wasser bestimmt.

Das Filtrat von Eisenoxyd fällt man mit Oxalsäure, und bestimmt den oxalsauren Kalk, nachdem er ausgewaschen ist, entweder nach Glühen als kohlensauren Kalk, oder man titrirt ihn mit Chamäleonlösung nach Seite 197; oder direct alkalimetrisch nach S. 117.
Untersuchung von Brunnen-, Quell- und Flusswasser.

Das Filtrat vom oxalsauren Kalke prüft man auf Bittererde mit phosphorsaurer Ammoniak und bestimmt dieselbe, falls sich ein Niederschlag bildet, in demselben in bekannter Weise.

War kohlensaures Natron vorhanden und zugleich Schwefelsäure, so wird diese auf schwefelsaures Natron berechnet, weil in diesem Falle kein Gyps vorhanden sein konnte.

Ob es der Mühe lohnt, auf Phosphorsäure, Kali und ähnliche selten vorkommende Stoffe zu untersuchen, muss dem Interesse der Einzelnen anheim gestellt bleiben.

Dann setzt man Eisendoppelsalz und viel Salzsäure zu und kocht in einem Strome von kohlensaurem Gas das Stickoxydgas aus, bis die grüne Färbung der Flüssigkeit, die man deutlich beobachtet hat, in die reine gelbe des Eisenchlorids übergegangen ist. Man lässt im Kohlensaurestrom erkalten. Die Flüssigkeit bringt man mit Jodkalium in eine Stöpselflasche, fällt diese mit Kohlensaure, verschliesst und erwärmt diese Flasche nach Anleitung von S. 290 und bestimmt das freigewordene Jod mit \(\frac{1}{10} \) oder \(\frac{1}{100} \) unterschweisglasurem Natron. 1 cbm des ersten ist \(0'0018 \) g Salpetersäure. 1 Liter gutes Brunnenwasser erforderte in dieser Art \(13'2 \text{ cbm} \frac{1}{10} \) unterschweisglasurem Natron \(= 13'2 \times 0'0018 = 0'02376 \) g Salpetersäure.

Andere Methoden der Salpetersäurebestimmung, wie die Zersetzung mit Eisenchlorür und Messung des entwickelten Stickoxydgas (Schulze), oder Rückführung des Stickoxydges in Salpetersäure und alkalimetrische Messung (Reichhardt), oder mit Indigolösung (Marx-Goppelsroeder), oder als Ammoniak nach Destillation mit Zink-Eisen in Alkali sind viel unsicherer und meist auch umständlicher. Salpetrige Säure kann durch Jodkalium unter Zusatz einiger Tropfen Salzsäure durch Bläuen von Stärkelösung erkannt und ebenfalls gemessen werden. Um ganz sicher zu sein, muss man zunächst Jodkalium, Salzsäure und Stärkelösung mischen, um zu erkennen, dass diese keine Bläue für sich hervorbringen, und
zuletzt das eingedampfte Wasser hinzubringen. Die blaue Farbe kann man mit $\frac{1}{10}$ oder $\frac{1}{100}$ unterschweflige saurem Natron ausmessen. Unter der Voraussetzung, dass die salpeterige Säure 1 Atom Sauerstoff abgibt, ist 1 cbcm $\frac{1}{10}$ unterschweflige sauren Natron $= 0,0038 \text{ g NO}_3$.

Die Kohlensäure gibt dem Trinkwasser die belebende Frische; ihre Bestimmung ist deshalb von Wichtigkeit.

Die leichteste Bestimmung auf titrimetrischem Wege geschieht nach Pettenkofer's Methode. Man versetze $\frac{1}{4}$ Liter mit 10 oder 20 cbcm Barytwasser, welches auf $\frac{1}{10}$ Oxalsäure gestellt ist, erhitze bis zum Kochen und prüfe, ob das Curcumapapier noch gebräunt wird. Sollte das nicht der Fall sein, so nehme man eine neue Menge von $\frac{1}{4}$ Liter und setze jetzt 10 cbcm Barytwasser mehr hinzu als das erste Mal, bis die Bräunung nach dem Erhitzen eintritt. Man lasse erkalten und bringe die Flasche unter die Bürette mit $\frac{1}{10}$ Oxalsäure und lasse davon unter öfrem Betupfen des Papiers hineinfließen, bis beim letzten Tropfen der braune Ring nicht mehr erscheint. Es ist schon früher entwickelt worden, dass das Erhitzen den Zweck hat, den amorphen kohlensauren Kalk krystallinisich auszuscheiden. Zieht man die zuletzt verbrauchte Zehntel-Oxalsäure von der ganzen Menge ab, die dem zugesetzten Barytwasser entspricht, so gibt der Rest mit 0,0022 multiplicirt das Gewicht der freien und halbgebundenen Kohlensäure in Grammen. Es ist das diejenige Menge, welche dem Trinkwasser die Frische gibt.

Will man auch die ganze Menge der Kohlensäure bestimmen und zugleich die freie und halbgebundene, so verfährt man bis zu einem gewissen Punkte ähnlich wie oben. Man setzt zu $\frac{1}{4}$ Liter Wasser so viel Pipetten von 10 cbcm des Barytwassers, bis nach dem Erhitzen der braune Fleck sich zeigt. Dann filtrirt man die noch heisse Flüssigkeit auf einem mit Glasscheibe bedeckten Trichter in eine Korkflasche und wäscht rasch mit kochendem Wasser aus, bis die ablaufenden Tropfen auf Curcumapapier nicht mehr wirken. In dem Filtrat misst man, wie oben, den Ueberschuss den Barytwassers mit $\frac{1}{10}$ Oxalsäure zurück und erhält die freie und halbgebundene Kohlensäure in Grammen. Der ausgewaschene Rest auf dem Filtrum enthält die ganze Menge der Kohlensäure als kohlensauren Baryt und kohlensauren Kalk. In diesem bestimmt man die Kohlensäure durch Gewichtsverlust mit dem Apparate Fig. 127, S. 515; oder man löst mit verdünnter Salzsäure vom Filtrum auf, wäscht aus,
dampft zur Trockne ein, um die überschüssige Salzsäure zu vertreiben und bestimmt die Kohlensäure durch das Chlor mit \(\frac{1}{10} \) Silberlösung und chromsaurem Kali, indem man vorher etwas Glaubersalz zugesetzt hat, um den Baryt zu fällen. \(\frac{1}{10} \) Silberlösung ist \(= 0,0022 \) g Kohlensäure.

Die meisten Brunnenwasser enthalten nur doppeltkohlenxsuren Kalk ohne freie Kohlensäure, was insofern auch erklärlich ist, als in der Erde eine grosse und überschüssige Menge kohlensaurer Kalk vorhanden ist, an welchem die aus Vermoderung entstandene Kohlensäure vorbeigehen muss. Pettenkofer\(^1\) hat dieses Verhalten durch Analysen festgestellt und an jener Stelle auch mitgetheilt, dass das Barytwasser an die Stelle des von ihm empfohlenen Kalkwassers von mir zuerst empfohlen und angewendet worden ist, was ich ganz vergessen hatte.

Vielfach steht der gelöste kohlensaure Kalk in einem bösen Rufe, als mache er das Wasser hart, unverdaulich und ungesund. Allein es kann wohl kein unbegründeteres Vorurtheil geben. Der Umstand, dass alle natürlichen Wasser auf der Erde diesen Bestandtheil enthalten, sollte zu dem Schlusse führen, dass alle trinkenden Wesen ihn vertragen können, weil alle unter dieser Bedingung entstanden und aufgewachsen sind. Man kann noch weiter gehen und den sauren kohlensauren Kalk als den wichtigsten und unentbehrlichsten Bestandtheil eines guten Trinkwassers erklären. Viele Mineralwasser, die sehr grosse Mengen desselben enthalten, werden als Heilmittel angewendet. Der kohlensaure Kalk allein, wenn kein kohlensaures Natron vorhanden ist, kann ex tempore mit Kochenille-tinctur bestimmt werden. Man bringt \(\frac{1}{4} \) Liter Brunnenwasser in eine recht weisse Porsellanschale, setzt nur wenige Tropfen Kochenillenlösung zu, um eine schwach violette Färbung hervorzubringen, und setzt nun \(\frac{1}{10} \) Salzsäure zu, bis die Farbe beim Umrühren nicht mehr in Violett zurückspringt, sondern hellgelb bleibt. Siehe oben S. 117.

Die Analyse der Trinkwasser kann bei alledem nicht allein zur Begründung ihrer Güte genügen, indem möglicherweise organische Stoffe darin sein können, die sich bis jetzt den Untersuchungen ziemlich entzogen haben. Die Bestimmung des freien Sauerstoffs ist die einzige Probe, die bis jetzt gegen diese Körper gerichtet werden konnte, allein es fehlen noch die Erfahrungen, dass die Anwesenheit von einer gewissen Menge absorbierter Sauerstoffe mit der Gegenwart von modernen Stoffen verträglich sei.

b. Spezielle Analyse.

Es gibt viele Fälle, wo eine vollständige Kenntniss aller Bestandtheile eines natürlichen Wassers nicht erfordert wird, sondern wo man

\(^1\) Sitzungsberichte der bayer. Akad. 1871, 2. Heft; B u c h n e r’s neues Repert. d. Pharm. 20, 597.

M o h r’s Titirbuch.

c. die Härte des Brunnenwassers.

Die Clark'sche Methode, die Härte, d. h. den Kalkgehalt des Brunnenwassers zu bestimmen, besteht darin, dass man zu einem bestimmten Volum des zu untersuchenden Wassers eine titrirte Seifenlösung so lange zusetzt, bis die Flüssigkeit beim Umschütteln einen stehenbleibenden Schaum erzeugt.

Da es keine ganz reine Seife gibt, welche eine ganz bestimmte Zusammensetzung hat, so muss sich jeder seine Seifenlösung auf einen bestimmten Gehalt von Kalk stellen.

Am rationellsten ist Faisst's Angabe. Er bestimmt den Gehalt einer neutralen Chlorcalciumlösung an Kalk und löst so viel davon auf, dass auf 1000 cbcm 0,120 wasserleerer Kalk kommen. Obwohl es näher gelegen hätte, nur 0,100 g Kalk im Liter anzuwenden und dies mit 10° Härte zu bezeichnen, so wäre es unzweckmässig, von den Angaben von Faisst abzuweichen, weil sonst wieder mühsame Arbeiten notwendig geworden wären, eine neue Tabelle auszuarbeiten, da die Angaben der Methode nicht proportional dem Kalkgehalte sind, also durch eine Tabelle korrigirt werden müssen. Als Seife wendet man eine aus reinem Natron und Oelsäre und durch kochendes Aussalzen bereitete Seife an.

Untersuchung von Brunnen-, Quell- und Flusswasser. 563

Man wendet gewöhnlich 100 cbcm Wasser an, setzt aus einer Bürette die Seifenlösung zu, indem man zwischen jedem Zusatz etwa 20 Schüttelschläge gibt. So lange noch Kalk vorhanden ist, zerreiss der Schaum augenblicklich. Sobald eine kleine Menge Seife in Überschuss vorhanden ist, bildet sich ein dichter, zarter Schaum, welcher sich 4 bis 5 Minuten hält. Die Reaction soll nach Faisst so empfindlich sein, dass man bis auf einige Tropfen oder 0‘1 cbcm den Punkt der vollständigen Zersetzung bestimmen können, was mir in dieser Art nicht gelungen ist.

d. Die organischen Stoffe im Wasser.

1) Fresenius' Zeitschr. f. anal. Chem. 10. 289.

Das Verfahren von Kubel besteht darin, dass er von einer sehr verdünnten Chamäleonlösung dem kochenden und mit Schwefelsäure versetzten Wasser so viel zusetzt, bis die Flüssigkeit nach 5 Minuten langem Kochen noch roth bleibt. Nun fügt er von einer titrierten Oxalsäurelösung so lange hinzu, bis die rothe Farbe verschwunden ist, und dann rückwärts wieder Chamäleon, bis lichthes Roth eintritt.

Statt der Oxalsäure würden wir Eisen als Titersubstanz vorziehen und eine Auflösung von 0,7 g Eisendoppelsalz zu 100 ccm würde eine Flüssigkeit geben, welche der 1/10 empirischen Chamäleonlösung (0,565 g übermangansaures Kali zu 1 Liter) gleich wäre, also für jeden Cubikcentimeter mit 1 mgr Eisen in Anschlag käme. Kubel fand, wie früher schon Woods, dass 5 Theile organischer Substanz durch 1 Theil übermangansaures Kali in saurer Lösung oxydiert würden.

Früher fanden wir schon, dass Fe \times 0,5646 = übermangansaures Kali ist. Wir haben also, wenn wir dies Salz mit Ch bezeichnen:

1) Ch $= 5$ (organische Substanz)
und 2) Ch $= \text{Fe} \times 0,5646$.

Untersuchung von Brunnen-, Quell- und Flusswasser.

5 (organische Substanz) = Fe × 0.5646

und daraus

organische Substanz = Fe × 0.1129.

Es muss hier nach ganz bestimmten Regeln gearbeitet werden, wenn man übereinstimmende Resultate erhalten will, was der Methode nicht zur Empfehlung dient. In der That geben saure Lösungen von übermangansaurem Kali anhaltend gekocht Sauerstoff ab, auch wenn kein organischer Körper vorhanden ist.

Auch ist bekannt, wie indifferent Uebermangansaure in saurer Lösung gegen viele organische Körper ist. Filtra schweben oft stundenlang in der schwach röthlichen Flüssigkeit von der Titrierung des oxalsauren Kalkes. Ueberhaupt wirken nur wenige organische Körper, wie Harnsäure, Tannin, Pyrosäuren u. a., energisch auf freie Übermangansaure, und dazu gehört denn auch die Humussäure, wenn man annehmen will, dass sie in Quellwassern vorhanden sei, was leichter vorauszusetzen als zu beweisen ist, selbst wenn sie etwas Chamäleon entfärben.

Aus diesem Grunde schien die Methode von Fr. Schulze in Rostock besser zu sein, nach welcher die Oxydation in alkalischer Lösung vor sich geht. Die Einwirkung ist viel energischer, und die Flüssigkeit wird durch blosses Kochen nicht verändert, wenn keine organische Stoffe vorhanden sind. Im anderen Falle gibt sie Sauerstoff an diese ab und verwandelt sie in Oxalsäure, und sie selbst geht in Mangansaure über. Es muss hierbei immer ein grosser Ueberschuss von übermangansaurem Kali vorhanden sein, so dass die Flüssigkeit niemals grün wird, sondern nur missfarbig von einem Gemenge von Grün und Roth. Nachdem die Flüssigkeit gekocht hat, gießt man sie in eine sehr verdünnte Schwefelsäure, worin sich alles mit rother Farbe löst, ohne einen Niederschlag zu geben, was aber nicht zutrifft. Die rothe Farbe nimmt man mit einer gleichwertiigen Eisensalzlösung weg und erhält das Resultat in Gewicht von übermangansaurem Kali oder Eisen, kann aber den obigen Factor für Eisen nicht anwenden, weil der Vorgang ein ganz anderer war. Durch die Uebersättigung mit Schwefelsäure wird auch die gebildete Oxalsäure mitgemessen, also ein neues Element in die Rechnung gebracht, dessen Grösse man nicht kennt. Es ist ferner zu bemerken, dass das ätzende Alkali im Silbertiegel frisch geglüht sein muss, weil flüssige Aetzlaugen immer organische Stoffe enthalt, welche die Chamäleonlösung grün färben, also hier mitgemessen werden, ohne dass sie zur Sache gehören.

Heintz 1) will die organischen Bestandtheile durch den Gewichtsverlust bestimmen, den die trocknen Reste durch Verbrennen in einer Platinschale erleiden. Hierbei wird die niemals fehlende Salpetersäure mit zerstört und macht das Resultat unbrauchbar.

Endlich ist noch das Verfahren von Alfred Wanklyn zu besprechen, welches den Zweck hat, durch einen eigenen Vorgang aus den stickstoffhaltigen organischen Stoffen Ammoniak zu entwickeln, welches mit Nessler's Reagenz colorimetrisch gemessen wird. Der Verfasser beschreibt sein Verfahren sehr genau¹), und da darnach, wie nach einem Recept, gearbeitet werden soll, so können nur die Originalzahlen mitgetheilt werden. 500 cbcm des Wassers werden aus einer Glaseilorte oder Destillirkolben destillirt, bis 150 cbcm übergegangen sind, um vorhandenes Ammoniak zu entfernen. Dann werden der Flüssigkeit 50 cbcm einer Flüssigkeit zugesetzt, welche aus 200 g frisch geglühten kohlensauren Kalis und 8 g übermangansaurem Kali mit destillirtem Wasser zu 1 Liter aufgefüllt, entstanden ist. Da der Verfasser „Potash“ und nicht „caustic Potash“ schreibt, so ist wohl das kohlensaure Kali darunter zu verstehen. Es wird nach dem Zusatz dieser Flüssigkeit weiter destillirt, bis 50 cbcm aus dem Röhrenkühler abgefllossen sind; dann werden noch zweimal je 50 cbcm überdestillirt und getrennt aufbewahrt.

Es folgt nun die colorimetrische Messung mit Nessler's Reagenz, was der Verfasser Nesslerisiren nennt. Dies bekannte Reagenz soll so bereitet werden: 35 g Jodkalium und 13 g Quecksilberchlorid werden mit 800 cbcm Wasser aufgekocht, dann wird von einer kalt gesättigten Lösung von Quecksilberchlorid allmählich hinzugetropft, bis der rothe Niederschlag sich nicht mehr auflöst. Es werden dann 160 g Kalihydrat oder 120 g Natronhydrat zugefügt, gelöst und bis zu 1 Liter mit Wasser aufgefüllt.

Von dieser Flüssigkeit werden 2 cbcm zu den ersten 50 cbcm des Destillats zugefügt und umgeschüttelt, wodurch im Falle der Anwesenheit von Ammoniak eine rothbraune Färbung entsteht. Es kommt nun darauf an, diese Farbe durch Ammoniakgehalte von bestimmter Grösse nachzuzahlen. Zu diesem Zwecke sind zwei Flüssigkeiten vorhanden: die stärkere enthält 0.001 g Ammoniak im Cubikcentimeter und wird durch Auflösen von 3.15 g Salmiak zu 1 Liter bereitet; die schwächere wird durch Verdünnen der stärkeren auf das hundertfache Volum dargestellt und enthält 0.00001 g oder 1/100 mg Ammoniak im Cubikcentimeter. Es wird nun von der schwächeren Flüssigkeit ein gemessenes Volum in einen reinen Cylinder von derselben Form, wie der der Probe, hineingebbracht, dann bis 50 cbcm mit Wasser nachgefüllt und ferner

Untersuchung von Brunnen-, Quell- und Flusswasser.

Ackererde.

Die Analyse der Ackererde hat durch die neueren Richtung der Agriculturchemie einige Bedeutung erlangt. Das Interesse, welches eine genaue Kenntnis der Zusammensetzung des Bodens erregt, ist meist praktischer Natur, und es muss deshalb auch eine praktische Lösung der Aufgabe angestrebt werden. Da die Ackererde nur ein mechanisches Aggregat sehr verschiedenartiger Stoffe ist, so kann eine selbst vollständige chemische Analyse keinen allein genügenden Anhaltpunkt zur Beurtheilung der Güte eines Bodens geben. Die Analyse würde nur die Ge-

1) Fresenius' Zeitchr. f. rat. Chem. 7, 415.
wichte der einzelnen chemischen Stoffe nachweisen, darüber aber vollkommen im Unklaren lassen, ob der Boden die gehörige Lockerheit und Durchdringlichkeit habe, ob die nachgewiesene Kieselerde als Sand oder in chemischer Verbindung vorhanden wäre, ob dies leicht oder schwer ausschliessbar wäre, ob die Humussäure die leicht oder schwer oxydable Modification sei. Alle mechanischen Fragen berühren zunächst nicht unser Gebiet und werden weniger berücksichtigt.

Durch die Einrichtung so vieler Versuchstationen und landwirt
Ackererde.

schaftlichen Akademien sind diesem Gegenstande viele Kräfte zugeführt worden, und indem jeder Einzelle zum Ganzen etwas Nützliches und Neues wirken wollte, ist auch die Gefahr näher gerückt worden, weit über das Ziel hinaus zu schiessen. Die Bodenanalyse hat eine Ausführlichkeit und Umständlichkeit angenommen, dass man zuletzt aus der Summe von Thatsachen keinen Schluss mehr ziehen kann. Man hat sogar die specifische Wärme des Bodens bestimmt, was jedoch nichts ist als eine Gelehrtheuerei. Was will man damit machen, wenn man die specifische Wärme des Bodens weise? Andern kann man sie nicht, selbst nicht einmal einen bündigen Schluss daraus ziehen. Man hat empfohlen, wässerige Auszüge, kalte salzsaure und warme salzsaure Auszüge besonders zu analysiren, und dadurch die Zahl der analytischen Operationen über Gebühr vermehrt.

Probeziehung.

Das Erste, was eine solche Uebereinstimmung wünschenswerth macht, ist die Probeziehung selbst. Betrachtet man Ackererde genauer, so sieht man sogleich, dass sie kein gleichartiges Ding ist, dass es also nicht gleichgültig ist, ob man dieses oder jenes Partikelchen zur Analyse wähle.

Um hier eine Durchschnittsprobe des ganzen Ackers zu erhalten, verfährt man in der folgenden Art.

werden 2 Pfund, und von dem Rückstande etwa 1 Pfund, in trocknen
gläsern verpackt, eingesehen und die Details von den frühe-
ren Wägungen beigelegt. Aus den Analysen kann man nun rückwärts
auf den Gehalt der gefundenen Stoffe in einem bestimmten Volum und
Gewicht der Ackererde schliessen. Die in den Flaschen enthaltene luft-
trockne Erdprobe ist nun noch nicht trocken genug, um der Analyse
unterworfen zu werden, weil eben auch diese Feuchtigkeit eine wandel-
bare ist. Man wäge deshalb eine bestimmte Menge der Erde in einer
Porzellan- oder Metallschale mit Deckel ab, trockne sie im Wasserbade
vollends aus und bestimme den nun noch erfolgenden Gewichtsverlust in
Prozenten der gewogenen lufttrocknen Erde. Man erfährt dadurch die
Menge der bei 100° C. getrockneten Erde, welche in einem Cubikfuss
oder Cubikmeter lufttrockner Erde enthalten ist.

Man nehme nun eine beliebige Menge der Erde, etwa 1 Pfund, in
eine Metallpfanne, setze diese in ein Wasserbad und trockne die Erde
unter diesen Umständen vollständig aus, indem man sie zugleich noch
feiner zerreibt. Die getrocknete Erde bringt man in eine trockene Flasche
und verstopfe diese sogleich mit einem dichten Korte, oder mit einem
solchen, welcher ein Chloralkaliumrohr trägt. Aus dieser Flasche werden
die verschiedenen Mengen der Erde zu den verschiedenen Bestimmungen
genommen. Man schütte jedesmal eine kleine Menge in ein kleines
Bechergläschen und wäge daraus die einzelnen Mengen zu 15 oder 2 g
aus. Den Rest der Erde in dem Glase gebe man nicht in die Flasche
zurück, sondern werfe ihn, als mit Feuchtigkeit behaftet, weg, da man
reichlichen Vorrath der trocknen Erde hat.

Oft ist eine Ackererde so mit Wurzeln durchzogen, dass die Menge
derselben wohl Berücksichtigung verdient, z. B. nach dem Anbau von
Luzerne, Esparsette, Rothklee u. s. w. Nach ihrer Verwesung haben diese
Wurzeln in gewissem Grade zur Bereicherung des Bodens beigetragen,
während sie auch in der Verwesung durch Kohlensaurebildung nützlich
werden. Nach dem Sieben der getrockneten und zerriebenen Erde wer-
den die Wurzelsreste grösstentheils im Rückstande befindlich sein, und es
ist wohl der Muhe werth, die Bestandtheile der Asche zu bestimmen.
Wird dieser Wunsch ausgedrückt, so mag der Landwirth den Sieberück-
stand ganz einsenden. Es wird dann auf der chemischen Station die
trennung von den Steinen vorgenommen und die Wurzeln werden allein
einer Untersuchung unterworfen. Die Probe einer Bodenart soll nur vor
der Düngung genommen werden; frisch gedüngtes Land, sei es mit Stall-
dünger oder künstlichen Düngemitteln, Guano, Gypsum etc., soll niemals zur
Analyse genommen werden.

Interessant und wichtig zugleich ist es, anzugeben, welche Pflanzen
auf dem zu untersuchenden Boden in den Jahren vorher bis zur Düngung
do Ackers cultivirt wurden, welches Düngemittel und wie viel davon dem
Boden zugetheilt war. Willkommen sind alle Angaben und Beobachtun-
gen aus der landwirthschaftlichen Pflanzencultur, z. B. welche Pflanzen
am besten und welche gar nicht gedeihen, ob das Getreide leicht lagert; ferner Mittheilungen aus der Forstwirthschaft und über die geognostische Beschaffenheit der Gegend.

Um die zur Analyse dienende Menge Ackererde auf eine leichte Weise zu sammeln und auch zugleich eine Analyse des Untergrundes von beliebiger Tiefe machen zu können, bedient man sich eines cylindrischen blechernen Rohrs von 40 mm oder 1 1/4 Zoll Durchmesser, Fig. 147. Dasselbe wird aus starkem Schwarzblech durch Nietten der Ränder, oder aus starkem Weissblech durch Lochen angefertigt. Eine Länge von 3 bis 4 Fuss wird in den meisten Fällen ausreichen. An einem Ende hat es zwei seitliche Löcher, durch welche man einen runden eisernen Stab lose hindurchschieben kann, um einen Angriff zum Drehen zu erhalten. Aussen bezeichnet man mit sichtbaren Marken die Länge von 1/2 zu 1/2 Fuss, oder von je 100 mm vom unteren Ende an. Indem man mit diesem Rohr senkrecht in die Erde bohrt, bleibt ein cylindrisches Stück Erde darin stecken, welches man herausheben kann. Wenn man den quer durchgeschobenen Eisenstab herauszieht, so kann man von oben mit einem hölzernen Stocke die ausgehobene Erde ausstossen. Geht man nun noch einmal 1/2 Fuss tiefer in dasselbe Loch, so sticht man Erde aus, welche 1/2 Fuss tiefer im Boden gesessen hat, und so weiter. Man kann dadurch mit Leichtigkeit den Untergrund bis zu 4 Fuss Tiefe ausheben. Wollte man ermitteln, ob einem Felde durch Tiefpfügen eine verjüngte Fruchtbarkeit gegeben werden könnte, so würde man an den verschiedenen Stellen des Ackers erst ein Loch von 3 oder 3 1/2 Fuss Tiefe bohren und nun noch 1/2 Fuss Erde zur Analyse ausheben. Man kann demnach mit diesem Instrumente die Erde in jeder beliebigen Tiefe, ohne eine Grube zu machen, herausziehen. Sie wird in oben beschriebener Weise getrocknet, gesiebt und zur Analyse vorbereitet.

Bestimmung der einzelnen Bestandtheile.

1) Kohlensäure, d. h. kohlensaures Kalk.

Am besten geschieht diese Bestimmung nach Gewicht in einem der oben (S. 515 u. 127) beschriebenen Apparate mit nicht zu kleinen Mengen.
2) Chlor, Eisenoxyd, Kalk, Bittererde.

Die Gegenwart von Humussäure trübt die meisten Fällungen. Aus diesem Grunde zertört man bei einer Menge Ackererde die Humussäure und bestimmt in einer Reihenfolge die vier oben genannten Stoffe.

Nach dem Lös'en bestimmt man das Chlor mit chromsaurem Kali als Indikator durch Zehntel-Silberlösung (S. 354).

Berechnung nach der Tafel am Schlusse unter Chloratrium mit \(\frac{N}{10} \) Silberlösung.

3) Organische Reste, Humussäure, Humuskohle (Humin).

Es enthalten ferner die Niederschläge selbst unorganische Stoffe, die man erst durch Einäscherung bestimmen kann, da es ungereimt wäre, sie in einem vorzugsweise als organische Substanz charakterisirten Körper ohne Weiteres mitzuwählen. Da aber alle diese Stoffe damit endigen, zuletzt freiwillig in Kohlensäure überzugehen, so schien es am zweckmässigsten, dieselben sogleich in Kohlensäure zu verwandeln und als solche zu bestimmen. Es liegt eine ungemein hohe Zweckmässigkeit in dem Umstande, dass die Verbindung des Kohlenstoffs mit Sauerstoff gasförmig ist. Denken wir uns, dass ein Baum in den Urwäldern von Brasilien umstürzt und absterbt, so würde die zu seinem Körper verwendete Substanz aus dem Kapital der Natur ausscheiden, wenn seine Verwesungsprodukte nicht flüchtig wären. Nach 25 Jahren liegt an jenem Platze ein kleiner Haufen Erde, die unorganischen Bestandtheile des Baumes, die organischen sind durch Vergasung als Kohlensäure und Ammoniak...

Wenn man 10 g trockne Erde mit 4 bis 5 g doppelt chromsaurem Kali innig mengt, das Gemenge in eine gewöhnliche Probirröhre bringt und diese Probiröhre mit einer Absorptionsröhre verbindet, so kann man durch stellenweises Erhitzen mit einer einfachen Weingeistflamme die ganze Menge der organischen Substanz in Kohlensäure überführen, ohne dass sich organische pyrogene Substanzen bilden. Damit die Absorptionsflüssigkeit nicht zurücksteigen und man auch nach geschehener Verbrennung die in der Verbrennungsröhre enthaltene Kohlensäure durch die Kali-Barytflüssigkeit durchsaugen könne, ist in den Kork der Verbrennungsröhre eine zweite Röhre eingebracht, die aussen mit einem Kautschukrohr verbunden ist, welches durch einen messingen Quetschhahn geschlossen ist. Ist die Verbrennung beendet und fängt die Absorptionsflüssigkeit an zu steigen, so öffnet man den Quetschhahn und saugt Luft von der entgegengesetzten Seite durch den Apparat. Zuletzt bestimmt man den kohlensauren Baryt durch Filtration, Auswaschen und Titrieren mit Normalsalzsäure und Normalkali.

Die Gase werden zuerst durch Schwefelsäure geleitet, um das nicht zu bestimmende Wasser festzuhalten, dann weiter durch eine gewogene Natronkalkröhrle, deren Gewichtszunahme die ganze Menge der durch Verbrennen entstandenen Kohlensäure ergibt.

Ein zweites Verfahren, diese beiden Mengen getrennt zu bestimmen, ist folgendes.

Man bestimmt die Kohlensäure der Erden durch einen Wägungsversuch mit dem Apparate, Fig. 148, indem man in die Kugel eine mit gleichen Theilen Wasser versetzte konzentrierte Schwefelsäure bringt. Nachdem die fertig gebildete Kohlensäure ausgetrieben und gewogen ist, nimmt man dieselbe Flasche und benutzt sie als die rechte Hand befindliche des Apparates, Fig. 149, nachdem man 6 bis 7 g doppelt chromsaures Kali hineingeworfen und sogleich verschlossen hat. Durch blosses Erwärmen verwandelt die in Freiheit gesetzte Chromsäure die Humussäure in Kohlensäure.
Um nun den Werth der Kohlensäure in Gewicht bei derselben Temperatur und Barometerhöhe zu erfahren, wägt man eine Menge reinen Marmor oder Doppelspath als feines Pulver ab, welcher annähernd eben so viel Kohlensäure gibt. Bei gewöhnlicher Temperatur und Luftdruck gibt 0,5 g kohlensaurer Kalk 120 ebcm Kohlensäure aus. Man wägt also diejenige Menge Marmor ab, welche sich aus der Berechnung ergibt, löst die Kochflasche ab, reinigt sie und füllt den gewogenen Marmor ein. Das ausgeflossene Wasser wird wieder eingegossen und nun die Messung der Kohlensäure vorgenommen. Zu diesem Zwecke ist in der Röhre auf der Kochflasche reine Salzsäure eingefüllt, welche durch Drücken des Quetschhahns in den Marmor fließt und die Kohlensäure verdrängt. Dieser Versuch geschieht kalt. Man lässt aus dem Hahn Wasser ausfliesen, bis, wie oben, der Stand in Röhre und Gasometer gleich ist. Die gemessene Menge Kohlensäure beträgt an Gewicht 44 Procent von dem gewogenen Marmor, und man erfahrt dasselbe, wenn man sein Gewicht mit 0,44 multipliziert. Man hat nun drei Glieder der Proportion: Das Gewicht und das Volum einer bestimmten Menge Kohlensäure an dem Tage, und das Volum der Kohlensäure aus dem Versuch; und daraus berechnet sich das Gewicht der Kohlensäure, welche dem Humus entspricht. Nach Analysen enthält der reine Humus 60 Procent Kohlenstoff. 60 Kohlenstoff sind gleich 220 Kohlensäure, der Humus beträgt also

\[
\frac{100 \cdot \text{CO}_2}{220} \text{ oder } \text{CO}_2 \times 0,455 = \text{Humus.}
\]

Die Oxydation der organischen Stoffe auf nassem Wege durch Chromsäure gründet sich auf das Verfahren von Brunner\(^1\). Die abgearbeitete Flüssigkeit darf nicht rein grün erscheinen, sondern muss eine bräunliche Farbe zeigen als Beweis, dass chromsaures Kali im Überschuss vorhanden ist.

4) Ammoniak.

Das Ammoniak ist in der Ackererde theils fertig gebildet und von der porösen Substanz absorbirt enthalten, theils auch noch als unzersetzte organische Substanz, aus welcher durch Entmischung der ganze Stickstoffgehalt als Ammoniak frei werden muss. Es liegt deshalb auch hier, wie bei der Kohlensäure, der Fall vor, dass man beide Mengen zugleich bestimmen kann, indem das Ammoniak diejenige Endform ist, in welcher der noch organisirte Stickstoff der Pflanze zu Theil werden kann. Selbt das bereits fertig gebildete Ammoniak kann durch blosse Erhitzung nicht alle ausgetrieben werden. Die Hitze steigt in den äusseren Theilen der Erde leicht bis zum Glühen, ehe alles Ammoniak aus dem Inneren ausgetrieben ist, und das durch die glühenden Theilchen der Erde ent-

\(^1\) Pogg. 95, 379.
weichende Ammoniak zerfällt in Wasserstoff und Stickstoff und entgeht dadurch der alkalimetrischen Bestimmung.

Will man das fertig gebildete Ammoniak allein bestimmen, so bedient man sich des S. 113 oder 114 abgebildeten Apparates.

Man füllt die Röhre \(d \) mit mässig starkem Aetzkali, bringt 10 g trockne Erde in die kleine Flasche rechts und dazu ein kleines Stückchen gelbes Wachs oder Paraffin. Dies bewirkt, dass die Blasen der kochenden Flüssigkeit leichter brechen. Ohne dasselbe steigt die kochende humushaltige Flüssigkeit unvermeidlich über. Das erste Aufkochen muss man auch hier vorsichtig bewachen, bis alle absorbiert gewesene Luft sich losgerissen hat. In die weite Flasche bringt man 10 cbcm Normalsalzsäure. Zuletzt saugt man Luft durch. Wenn die Flüssigkeit zurücksteigen will, so öffnet man den Quetschhahn von \(d \), damit hier Luft eindringt. Man muss deshalb die Röhre \(d \) vollkommen auslaufen lassen.

Will man die ganze Menge des in der Dammerde enthaltenen verbundenen Stickstoffes als Ammoniak bestimmen, so zerreibt man 10 g Erde mit viermal so viel Natronkalk innig in einem Mörser, füllt sie rasch in eine kleine Verbrennungsröhre und entwickelt das Ammoniak in bekannter Art nach Varrentrapp und Will. Man fängt es in Salzsäure auf, verdampft zur Trockne und bestimmt das Chlor des Salmiaks mit chromsaurem Kali und Silberlösung; oder alkalimetrisch.

5) Schwefelsäure.

Der Zusatz des Salpeters dient zur Verbrennung der organischen Bestandtheile. Ohne denselben brennt sich die Erde mit kohlensaurer Natron schwarz.

6) Alkalien.

Man schliesst die Ackererde mit kohlensaurer Baryt und Chlorbaryum im Platintiegel in starker Hitze auf, pulvert die geschmolzene Masse, löst und füllt vollständig mit reinem und kohlensaurer Ammoniak. Man filtrirt, dampft in einer Platschale zur Trockne und vertreibt den Salmiak durch Glühen. In jedem Falle nimmt man jetzt eine Wägung der Schale mit Inhalt vor, um das Gewicht des Inhaltes zu er-
fahren. Es kommt nun hierbei ganz allein auf den Kaligehalt an, da sich die Natronsalze als zur Vegetation unwirksam gezeigt haben. Das Sicherste bleibt, den Rest mit Chlorplatin im Wasserbade zur Trockne einzudampfen und das Chlorplatinkalium mit Weingeist oder mit einer gesättigten Lösung von Chlorplatinkalium auszuwaschen, und nach dem Trocknen auf dem Filtrum zu wägen.

7) Phosphorsäure.

Zur Bestimmung der Phosphorsäure in Ackererde wäge man 25 oder 50 g ab, erhitzte sie in einer Platinwaage bis zum Verkohlen aller organischen Substanzen, lasse erhalten, ziehe durch mehrmaliges längeres Kochen mit schwacher Salpersäure aus, filtrire und wasche aus. Wenn man nicht glüht, so erhält man tief gefärbte Flüssigkeiten, aus denen sich dennoch die Molybdänsäureverbindung fallen lässt. Die Ausziehung durch Salpersäure ist vorzuziehen, weil dadurch wenig Eisenoxyd und fast keine Thonerde in Lösung kommt, und die nachherige Fällung mit Molybdän kein Hinderniss findet.

Die Fällung muss wegen der Anhaftung des Niederschlages an die Wände der Gefässe in einer Porzellantongschale geschehen. Zu diesem

\(^1\) Poggendorff's Annal. Bd. 109, S. 135.

25 g gute Ackererde erzeugten einen gelben Niederschlag, welcher 0,74 g wog; 100 g Erde würden also 2,96 g erzeugt haben und diese enthalten
\[
\frac{3,6 \times 2,96}{100} = 0,10656 \text{ Procent Phosphorsäure; oder sicherer, man löst den Molybdän-}
\]

niederschlag in Ammoniak, fällt mit Magnesiummischung und bestimmt die Bittererde als pyrophosphorsaure.

10 g aus einem mit chemischen Präparaten gedüngten Garten, scharf getrocknet und mit Salpetersäure ausgezogen, gaben an gelbem Molybdän- niederschlag 1,540 g; diese enthalten zu 3,6 Proc. PO₃, 1,540 \times 0,036 = 0,05544 g PO₃ = 0,5544 Proc., also mehr als 5 mal so viel als die erste Ackererde.

Roheisen, Stahl und Stabeisen.

1) Bestimmung des Eisens.

Man löst eine gewogene Menge Roheisen, etwa 2 bis 3 g, in einer Platinschale in chemisch reiner verdünnter Schwefelsäure unter Bedeckung der Schale mit einer konzentrischen Glasschale. Der Luftraum der Schale fällt mit Wasserstoffgas und verhindert den Zutritt von Luft. Man regulirt die Gas- oder Weingeistflamme so klein, dass die Auflösung ruhig fortschreitet, ohne nachzulassen, bis sich kein Gas mehr entwickelt, giesset die ganze Flüssigkeit in eine 300-cbcm-Flasche und füllt bis an die Marke an. 1/3 dieser Flüssigkeit oder 100 cpcm versetzt man mit freier Schwefelsäure und viel Wasser und titriert sogleich mit einer Lösung von reinem übermangansauren Kali.

Den Titer dieser Flüssigkeit nimmt man während der Auflösung mit einer gewogenen Menge Eisendraht, die annähernd so gross ist, als in 100 cpcm obiger Flüssigkeit Eisen enthalten sein kann, also mit 1/3 des aufgelösten Roheisens nach der sogenannten Preismethode (S. 58). Da man bei jeder Titernahme einen kleinen Fehler machen kann, so ist es nicht richtig, diesen Fehler zu multipliciren, was aber geschieht, wenn man den Titer mit einer viel kleineren Menge Eisen nimmt.

Die Auflösung des Roheisens kann man auch in der 300 cpcm Flasche selbst vornehmen und diese mit einem Kautschukventil schliessen (vergl. S. 181 und 182).

Man wiederholt die Messung des Eisens mit den zweiten 100 cpcm der Lösung.

Unter all den aufgeführten Verunreinigungen des Roheisens ist keiner, welcher in saurer Lösung auf Chamäleon wirken konnte, so dass die Eisenbestimmung zuverlässig ist.

Eine zweite sehr scharfe Bestimmung des Eisens geschieht mit titrirtem doppelt chromsauren Kali, wie oben (S. 237) beschrieben wurde, indem man das Eisen in jener Menge abwägt, die etwas mehr als 1 g reines Eisen enthalten kann, dann mit der 100-cpcm-Pipette diejenige Menge des doppelt chromsauren Kalis zufügt, welche genau 1 g Eisen zu Oxyd oxydirt, und den Rest aus einer Bürette mit derselben Flüssigkeit austitriert.

Im Ganzen hat die Bestimmung des Eisens keinen praktischen Werth und dient dem Chemiker bloss zur Kontrole bei der Summirung der übrigen Stoffe.
2) Bestimmung des Kohlenstoffs.

Es ist dies allerdings eine Differenzmethode und bei kleinen Mengen gebundenen Kohlenstoffs unzuverlässig, weil alle Fehler auf den kleinsten Theil fallen. Es hat deshalb auch Fresenius eine directe Bestimmung des gebundenen Kohlenstoffs durch Verbrennung des Gases vorgeschlagen, welches jedoch nur dann zu einem Resultate führt, wenn die Untersuchung der Auflösungsreste zeigt, dass keine durch Aetzkali ausziehbare Verbindungen sich gebildet haben.

VIII. Angewandter Theil.

zogene Ende mit einem Asbestpausch, der vorher mit Salzsäure ausge-
waschen und dann geglüht wurde. Die Flüssigkeit läuft ganz klar und
rasch durch. Man süsset vollkommen aus und trocknet die Röhre durch
Erwärmen mit einem durchgezogenen Luftstrom (vergl. S. 69).

Die Bestimmung des Kohlenstoffs geschieht nun am sichersten durch
Verbrennen in reinem Sauerstoffgas. Man verbindet das ausgezogene
Ende der Röhre, nachdem man noch eine Schicht Kupferoxyd oder Eisen-
oxyd vor die Substanz gelegt hat, mit einem Gasometer, welcher Sauer-
stoff enthält, und das zwischen gelegten Absorptionsapparaten von Kali-
hydrat für Kohlensäure und konzentrierte Schwefelsäure für Wasser. Das
andere Ende der Verbrennungsröhre wird erst mit einem Chlorkalzi-
umrohr für Wasser und gewogenen Natronkalkrohr für die Kohlensäure
verbunden. Nachdem Alles in Ordnung ist, erhitzt man erst das Kupferoxyd
und dann die Stelle der Röhre, wo die Substanz liegt, mit einer beweg-
ten Weingeistflamme, wobei nochmals etwas Wasser frei wird; man lässt
den Sauerstoff langsam eintreten und treibt die Feuchtigkeit in das Chlor-
kalkiumrohr. Jetzt erst erhitzt man das Kupferoxyd zum Glühen und
dann die Stelle durch eine stärkere Flamme, bis das erste Glimmen ein-
tritt, und reguliert den Sauerstoffstrom so, dass die Verbrennung nicht zu
heftig werde. Die Kohlensäureentwicklung ist so kräftig, dass sich der
Anfang des Natronkalkrohrs deutlich erwärmt. Wenn letzteres lang ge-
nug ist, braucht man kein mitgewogenes Chlorkalkiumrohr vorzulegen.
Die Gewichtszunahme gibt die Kohlensäure.

Die Differenzmethode nach Karsten besteht darin, dass man eine
andere Menge Eisen in verdünnter Schwefelsäure oder Salzsäure auflös-
löst, den Rest auf dem Asbestfilter sammelt und zuletzt mit erwärm-
tem und etwas verdünntem Kalihydrat auswäscht, wobei die organischen
Stoffe ausgezogen werden. Nachdem nun auch das Kali weggewaschen ist,
werden getrocknet und der Graphit, wie oben, verbrannt.

Zur directen Bestimmung dient die Methode von Fresenius 1). Er
lässt 1 bis 1.5 g Eisen in reiner verdünnter Schwefelsäure und verbrennt
das entwickelte und vorher getrocknete Gas, indem er es durch eine
Röhre mit glühendem Kupferoxyd durchleitet und die Kohlensäure in
einer Natronkalkröhre auffängt und wägt. Es muss hier immer noch die
Prüfung des ausgewaschenen Lösungserrestes folgen, ob dieselbe nicht durch
Kalihydrat ausziehbare organische Stoffe enthält, in welchem Falle die
ersten Wägungsergebnisse nicht vollständig zuverlässig sind. Besitzt man
einen gläsernen Gasometer, wie er weiter unten bei Meteoriteisen beschrie-
ben wird, so kann man diese Methode mit einer grösseren Menge Eisen, 5 bis 6 g, ausführen. Man entwickelt das Wasserstoffgas wie oben und
lässt es durch eine Lösung von Silbersalpeter gehen, um Schwefelwasser-
stoff aufzunehmen, ebenfalls in dem bei Meteoriten beschriebenen Absorptionsapparate, verbindet durch Öffnung des oberen Quetschhahnes den

1) Dessen Zeitschr. f. analyt. Chem. 4, 74.

3) Schwefel

4) Mangan

Die Flüssigkeit von der Schwefelbestimmung kann dazu verwendet werden. Sie wird filtrirt und kochend mit chloraurem Kali oxydiert (Prüfung mit Kaliumeisencyanid auf einem Teller), der grösste Theil der freien Säure mit reinem Natron abgestumpft, dann noch so viel allmähig zugesetzt, bis ein sich nicht mehr eigentlicher Niederschlag von Eisenoxydhydrat bleibt. Es wird dann mit viel Wasser verdünnt, essigsaures Natron zugesetzt und in einer geräumigen Porzellanflasche gekocht, wodurch sich alles Eisenoxyd abscheidet. Dessen muss man aber gewiss sein. Man lässt etwas absetzen und macht eine Tüpfelprobe auf Filtrirpapier mit Blutlangensalz. Sollte diese ansprechen, so wird noch einmal mit kleinen Mengen Natronhydrat oder kohlensaurem Natron erhitzt, bis diese Probe negativ ausfällt, d. h. bis an der Berührung der beiden Tropfen keine blaue Färbung mehr entsteht. Die Flüssigkeit muss aber immer

5) Silicium.

6) Kupfer.

Kohlenstoff im Graphit.

Der Werth des Graphits hängt wesentlich von seinem Kohlenstoffgehalt, d. h. vom Mangel anderer unorganischer Stoffe ab. Zwei Methoden sind zu dieser Bestimmung von Wilhelm Gintl angegeben worden.

1) Der bei 150 bis 180° C. getrocknete Graphit wird gewogen in

Analyse des Hohenreiner Spiegeleisens, vom Verfasser.

1) Eisen. 0'5 g in verdünnter SO₃ gelöst = 81'1 cbcm Chamäleon. 0'5 g reiner Eisendraht = 89'4 cbcm; also Eisen = \(\frac{81'1}{89'4} = 90'71 \) Proc.

2) Mangan. 5 g in CH₃ gelöst, mit chlorsaurem Kali oxydiert, Eisenoxyd gefällt, Mangan mit kohlensaurem Natron gefällt, gab 0'3513 g Mn₂O₄ = 0'2531 g Manganmetall = 5'062 Proc.

3) Phosphor. Das Eisenoxyd aus 2) mit Schwefelammonium digerirt, filtrirt, mit Magnesiummischung gefällt, gab 0'005 g pyrophosphorsaure Bittererde. Diese enthalten 0'0039 g Phosphor = 0'0278 Proc.

4) Schwefel. a) Gas von 5 g durch Silberströmung. Schwefelsilber in Wasserstoff geglüht gab metallisches Silber 0'028 g, äquivalent mit 0'0041 g Schwefel = 0'082 Proc.

 b) 10 g Eisen in SO₃ gelöst, Gas durch Silberlösung, Schwefelsilber in kohlensaurem Kali mit Chlor behandelt, filtrirt, mit Chlorbaryum gefällt, gab 0'060 g schwefelsauren Baryt, äquivalent mit 0'0092 g Schwefel = 0'092 Proc. Schwefel. Mittel aus a) und b) = 0'087 Proc. S.

5) Silicium. 5 g Eisen gaben 0'065 g SiO₂, also 100 g Eisen = 1'300 g SiO₂ = 0'087 Proc. Silicium.

6) Kohlenstoff. 5 g Eisen mit Jod gelöst, der Rest verbrannt, gab 0'640 g CO₂ = 0'1745 g Kohlenstoff = 3'49 Proc.

Addition: Eisen 90'710 Proc.
Mangan 5'062 ''
Phosphor 0'028 ''
Schwefel 0'087 ''
Silicium 0'007 ''
Kohle 3'490 ''

Summa 99'984 Proc.

einem kleinen Glasröhrchen aus schwer schmelzarem Glase, von 100 bis 120 mm Länge und 10 mm Weite, mit der 20fachen Menge frisch ge-
glühten Bleioxydes gemengt und dann vor einer Gebläselampe einge-
schmolzen. Diese Operation kann bei kleinen Mengen Graphit in 10 bis 15 Minuten vollendet sein. Der Gewichtsverlust ist Kohlensäure, von welcher $\frac{6}{29}$ den Kohlenstoffgehalt geben.

2) Man vermischt eine gewogene Menge des Graphits aufs Innigste mit einem Überschuss von salpetersaurem Kali, bringt das Ganze in einen Porsellan- oder Platintiegel und erhitzt so lange, bis kein unver-
änderter Graphit mehr wahrzunehmen ist. Aus der erhaltenen Schmelze soll die Kohlensäure durch Verlust mit einem der oben (S. 515) beschrie-
benen Apparate bestimmt werden, wobei man natürlich jeden Verlust beim Umfüllen zu vermeiden hat. Oder man fällt die gelöste und filtrirte Schmelze kochend mit Chlorkalzium oder Chlorbaryum, und erhält den Werth des Kohlenstoffs im kohlensauren Kalk oder Baryt, wobei nur die Möglichkeit zu beachten ist, dass auch kieselsaurer Kalk gefällt werde.

Die erste Bestimmungsweise ist einleuchtend, wenn überschüssiges Bleioxyd vorhanden ist, dagegen die zweite nicht gegen Einwurf frei. Wenn die Salpetersäure 4 Atome Sauerstoff abgibt, so entstehen 2 Atome Kohlensäure, die aber nur 1 Atom Kali zur Bindung vorfinden; nimmt man an, dass sie nur 2 Atome Sauerstoff abgebe, so wird gar keine Basis frei, weil dann salpetrigsaures Kali bleibt. Es müsste also kohlensäure-
freies Alkali vorher dem Salpeter zugesetzt werden, um das Entweichen der Kohlensäure zu verhindern. Alsdann aber würde die Fällung mit Chlorkalzium unzulässig. Wenn aber, wie es am wahrscheinlichsten ist, der Stickstoff der Salpetersäure als solcher austritt, so werden von den 5 Atomen Sauerstoff $2\frac{1}{2}$ Atom Kohlensäure gebildet, die unmöglich Bin-
dung finden können. In diesem Falle sind die mit der Bleioxydbestim-
mung übereinkommenden Resultate der zweiten Methode unbegreiflich.

Es ist ferner bekannt, dass der Kohlenstoff des Graphits auf nausem Wege durch doppelt chromsaures Kali und eine nicht stark verdünnte Schwefelsäure zu Kohlensäure oxydiert wird, die man aufzufangen und zu bestimmen hat.

Braunstein.

Die Analyse des Braunsteins ist ein Gegenstand von technischer Be-
deutung geworden, da aller Braunstein nach seinem Gehalte verkauft wird.

Das nächste, was zu einer Braunsteinanalyse gehört, ist das richtige Ziehen der Probe. Es ist nicht damit getan, dass man von einem grossen
Braunstein.

VIII. Angewandter Theil.

der so getrocknete Braunstein, in welchem durch den Verlust des Was-
ners alle Poren geöffnet sind, im höchsten Grade hygroskopisch ist, so dass
ein sicheres Auswägen gar nicht mehr möglich ist. Ein solcher rasch ge-
wogener Braunstein zieht auf der Wage in wenigen Minuten so viel Was-
ser an, dass die Seite der Wage, wo der Braunstein liegt, zum Herunter-
sinken und Aufschlagen kommt, und man kann nicht wissen, wie viel er
schon vor dem Einstehen der Wage angezogen hatte. Es kommt deshalb
zunächst auf ein richtiges und gleichmäßiges Austrocknen der Probe an.

Fresenius hat über diesen Gegenstand eine besondere Untersuchung
angestellt, und die Resultate derselben in einem Circular an die Käufer

100 Theile lufttrockner Braunstein, welcher in diesem Zustande, nach
der Methode von Fresenius selbst analysirt 65'536 Proc. MnO$_2$ zeigte,
verloren:

<table>
<thead>
<tr>
<th>getrocknet bei</th>
<th>nach Stunden</th>
<th>Wasser</th>
<th>zeigte analysirt Proc. MnO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100° C.</td>
<td>3</td>
<td>3'20</td>
<td>67'01</td>
</tr>
<tr>
<td>110°</td>
<td>1½</td>
<td>3'36</td>
<td>67'31</td>
</tr>
<tr>
<td>140°</td>
<td>1½</td>
<td>4'24</td>
<td>68'44</td>
</tr>
<tr>
<td>180°</td>
<td>1½</td>
<td>5'22</td>
<td>69'15</td>
</tr>
<tr>
<td>200°</td>
<td>1</td>
<td>5'77</td>
<td>69'54</td>
</tr>
<tr>
<td>220°</td>
<td>1½</td>
<td>6'16</td>
<td>69'83</td>
</tr>
<tr>
<td>240 bis 250°C.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Das Gewicht blieb konstant.

Durch Glühen gab der Braunstein, außer dem entweichenden Sauer-
stoff, noch 1'08 Proc. Wasser ab. Aus diesen Thatsachen lassen sich fol-
gende Schlüsse ziehen:

1) Die Temperatur, bei welcher der Braunstein getrocknet wird, und
ebenso die Dauer des Trocknens sind von Einfluss auf den Wassergehalt
deselben, und es fährt somit jedes Trocknen des Braunsteins zu einem
festen Ziele, wenn es bei einer bestimmten Temperatur geschieden und so
lange fortgesetzt wird, bis bei dieser Temperatur keine Gewichtsabnahme
mehr stattfindet.

2) Der Unterschied im Hyperoxydgehalt, welchen ein bei 100° C.
getrockneter Braunstein gegenüber einem bei 220 bis 250° C. getrock-
neten zeigt, beträgt etwa 3 Proc. Dieser Ausspruch bedarf einer Erläute-
rung. Wenn die Braunsteine reines Hyperoxyd und Wasser enthalten, so
würde durch den Verlust von 6 Proc. Wasser der Braunsteingehalt auch
um 6 Proc. steigen. Nun enthalten aber die meisten rheinischen Braun-
steine und viele andere neben dem reinen Hyperoxyd auch niedere Ox-
dationsstufen, z. B. Manganit von der Formel Mn$_2$O$_3$ + H$_2$O, dessen
Braunstein.

Atomgewicht 88 ist. Dieser Manganit kann ebenfalls, um auf Oxydul zurückzugehen, 1 Atom Sauerstoff abgeben, folglich sind 88 Theile Manganit = 43'5 Theilen Manganhyperoxyd, oder 100 Manganit sind = 49'4 Pyrolusit. Der Manganit enthält nun 10 Proc. Wasser; entzieht man dies durch Austrocknen, so bleiben 90 wasserleeres Mn$_2$O$_3$ = 49'4 Pyrolusit, also 100 wasserleeres Mn$_2$O$_3$ = 54'9 Pyrolusit. Man sieht also hier, dass wenn der Manganit 10 Proc. Wasser verliert, sein scheinbarer Pyrolusitgehalt nur um 5 Proc. steigt.

Ganz damit übereinstimmend sind die Resultate von Fresenius, wo das verlorene Wasser 6'15 Proc. ausmachte, die Zunahme an Hyperoxyd aber nur 2'82 Proc. betrug.

Das Auswägen geschieht nun rasch auf der bereits in Ordnung gebrachten und belasteten Wage. Um hier jede Gewichtszunahme während des Wägens zu vermeiden, hat man vorgeschlagen, den getrockneten Braunstein in einem verschlossenen Glase auf der Wage ins Gleichgewicht zu bringen, dann eine beliebige Menge desselben in das zur Analyse bestimmte Glas auszuschütten und nun den Gewichtsverlust der ersten Flasche zu bestimmen. Dieses Verfahren ist allerdings sehr sicher, allein
es hat den Nachtheil, dass zu jeder Analyse andere Mengen Braunstein kommen, und dass nun jede Analyse mit einer weitläufigen Rechnung geschlossen werden muss. Die Operation hört dadurch auf eine technische zu sein, welche möglichste Einfachheit und Gleichheit der einzelnen Operationen verlangt.

Ich ziehe es deshalb vor, den Braunstein auf einer guten Wage und in einem Schiffchen aus Messingblech abzuwägen, Fig. 150. Das selbe ist ein schief abgestutzter hohler Kegel vom dünnsten glänzenden Messingblech, und wiegt, in einem besonderen Falle, 6 1/2 g. Vermöge seiner Gestalt kann man die darin liegende pulverförmige Probe leicht in das Zersetzungsgefässchen bringen, ohne dass etwas von dem Pulver an den Wänden hängen bleibt.

Das spitze offene Ende, durch welches die Probe entleert wird, hat einen Durchmesser von ungefähr 10 mm; und ist also eng genug, um in jedes Glas einzugehen. Die kegelförmige Gestalt des Schiffchens bedingt, dass die Öffnung immer in die Mitte des Halses der Flasche kommt. Während des Wägens auf einer mit einer guten Arretirung versehenen Wage ist die Gewichtszunahme nicht bemerkbar, denn nach geschobenem Einstehen der Zunge bleibt die Wage noch eine Zeit lang stehen. Erst nach einigen Minuten senkt sich die Schale, auf welcher das Pulver liegt. Das genaue Abwägen geschieht mittelst eines sehr dünnen langstieligen Löschlächens aus Messing oder Argentan. Dieses Abwägen geht jeder Analyse voran, und wir hätten nun auf die eigentliche Analyse selbst zu kommen.

Bekanntlich zersetzt sich das Manganhyperoxyd \((\text{MnO}_2)\) mit Oxalsäure \((\text{C}_2\text{O}_3 + 3 \text{ Aq.})\) in der Art, dass 1 Atom Oxalsäure aus dem Manganhyperoxyd 1 Atom Sauerstoff aufnimmt und in 2 Atom Kohlensäure sich verwandelt, während das Hyperoxyd in Manganoxydul \((\text{MnO})\) über-
gehbt. Ein Zusatz von Schwefelsäure verhindert, dass sich oxalsaure
Manganoxydul bildet, in welchem Falle man nur eine grösseere Menge
Oxalsäure anwenden müsste, und bewirkt, dass die Zersetzung lebhafter
vor sich gehe und sich rascher vollende. Da das Atom des Mangans 27·5
ist, so wiegt 1 Atom Hyperoxyd 27·5 + 16 = 43·5 und diese erzeugen
2 Atom Kohlensäure, welche 44 wiegen. Es ist also ganz nahe das Ge-
wicht der entweichenden Kohlensäure gleich dem des zerstörten Hyper-
oxydes, und insofern ein scharfes Maass desselben. Als man das Atom
des Mangans = 28 annahm, war diese Gleichheit vollständig, indem nun
MnO₂ und 2 CO₂ gleich viel, nämlich 44, wogen. Das Verhältniss nahm
auch Thomas Thomson an, von dem eigentlich diese Methode herrührt
(vergl. Liebig’s Annal. der Pharmacie 19, 194). Es kommt deshalb bei
der Gewichtsanalyse darauf an, das Gewicht der entweichenden Kohlen-
säure ganz allein bestimmen zu können.

Zu diesem Zwecke muss das entweichende kohlensaure Gas vollkom-
men ausgetrocknet werden. Dies geschieht in dem Fresenius-Will’-
schen Apparat durch Schwefelsäure, welche in dem einen der beiden
Gläser enthalten ist. Ich habe jedoch gefunden, dass bei stürmischer Ent-
wickelung und starker Erhitzung der Flüssigkeit oft sichtbare Wasser-
dämpfe aus dem Apparat entweichen, welche durch das einmalige Durch-
streichen durch eine nicht sehr hohe Schicht Säure durchaus nicht ent-
wässert waren.

Wägt man 2·97 g Braunstein ab, so würden diese, wenn sie rein
waren, 3·00 g Kohlensäure entwickeln. 300 Centigramm würden also
100 Proc. vorstellen; es sind demnach die Zahl der Centigramme Kohlen-
säure, durch 3 dividirt, gleich den Pro-
centen an reinem Hyperoxyd. Man stellt
sich zueckmassig ein Braunsteinengewicht
von 2·97 g aus einem Stück Argentan-
blech dar, um nicht jedesmal sieben Ge-
wichtstücke auflegen zu müssen.

Sobald die erste Portion Braunstein
von 2·97 g abgewogen ist, werfe man sie
aus dem Schiffchen (Fig. 150) in die Flasche
des Apparats Fig. 151, und wäge sogleich
eine neue ab, die man zur Wiederholung
im Schiffchen selbst lässt oder auf Glanz-
papier absetzt. Man gebe dann etwa 30
bis 40 cbcm Wasser in die Flasche und
giesse durch die mit Bimssteinstücken
gefüllte Röhre 4 bis 5 cbcm konzentrierte
Schwefelsäure, wenn diese bereits mit
Schwefelsäure getränkt sind. Es fliess
deshalb eine gleiche Menge Schwefelsäure
in die Flasche ab, und die Bimssteinstücke
sind vor jeder Operation mit unverdünnter Schwefelsäure getränkt. Will man noch sicherer sein, dass kein feuchtes Gas entweiche, so setzt man auf die Röhre mit den Bimssteinstücken noch eine kleine Röhre mit Chlorcalcium, die auch abwärts gerichtet sein kann, um den Apparat nicht zu hoch zu machen. Wären etwa Kohlensäure Erden in dem Braunstein enthalten, so werden diese durch die Schwefelsäure und die durch sie veranlasste Erwärmung zersetzt und die Kohlensäure angetrieben. Es ist dies ein wesentlicher Vorzug dieser Abänderung der Methode, dass sie den Fehler der kohlensäuren Erden in jedem Falle und ohne besondere Prüfung beseitigt, während bei der reinen Fresenius-Will’schen Methode nur neutrales oxalsaures Kali oder Natron zum Braunstein kommen, die kohlensauren Erden also gar nicht bemerkt, und wenn sie nicht vorher entfernt werden, als Hyperoxyd in das Resultat eingehen. Man sange nun die Flasche einmal leicht aus, für den Fall, dass sich Kohlensäure aus Erdsalzen entwickelt hätte. Zu diesem Zwecke ist eine Glarrohre durch den Stopfen angebracht, welche oben mit einem kleinen Stückchen einer vulcanisirten Kautschukröhre endigt, welches Röhren selbst mit einem Glasstäbchen oder Holzpflockchen geschlossen wird. Dieser Schluss ist hermetisch und dem Wachspfropf bei weitem vorzuziehen. Diese Röhre reicht bis dicht über die Flüssigkeit oder auch hinein, wenn man will. Man entfernt den Holzpflock und saugt an der seitlich gebogenen Spitze des Austrocknungsrohres. Man setzt das Holzpflockchen wieder auf, und bringt den Apparat auf die Wage. Daneben stellt man ein kleines oben enger werdendes Becherchen von Messingblech oder ein Stück einer Glasröhre, an die man, wenn der Boden geschmolzen ist, auf einem Ziegelsteine einen flachen Boden anstoßt. In dieses Becherchen kommt die nötige Menge kristallisierte Oxalsäure. Da 1 Atom Manganhyperoxyd (= 43,50) gerade 1 Atom krystallisierte Oxalsäure (= 63) zersetzt, so würden die nahezu 3 g Braunstein, wenn sie reines Hyperoxyd wären, 4,34 g Oxalsäure erfordern. Da die meisten Braunsteine nicht weit von 60 Procent Manganhyperoxyd kommen, so wägt man einmal 4 g Oxalsäure ab, schüttet sie in das Becherchen und macht sich eine Marke daran, oder schneidet den Rand, wenn es von Messing ist, so weit ab, dass es von den 4 g Oxalsäure gefüllt wird. Man hat alsdann ein bequemes Mass einer in jedem Falle mehr als genügenden Menge Oxalsäure, worauf es doch ankommt. Dieses mit Oxalsäure gefüllte Becherchen setzt man neben den Apparat (Fig. 151) auf die Wage und tarirt genau ab. Als dann nimmt man den Apparat herunter, öffnet ihn mit der linken Hand, wirft mit der rechten den Inhalt des Becherchens in die Flasche, verschliesst dieselbe sogleich mit dem Korken und bringt das Becherchen, selbst mit etwaigen Resten Oxalsäure, auf die Wage zurück.

Es beginnt nun sogleich eine lebhafe Gasentwicklung und die schwarze Farbe des Gemenges geht ins Braune über und wird zuletzt rein braun. Am Boden der Flasche sieht man, ob noch unzersetzte Braunsteinkörnchen vorhanden sind. Man erwärmt, wenn die freiwillige Ent-
wicklung nachgelassen hat, den Apparat auf einer kleinen Flamme, wo-
durch sogleich wieder Gasentwicklung eingeleitet wird. Diese Erwärm-
mung ist nicht zu versäumen, da bei der ersten Operation oft 4 bis 6 Proc.
Braunstein unzersetzt bleiben. Man setzt die Erwärmung so lange fort,
bis keine Gasentwicklung mehr stattfindet, was man sehr leicht von einem
anfangenden Kochen unterscheiden kann. Damit bei dieser Operation der
Kork keine Feuchigkeit verliere, tränke man ihn vorher mit geschmol-
zenem gelben Wachs oder mit etwas Talg, was noch nebenbei den Vor-
theil hat, den Kork gegen die unvermeidliche Berührung mit Schwefelsäure
etwas zu schützen. Kautschukstopfen werden von der Säure zwar nicht
angedrungen, aber zuletzt ganz hart. Wenn die Zersetzung vollständig
stattgefunden hat, was man an der ganz ruhigen Oberfläche der Flüssig-
keit und dem rothen Ansehen der Bodenfläche erkennt, so saugt man die
Luft aus, indem man vorher den Pfropf entfernt hat. Es wird dadurch
die Kohlensäure, die in dem Luftraume enthalten ist, entfernt. Ohne dies-
es Aussaugen macht man, je nach der Grösse des Apparats, einen Fehler
von 1/2 bis 3/4 Proc. zu wenig. Man lässt nun den Apparat erkalten und
bestimmt den Gewichtsverlust aufs Genaueste. Die erhaltene Zahl durch
3 dividirt und das Komma um zwei Stellen zur Rechten gerückt, gibt
unmittelbar den Procentgehalt an reinem Manganhyperoxyd.

Es ist dies eine sehr einfache und sichere Form der Gewichtsanalyse
des Braunsteins. Der Apparat ist sehr leicht und gerade stehend, die
Absorption des Wassers durch die in den Bimssteinstückchen enthaltene
Schwefelsäure, welche vor jedem Versuche in denselben Zustand gesetzt
wird, sehr vollständig. Chlorkalziumröhrchen allein genügen nicht, indem
sie bei der Feuchtigkeit des heissen Gases leicht verwässern, und nur
mähren wieder in den früheren Zustand gebracht werden können. Die
künstlichen, sehr leichten, aus einem Stück geblasenen Glasapparate haben
gar keinen praktischen Werth, weil man zwischen zwei Versuchen die
entwässernde Schwefelsäure ausgusessen muss, um das untere Gefäss von
dem übrigen bleibenden Grund reinigen zu können. Dieses Ausgiessen der
Schwefelsäure und Abputzen der Hälse ist eine so unangenehme Arbeit,
dass man diese Apparate sehr bald wieder zur Seite legt. Wenn ein
Apparat wirklich förderlich soll angewendet werden können, so muss
man acht bis zehn Analysen mit demselben hinter einander machen kön-
nen, ohne an ihm etwas Wesentliches, als das Wechseln der Probe, vor-
nehmen zu müssen, und dies bedingt immer, dass die Entwicklungsflosche
leicht von dem übrigen Zubehör getrennt werden könne.

Von den übrigen Gewichtsanalysen ist die von Fuchs vorgeschla-
gene mit metallischem Kupfer nur bei eisenfreien Braunsteinen anzuwen-
den, die Äusserst selten vorkommen und immer eine Prüfung auf Eisen-
oxyd voraussetzen.

Die eben beschriebene Methode gehört auch noch nicht zu den schär-
sten analytischen Operationen. Der Grund davon liegt in dem pulverigen
Zustande des Braunsteins, wodurch seine vollständige Ausschiessung von

Mohr's Titrisbuch.
VIII. Angewandter Theil.

der Feinheit der Vertheilung ahnhängt, und dann in dem hygroskopischen Zustande grosser Glasflächen, dessen Einfluss nicht zu übersehen ist. Es ist gerade ein Vorzug der Maassanalyse, dass man von einer Menge solcher störender Nebenumstände, wie hygroskopische Feuchtigkeit, Filterasche etc., ganz unabhängig wird.

1) Als maassanalytische Methode zur Braunsteinanalyse kann man jetzt die Austreibung des Chlors durch Salzsäure, Auffangen in Jadkalium und Bestimmung des freien Jods mit zehntel-unterschwefligsaurem Na-

Fig. 152.

Chlordestillation.
	ron als die vorzüglichste empfehlen, wie sie oben (S. 251) beschrieben wurde.

Der richtig getrocknete Braunstein wird zu 0.435 g abgewogen und mit starker Salzsäure in einem kleinen Kolbchen, Fig. 152, destillirt. Man schlägt von einer Jodkaliumlösung, die 33 bis 34 g im Liter enthält, soviel Cubikcentimeter vor, als man Procente Braunstein erwarten kann. Die Destillation ist in wenigen Minuten vollendet, und die Messung mit zehntel-unterschwefligsaurem Natron sehr scharf und auf einen Tropfen genau endigend. Diese Methode hat noch den Vorzug, dass sie gerade dieselbe Zersetzung veranlasst, die bei dem technischen Gebrauche des

Sherer und Rumpf\(^1\) fanden im Jahre 1870 bei einer vergleichenden Prüfung der verschiedenen Braunsteinanalysen diese Methode als die sicherste und genaueste, doch nennen sie dieselbe irrthümlich die Bunsensche Methode, während Bunsen das Jod mit schwefliger Säure maas. Von Bunsen rührt die Destillation des Chlors her, die beim Braunstein nur wegen des Eisenoxydes notwendig ist. Die ganze Methode, wie Sherer und Rumpf sie ausgeführt haben, ist schon in der ersten Auflage dieses Werkes II, 209 vom Jahre 1855 genau beschrieben.

Es ist auch dort der nebenstehende Apparat, Fig. 153, angegeben, der vor dem eben beschriebenen noch den Vorzug hat, dass man Luft durch die Destillationsflüssigkeit durchsaugen kann.

\(^1\) Fresenius' Zeitschr. f. anal. Chem. 9. 48.

2) Durch Eisenoxydulsalze.

Es ist schon oben unter Chamäleon (S. 195) entwickelt worden, wie Manganhyperoxyd, als Produkt einer Analyse, zur Bestimmung des Mangans behandelt werde. Hier handelt es sich um natürlichen Braunstein, dessen oxydierende Wirkung lediglich in Betracht kommt, während der Mangangehalt gleichgültig ist. Es wird vorausgesetzt, dass man empirische Chamäleonlösung mit 5,646 g übermangansaurer Kali im Liter und richtiges schweifelsaures Eisenhyperoxydul-Ammoniak mit 1/2 Eisen als Oxydul in Händen habe. Da 2 Atome des Eisensalzes = 392 im Stande sind, den Sauerstoff von 1 Atom Manganhyperoxyd = 43,5 aufzunehmen, so beträgt das Eisensalz das Neunfache von dem Hyperoxyd \(\frac{392}{43,5} = 9,01 \).

Wir können also nach einer allgemeinen Kenntnis der Güte des Braunsteins diejenige Menge Eisensalz im Voraus berechnen, welche etwas mehr als hinreichend ist, den Braunstein zu zersetzen. Man wäge nun 1 g richtig vorbereitete Braunsteinprobe ab, und bringe sie in die Kochflasche des Apparates, Fig. 154, füge etwa 30 cbcm Wasser und etwas Schwefelsäure hinzu und zuletzt die nötige Menge Eisensalz. Schätzte man den Braunstein auf 60 Proc. also = 0,60 g MnO₂, so würden 9 \times 0,60 oder 5,40 g Eisensalz hinein. Man nimmt nun die nächste höhere durch 7 teilbare Zahl, also 5,6, oder um ganz sicher zu sein, die folgende 6,3 g = 0,9 g Fe als Oxydul und notirt die genommene Menge des Eisensalzes. Die zweite Flasche enthält Wasser und dient dazu, die Luft abzuschliessen. Die Einwirkung des Eisensalzes auf das Hyperoxyd wird nun durch eine kleine Flamme unterstützt unter öfterem Umschütteln, damit das Eisensalz sich löse und nicht an den Ro-
den anbrenne. Zuletzt wird zum gelindten Kochen erhitzt, und eine Zeit lang darin gehalten, bis am Boden keine schwarzen Körnchen mehr sichtbar sind. Man nimmt die Flamme weg, worauf sehr bald das Wasser aus der Vorlage in die Kochflasche zurückstürzt und diese etwas abkühlt. Es ist zweckmäßig, einige Stückchen Magnesit vorher in die Kochflasche zu bringen, welche durch Kohlensäureentwicklung die atmosphärische Luft verdrängen. Der Inhalt der Kochflasche ist meistens trüb von Eisenoxyd und Silicaten. Man verdünnt denselben zu 300 ccm, filtrirt 100 ccm davon in die dazu bestimmte kleine Flasche ab und misst den Rest des Eisenoxyduls mit Chamäleon aus. Dies dreimal genommen gibt den ganzen Rest des nicht oxydirten Oxyduls. Man zieht diese Summe von der ursprünglich angewendeten Menge Eisen ab, und multiplizirt den Rest mit 0,777, wo das Product dann die Procente an Manganhyperoxyd darstellt. Hatte man 6,3 g Eisensalz angewendet, so ist darin \(\frac{6,3}{7} = 0,9 \) g Fe als Oxydul enthalten. Die Cubikzentimeter des verbrauchten Chamäleons stellen bekanntlich Centigramme Fe als Oxydul vor, und der Factor 0,777 ist das Verhältniss des Manganhyperoxyds zum Eisen und aus \(\frac{MnO_2}{2Fe} = \frac{45,5}{56} = 0,777 \) entstanden.

Diese Multiplication kann man entbehren, wenn man den Braunstein im Gewichte von 0,777 g abwägt, wo dann die Centigramme Eisen gleich die Procente an MnO₂ angeben. Bei alledem bleibt die Analyse eine Restmethode, welche immer einer directen Bestimmung nachzusetzen ist.

3) Durch bestimmte Mengen Oxalsäure und Rückmessen der nicht oxydirten Oxalsäure.

Diese Bestimmung ist ebenfalls als Restanalyse anzusehen. Die Oxalsäure wird, wie schon oben entwickelt wurde, durch Manganhyperoxyd in Kohlensäure verwandelt und der Rest derselben wird durch Chamäleon ebenfalls in Kohlensäure umgesetzt und gemessen. Man könnte Alles auf Oxalsäure beziehen; dann wäre aber die empirische Chamäleonlösung unbekannt. Man müsste also im System den Braunstein in Atomgewichte abwiegen (4,35 g oder die Hälfte), normale Oxalsäurelösung mit 63 g im Liter zusetzen und nach geschehener Einwirkung und Filtration von \(\frac{1}{3} \) der Flüssigkeit mit \(\frac{1}{10} \) Chamäleon zurückmessen. Da aber die Bestimmung der Oxalsäure langsamer vor sich geht als die des Eisenoxyduls, o hat die Methode keinen Eingang gefunden. Die eigentliche Titersubstanz für alle diese Analysen würde reinen Manganhyperoxyd sein. Wenn es möglich wäre chemisch reines wasserleeres Manganhyperoxyd darzustellen, so würde dieser Körper der sicherste Ausgangspunkt der braunsteinanalyse sein.
VIII. Angewandter Theil.

Allein einen solchen Körper kann man bis jetzt nicht mit Zuverlässigkeit darstellen. Darauf gerichtete Versuche gaben kein genügendes Resultat.

Reines Manganchlorür mit unterchlorigsaurem Natron bis zur Bildung von Uebermangansäure behandelt gibt ein schwares Pulver, welches allgemein als Manganhyperoxyd angesehen wird.

1'111 g davon bis 120° C. erhitzt, wurden mit 10'5 g Eisendoppelsalz behandelt, und auf den Rest noch so viel Chamäleon verbraucht, dass dieses = 2'564 g Eisensalz war. Der Gehalt an MnO₃ ist also nur 10'5 — 2'564 = 7'936 g Eisensalz = 79'36 Proc. MnO₃.

Es ist demnach dies Pulver nur ein Hydrat des Hyperoxydes, welches jedoch mit keinem der bekannten stimmt. Es wurde deshalb mit unterchlorigsaurem Natron ein neues Präparat dargestellt. Von diesem wurden 7'81 g lufttrocken abgewogen und dann ferner erhitzt. Dies Pulver verlor bei

180° C.	0'116 g
240	0'160
300	0'240

Durch ferneres Erhitzen, wozu das Thermometer nicht mehr anzuwenden war 0'260
0'340
0'410
0'460
0'470
0'470 = 6'018 Proc. Wasser.

Dies Präparat war also das von Rammelsberg beschriebene drittgewässerte Manganhyperoxyd (3 MnO₂ + HO), welches 6'9 Procent Wasser enthält.

Demnach bleibt es noch geboten, andere Körper, deren Atomgewicht zu dem des Mangans festgestellt ist, als Ausgangspunkt der Braunsteinanalyse anzuwenden.

Um zu bestimmen, ob ein Hyperoxyd gleiche Mengen freien und gebundenen Sauerstoffs enthält, braucht das Atomgewicht des Metalles eigentlich gar nicht mitzuspielen; dazu gibt es ein Mittel, wobei das Hyperoxyd weder absolut trocken, noch überhaupt gewogen zu werden braucht.

Wenn man ein Hyperoxyd von der Formel RO₃ mit Salzsäure destillirt, so geht 1 Atom Chlor über und 1 Atom bleibt bei dem Metalle zurück.

Man leite das übergehende Chlor in Jodkalium und messe das ausgeschiedene Jod mit zehntel-unterschweflingsaurem Natron.

Das Phlegma im Kölbcchen giesst man in eine Porzellananschale aus, verdampft zur Trockne und bestimmt das Chlor mit Zehntel-Silberlösung.
Braunstein.

599

Schliesslich folge hier mein Verfahren 1), die einzelnen Oxydationsstufen des Mangans im Braunstein quantitativ zu bestimmen.

Die verschiedenen Braunsteinsorten sind Gemenge von

\[\text{Manganoxyd} \quad \text{Mn}_3\text{O}_3 = 79'00 \]

und Manganhyperoxyd \[\text{Mn}_2\text{O}_3 = 43'50 \]

In den oben beschriebenen Methoden der Braunsteinanalyse wird die ganze Menge des freien Sauerstoffs als Manganhyperoxyd berechnet. Aus obigen Zahlen ist einleuchtend, dass 79'14 Theile Manganoxyd genau eben so viel Chlor entwickeln als 43'57 Theile Manganhyperoxyd, dagegen bleiben im Rückstand bei Manganoxyd 2 Atome Chlor zu Manganchlorür verbunden, und bei Manganhyperoxyd nur 1 Atom, und nennen wir dieses Chlor die verlorene Salzsäure, so ist wieder einleuchtend, dass man bei \(\text{Mn}_3\text{O}_3 \) doppelt so viel Salzsäure verliert als bei \(\text{Mn}_2\text{O}_3 \), auf eine gleiche Menge entwickelten und benutzten Chlors. Aus diesem Grunde ist es von Interesse, die Natur des Braunsteins genauer zu kennen.

Die aus dem unveränderten Braunsteine entwickele Kohlensäure heiße

\[A \]

und die aus dem weissgeglühten \(B \).

Die hieraus abzuleitenden Grössen sind:

1. der freie Sauerstoff \(P \),
2. der Manganoxydulgehalt \(m \).

Wenn aus der Wechselwirkung von Oxalsäure und Manganoxyden Kohlensäure entweicht, so beträgt der freie Sauerstoff \(3/44 \) oder \(3/11 \) des Gewichtes der Kohlensäure. Denn in der Oxalsäure sind bereits 3 Atome

Sauerstoff vorhanden und das vierte Atom Sauerstoff (8) auf 2 Atome Kohlensäure (44) rührt vom Manganoxyd her.

Es ist demnach der freie Sauerstoff \(p = \frac{2}{11} A \). (1)

Glüht man jedes höhere Manganoxyd allein oder mit Eisenoxyd, so bleibt die Verbindung \(\text{Mn}_3\text{O}_4 \) übrig. Hier kommen 3 Atome Manganoxydul \(\text{Mn}_3\text{O}_5 \) (106.5) auf 2 Atome Kohlensäure (44), die aus dem vierten Atom Sauerstoff des Oxydoxyduls entstehen. Es ist also

\[
44 : 106.5 = B : \text{Manganoxydul},
\]

woraus

\[
\text{Manganoxydul} = B \frac{106.5}{44} \text{ oder } m = 2.4205 B. \quad (2)
\]

Enthalte nun der zu untersuchende Braunstein \(x \) Theile \(\text{Mn}_3\text{O}_4 \) und \(y \text{Mn}_2\text{O}_3 \), so ist die erste Gleichung

\[
x + y = m + p. \quad (I)
\]

Das Manganhyperoxyd enthält \(\frac{8}{43.5} = 0.1839 \) freien Sauerstoff, also \(x \) Hyperoxyd enthalten \(0.1839 \cdot x \) freien Sauerstoff. Das Oxyd \(\text{Mn}_2\text{O}_3 \), enthält \(\frac{8}{79.14} = 0.101 \) freien Sauerstoff, also \(y \text{Mn}_2\text{O}_3 = 0.101 \cdot y \) freien Sauerstoff. Die ganze Menge des freien Sauerstoffs ist aber schon oben unter (1) als \(p \) bestimmt worden, und es wird die zweite Gleichung

\[
0.1839 \cdot x + 0.101 \cdot y = p. \quad (II)
\]

Stellt man \(y \) aus I und II einander gleich, so ist

\[
m + p - x = \frac{p - 0.1839 \cdot x}{0.101},
\]

\[
0.101 \cdot (m + p) - 0.101 \cdot x = p - 0.1839 \cdot x,
\]

\[
0.0829 \cdot x = p - 0.101 \cdot (m + p),
\]

endlich

\[
x = \frac{p - 0.101 \cdot (m + p)}{0.0829},
\]

und sobald \(x \) bestimmt ist, findet sich \(y \) aus \(I = m + p - x \).

Wir lassen hier eine wirklich ausgeführte Analyse folgen:

Von einem ordinaire Braunstein von der Lahn wurden jedesmal 2 g genau abgewogen und die eine Portion weissgeglüht. Aus der ersten Portion entwichen in dem bekannten Apparate von Fresenius und Will

\[
1.135 \text{ g CO}_2, \text{ also} \quad \ldots \quad \ldots \quad \ldots \quad A = 1.135 \text{ g}
\]

und aus dem weissgeglühten \(B = 0.430 \text{ g} \)

Daraus ist nun \(p = \frac{2}{11} \cdot 1.135 \quad \ldots \quad p = 0.2063 \text{ g} \)

und \(m = 0.430 \cdot 2.4205 \text{ oder } \ldots \quad m = 1.0408 \text{ g} \)

also \(m + p = 1.2471 \text{ g} \)

Substituiren wir die Werthe von \(m \) und \(p \) in die Gleichung für \(x \), so ist
Braunstein.

\[x = \frac{0.2063 - 0.101(1.2471)}{0.0829} \]
\[= \frac{0.2063 - 0.1259}{0.0829} \]
\[= \frac{0.0804}{0.0829} = 0.9698 \text{ g MnO}_2 \]

und \[y = 1.2471 - 0.9698 = 0.2773 \text{ g Mn}_2\text{O}_3, \]

und da beide Mengen in 2 g Braunstein enthalten waren, so berechnet sich der Procentgehalt zu

48.49 Proc. Mn O₂,
13.86 " Mn₂O₃.

Wir hätten nun noch die Uebereinstimmung dieser Resultate mit der gewöhnlichen Analyse nachzuweisen.

Die Kohlensäurebestimmung aus 2 g unveränderten Braunsteins ergab oben 1.135 g CO₂. Nach dem Ansatz 44 : 43.5 = 1.135 : x stellen die 1.135 g CO₂ 1.122 g MnO₂ vor, und da diese in 2 g Substanz enthalten waren, so würden sie 56.1 Procent Manganhyperoxyd ergeben, und diese Zahl wäre das gewöhnliche im Braunsteinhandel abgegebene Attest.

Wir fanden aber 48.49 Proc. Mn O₂
und 13.86 " Mn₂O₃.

Nun ist aber der relative Werth des Oxydes Mn₂O₃ und des Hyperoxydes MnO₂ wie deren Atomgewichte 79 : 43.5, und darnach werden die gefundenen

13.86 Proc. Mn₂O₃ = \[\frac{43.5 \times 13.86}{79} \] = 7.434 Proc. MnO₂

sein.

Fügen wir diese 7.621 Proc. zu den gefundenen
48.490 Proc., so erhalten wir
im Ganzen 56.111 Proc. MnO₂, für welche wir
direct 56.100 Proc. MnO₂ gefunden hatten,
also mit sehr befriedigender Uebereinstimmung.

Statt der Kohlensäurebestimmungsmethode kann man auch jede gute titrimetrische Methode anwenden: z. B. den Braunstein mit starker Salzsäure kochen und das entwickelte Chlorgas mit Jodkaliumlösung auffangen und mit zehntel-unterschweifsgasurem Natron bestimmen. Unter Anwendung dieser Methode wäre

1 ecbm Zehntellösung = 0.0008 g freier Sauerstoff,
= 0.01065 g Manganoxydul.

Die Braunsteinanalysen, nach verschiedenen Methoden ausgeführt, geben übereinstimmende Resultate. So wurden 1.111 g eines ordinarhen Braunsteins nach S. 591 mit Eisendoppelsalz untersucht und zu 42.71
VIII. Angewandter Theil.

Proc. gefunden, und die weit kleinere Menge von 0.435 g mit Salzsäure in Jodkalium destillirt gab 42.77 Proc. MnO₂.

Gemischte Mangan- und Eisenerze.

1 cbc m zehntel-unterschweisfligsaures Natron = 0.01065 g MnO₃
oder 0.00825 g Mn.

Behufs der Schlackenbildung im Hochofen werden im Eisenhütten-
process schwache Manganerze, welche zur Chlorbereitung nicht zu ge-
brauchen sind, zug geschlagen, und es kommt dann nicht auf ihren Sau-
stoßgehalt an, sondern nur auf ihren Gehalt an Mangan, und da das Eise-
oxyd ebenfalls verworben wird, so muss auch eine Bestimmung die-
ses Körpers erfolgen. Um beide Bestimmungen in einer Analyse vorzu-
nehmen, verfähre man in folgender Weise.

Man pulverisire das Erz fein, trockne es und wäge davon 0.5 g ab; dies erhitzte man in einem Platintiegel zur hellen Kirschrotglühhitze, wodurch alle Manganoxyde in Mn₃O₄ übergehen. Dieses Pulver destillire man in dem Apparate Fig. 594 oder 595, mit starker Salzsäure und leite das entwickelte Chlorgas in eine verdünnte Jodkaliumlösung. Nachdem beim Aufkochen kein Chlor mehr entweicht, was man an der Farbe des Gases in den Röhren deutlich sieht, zieht man die Entwicklungsröhre sammt dem Kochapparat rasch aus dem Jodkalium heraus und bestimmt das frei gewordene Jod mit zehntel-unterschweisfligsaurem Natron.

Die Flüssigkeit in der Kochflasche enthält das Eisen als Chlorid und dies kann mit Jodkalium in gleicher Weise bestimmt werden, oder mit Zinnchlorür und Jodlösung nach S. 321.

Das Manganoxydoxydul, Mn₃O₄, gibt auf 3 Atome Manganoxydul nur 1 Atom Sauerstoff ab, und macht also auch nur 1 Atom Chlor resp. Jod frei. Da das unterschweflgsaure Natron auf 1 Atom Sauerstoff ge-
stell ist, so entspricht jeder Cubikcentimeter der Zehntel-Lösung dem 10000sten Theil von 3 Atomen Manganoxydul oder Manganmetall. 3 MnO ist 106.5, also 1 cbc m 1/10 S₈O₄NaO = 0.01065 g MnO oder = 0.00825 g Mn.

Für das Eisenoxyd entspricht jeder Cubikcentimeter einer Menge von 0.0056 g metallischem Eisen.
Meteorite.

Die Silicate sind meist sehr undeutlich zu erkennen, sehr innig gemengt, und eine Bauschanalyse derselben, wie wir sie in Masse besitzen, hat nicht mehr Werth, als wenn man einen Plumpudding oder Härlingssalat als Ganzes der Verbrennungsanalyse unterwerfen wollte. Es werden deshalb an die Meteorite meistens nur qualitative Fragen gerichtet.

Untersuchung der Silicate.

VIII. Angewandter Theil.

geglühten Masse ist zu unsicher. Meteorite enthalten, wie der irdische Gneiss und Granit, bis zu $1\frac{1}{2}$ Proc. Wasser.

Wenn kein metallisches Eisen vorhanden war, so kann man die mit Salzsäure aufgeschlossene Masse zur weiteren Analyse benutzen. Man dampft Alles in einer Porzellanschale zur Trockenheit ein, um die Kieselerde unlöslich zu machen, nimmt dann in Salzsäure auf und bestimmt im Filtrat der Reihe nach Eisenoxyd, Thonerde, Kalk, Bittererde und Alkalien.

Der Rest von der letzten Ausziehung enthält nun die höheren Silicate und kann wie ein Gemenge von Augit und Feldspath en bloc analysiert werden. Ehe man aber daran geht, hat man noch eine wichtige Frage an ihn zu richten, nämlich wie sich sein spezifisches Gewicht vor und nach längerem starken Ausglühen verhält.

Untersuchung der Meteoreisenmassen.

Wenn keine Silicate darin stecken, so bestehen diese Eisenmassen aus Nickeleisen mit einem Nickelgehalt weniger Procente bis 10 Procent und einer in schwachen Säuren unlöschlichen Verbindung, Schreibersit,

Fig. 155.

Analyse der Meteoreisenmassen.

Man wäge 6 bis 8 g Meteoreisen ab und bringe es in die kleine Kochflasche a. Diese wird mit dem obigen Absorptionsapparat verbunden. Derselbe besteht aus der absteigenden Röhre und der schiefer aufsteigenden, etwa 350 mm langen und ausser 20 mm im Durchmesser und enthält eine Auflösung von Silbersalpeter in Ammoniak. Die Kautschukröhre links wird mit dem Gasometer, Fig. 156, verbunden, nachdem die Flasche rechts ganz mit Wasser gefüllt ist und jene links so hoch steht, dass in beiden das Wasserniveau auf gleicher Höhe steht, was von selbst geschieht, wenn man beide Hähne vorher öffnet. Nachdem Alles vorge richtet ist, giesst man eine überschüssige Menge reiner Salzsäure in die Flasche a und verbindet sie luftdicht mit dem Absorptionsapparat. Durch Erwärmen wird die Auflösung und Entwicklung der Gase eingeleitet. Das Gas steigt in der Röhre b abwärts und geht dann in einzelnen Bla-
sen durch die Silberrohre c in den Gasometer. Aller Schwefelwasserstoff wird auf diesem Wege verschluckt und nur Wasserstoff und andere von Silberlösung nicht absorbierte Gasarten gehen durch, natürlich auch die atmosphärische Luft aus der Entwicklungslasche. Sobald die Entwicklung beginnt, kann man die Stellung der Flaschen in dem Gasometer wechseln, die linke tief und die rechts hoch stellen. Es wird dadurch der Druck im Entwicklungslapparat vermindert. Nachdem endlich die Gasentwicklung aufhört, was man sowohl am Gasometer als an der Absorptionsrohre deutlich sieht, öffnet man den Quetschhahn d an der Verbindungsrohre, zieht die Flamme unter der Flasche a weg und lässt er-

Fig. 156.

Gasometer.

kalten. Es füllt sich nun die Entwicklungslasche mit Luft aus dem Gasometer und die Silberlösung in c wird nicht zurück in die Flasche a getrieben. Nach dem Erkalten stellt man die Wasserniveaus der beiden Gasometerflaschen gleich und misst das Gas in der einen Flasche an der Scala, die sich an derselben befindet. Der Hahn der zweiten Flasche ist immer geöffnet, oder man hat den Kork ganz wegenommen. Man erhält so das Volum des entwickelten Wasserstoffs in Cubikcentimetern und kann daraus auf das reine Eisen einigermaßen schliessen; da aber auch Nickel in Lösung gegangen ist, so ist dieser Schluss nicht bindend, sondern nur annähernd, insofern die Atomgewichte beider Metalle nicht weit aus einander liegen.

Man verdünnt mit Wasser, filtrirt, und behält auf dem Filtrum den Schreibereit in kleinen Krystallen und etwasche Reste von Silicaten.

Im Filtrat sind Eisen und Nickel vorhanden, die aus einem Theile der in der 300 -chem-Flasche aufgesättigten Flüssigkeit bestimmt werden können.

Eisen wird oxydiert, mit essigsaurarem oder bernsteinaurem Natron gefällt, aus dem Filtrat das Nickel mit unterchlorigsaurarem Natron als Sesquioxyd niedergeschlagen und bestimmt.

So weit der analytische Antheil. Der geologische

--- ist ein wunderlich Capitel
Und steht in einem andern Buch 1).

Bitterspath, Ankerit.

Trennung des Mangans und Eisens von Alkaliien und Erden.

Die in unregelmässigen Verhältnissen gemischten isomorphen Verbindungen der Kohlensäure mit Kalk, Bittererde, Eisenoxydul und Manganoxydul kommen häufig vor, und verlangen besondere Behandlungsweisen.

1) Vergl. Liebig's Annal. d. Chem. u. Pharm. 87, 263.
Magneteisen in Basalten und ähnlichen Gesteinen.

Da das Manganoxydoxydul 3 At. Mangan enthält und nur 1 At. freien Sauerstoff, nämlich über das Oxydul, so geschehen die Berechnungen auch auf diese Menge. Mn₃O₄ ist 114·5 und kohlensaures Manganoxydul ist 57·5 und dies dreimal genommen ist 172·5. Es berechnet sich also 1 cbcm 1/10 unterschweiflisaures Natron zu 0·01145 g Mn₃O₄ und zu 0·0172 g CO₃, MnO; ebenso für Eisen 1 cbcm 1/10 S₂O₃, NaO = 0·0080 g Fe₂O₃ und 0·0116 g CO₃, FeO.

Magneteisen in Basalten und ähnlichen Gesteinen.

Die meisten vorhandenen Basaltanalysen sind sogenannte en bloc Analysen, worin die Bestandtheile einzeln aufgeführt werden, ohne Beziehung zu den einzelnen Mineralien. Nachdem es sich durch Untersuchungen als wahrscheinlich herausgestellt hat, dass die Spaltung des Basaltes in Säulen der Kontraktion der Masse durch Verwandlung des Spatheisens in Magneteisen zugeschrieben werden müsse, hat die Bestimmung des Magneteisens als solches eine besondere Bedeutung gewonnen. Wenn sich nämlich 3 At. kohlensaures Eisenoxydul in 1 At. Magneteisen umsetzen, so entstehen aus 174 Thl. kohlensauren Eisenoxyduls nur 116 Thl. Magneteisen nach der Gleichung 3 FeO, CO₃ + O = Fe₃O₄ + 3 CO₂. Indem 1 At. Sauerstoff eintritt, treten 3 At. Kohlensäure aus. Die Volumina der Stoffe erhält man durch Division der absoluten Gewichte durch die spezifischen. Die 174 Thl. Spatheisen nehmen bei dem specif. Gew. von 3·8 ein Volum von \[\frac{174}{3·8} = 45·8\] ein, und die entstehenden 116 Thl. Magneteisen vom specif. Gew. 5·09 nehmen ein Volum von \[\frac{116}{5·09} = 22·6\] ein. Es findet demnach eine Kontraktion des Spatheisens von 45·8 nach 22·6, also um mehr als die Hälfte des Volums statt. Indem dies in der ganzen Masse gleichmässig geschieht, muss eine Spannung entstehen, die zuletzt, wenn sie grösser als die Kohäsion geworden ist, durch Spaltung in die Säulenform wieder aufgehoben wird. Aus diesem Grunde ist die Bestimmung des Magneteisens von so grosser Wichtigkeit geworden, ausserdem dass er als ein freies Oxyd inmitten saurer Silicate jede vorläufige Schmelzung des Basaltes ausschliesst, so wie auch das freie Magneteisen durch Schmelzung des Basaltes verschwindet. Im natürlichen Basalt lässt sich das Magneteisen durch schwache Säuren ausziehen, wobei sich der Basalt entfärbt, Hohlräume annimmt und in ein trachytisches Gefüge etc. übergeht.

Die Bestimmung des Magneteisens kann im Basalt und anderen Melaphyren nur auf seinen Gehalt an Eisenoxyd gegründet werden, da

Mohr's Titirbuch.

Es wurde zu diesem Zwecke octaëdisches, sehr reines Magnetisen im Achatmörser fein zerrrieben und davon 0·200 g mit Jodkalium und Salzsäure in einem Gläschen, aus welchem die Luft vor dem Schlüssen mit einem raschen Strom Kohlenäsäre verdrängt war, digerirt. Es hatte sich alles Magnetisen nach einer Nacht gelöst und Jod in Freiheit gesetzt. Die Flüssigkeit wurde stark mit Wasser verdünnt, mit Stärkelösung versetzt und mit zehntel-unter-schwefligsaurem Natron titriert. Es wurden davon 17·3 ccem verbraucht. Wenn das Atomgewicht von Fe₃O₄ = 116 ist, so entspricht 1 ccem Zehntel Na₂O₂S₄O₂ 0·00116 g Magnetisen. Obige 17·3 ccem geben also 17·3 × 0·00116 = 0·20068 g Magnetisen statt der angewendeten 0·200 g. Es wurden in gleicher Art 0·400 g Magnetisen in Arbeit genommen und diesmal 34·4 ccem ¹/₁₀ Na₂O₂S₄O₂ gebraucht. Diese geben 34·4 × 0·00116 = 0·39904 g Magnetisen statt 0·400 g. Diese Methode hat den Vortheil, nur eine Massflüssigkeit zu haben, die sich bekanntlich gut auf dem Titer hält.

Es wird durch diese Analyse zugleich die Zusammensetzung des Magnetiseisens bestätigt.

Man wäge einen Krystall von chemisch reinem unterschwefligsaurem Natron genau aus, löse ihn in Wasser, setze Stärkelösung hinzu und titrire mit der zu prüfenden Jodlösung auf Blei. Da 24·8 g unter-
schwefligsaures Natron 1000 cbm Zehntelflüssigkeit geben, so berechne man den Krystall nach diesem Ansatz:

\[24.8 : 1000 = \text{Krystall : } x. \]

Die wirklich verbrauchten müssen nun mit einer Zahl multiplicirt werden, dass sie genau dieses \(x \) geben! Man erhält also diesen Factor, wenn man das obige \(x \) oder den Sollverbrauch durch den wirklich Verbrauch dividiert. Man bemerke diese Zahl auf die Jodlösung selbst und multiplicire damit alle verbrauchten Mengen, um \(\frac{1}{10} \) Jodlösung zu erhalten, die dann unmittelbar nach den Tabellen auf die gesuchten Stoffe ausgerechnet werden können.

Die Zinnochlorürösung stellt man auf die Jodlösung fest, indem man 1 cbm Zinnochlorür mit einer feinen Pipette herausnimmt, mit Stärke versetzt und dann mit Jodlösung auf Blau titriert. Dies Verhältniss wird ebenfalls notirt. Man gebraucht zur Zinnochlorürösung immer dieselbe Pipette, die man zur Titerstellung genommen, wo es dann gleichgültig ist, ob die Cubikcentimeter dieser Pipette richtig sind oder nicht. Zur Prüfung dieser Methode wurden von demselben Magnetseisen etwa 0·200 g abgewogen, mit 2 cbm Zinnochlorür und Salzsäure versetzt und in einem kleinen Gläsen mit Kautschukventil (Fig. 89, S.182) bis zur Auflösung des Magnetseisens leise gekocht. Die Flasche wird dabei luftleer, und man setzt sie in kaltes Wasser, wo die Flüssigkeit noch lange fortkocht. Nach dem Erkalten wurde die Flasche geöffnet, Stärkelösung zugesetzt und mit Jodlösung auf Blau titriert.

Die wirklichen Zahlen waren folgende: die Jodlösung hatte den Factor 0·403 erhalten, sie war also viel schwächer als Zehntel-Lösung, 1 cbm Zinnochlorür war = 25 cbm Jodlösung, und es wurden bei 2 cbm Zinnolösung 7 cbm Jodlösung zurückverbraucht.

Die 2 cbm Zinnochlorür sind = 50 cbm Jodlösung, davon ab 7 cbm lassen 43 cbm Jodlösung; diese mit 0·403 multiplicirt geben 17·329 cbm \(\frac{1}{10} \) Jodlösung, und diese mit 0·0116 multiplicirt geben 0·2010164 g Magnetseisen statt 0·200 g, also auch hier eine sehr grosse Uebereinstimmung.

0·5 g Magnetseisen mit 5 cbm Zinnolösung zersetzt, erforderten noch 18 cbm Jodlösung. Es waren also von der Zinnolösung 125 = 18 = 107 cbm Jodlösung entfärbt worden; diese mit 0·403 multiplicirt geben 43·1 cbm \(\frac{1}{10} \) Jodlösung und diese mit 0·0116 multiplicirt geben 0·49996 g Magnetseisen statt 0·5 g.

0·5 g desselben Magnetseisens mit Schwefelsäure und Salzsäure aufgeschlossen und mit Chamäleon auf Eisenoxydul gemessen erforderten davon eine Menge, die dem mit Eisendraht genommenen Titer gemäss eine Eisenmenge von 0·1216 g anzeigten. Diese nach dem Verhältniss von 28 : 36 berechnet geben 0·1563 g Eisenoxydul = 31·26 Proc. Die Formel Fe₃O₄ verlangt 31·03 Proc. Es ist also auch synthetisch die Richtigkeit der Formel bewiesen.
Bei Bestimmung des Magnetieisens in Basalten hat man darauf zu achten, dass das Steinpulver in der Salzsäure nicht gelatinirt, was sehr leicht geschieht, wenn größere Mengen Olivin, Nephelin oder anderer von Salzsäure zersetzbare Silicate vorhanden sind. Um dies zu verhindern, bringt man in die kleine Kochflasche, welche mit einem König'schen Kautschukventil versehen ist, eine den Boden bedeckende Menge von Granaten, die vorher mit Zinnchlorür ausgekocht sind. Nimmt man 2 g feines Basalt pulver, 2 ebem Zinnchlorür und eine ansehnliche Menge Salzsäure, so sieht man während des Kochens, ob eine genügende Menge Zinnchlorür vorhanden ist, wenn sich keine gelbliche Farbe mehr zeigt. Man treibt durch Kochen alle Luft aus, schüttelt mehrere Male den ganzen Inhalt, um die Gallertklumpen zu zertheilen, lässt abkühlen und verfährt wie oben.

Die Resultate fallen bei Basalten nicht so übereinstimmend aus, als bei reinem Magnetiteisen, weil durch längeres Kochen auch kleine Mengen Augit und Hornblendes etwas Eisenoxyd abgeben können. Es ist also zweckmässig, bei einer Reihe von Versuchen gleichviel Salzsäure zu nehmen und annähernd nach der Uhr gleich lange zu kochen.

Zweimal 2 g Basalt vom Siebenengebirge, mit 2 ebem Zinnchlorür und Granaten aufgeschlossen gaben

1) 8'43 Proc. Magnetieisen, 2) 8'204 „ „

Basalt von Kammerbühl bei Eger gab

1) 6'09 Proc. Magnetieisen, 2) 6'67 „ „

Nehmen wir die zweite Bestimmung als die richtigere an, so enthalten die 6'67 Proc. Fe₃O₄ an Eisenoxydul 2'1032 Proc. vom ganzen Basalt. Eine directe Eisenoxydulbestimmung mit Chamäleon ergab

4'781 Proc. FeO, davon ab obige 2'103 „ „ lassen 2'678 Proc. FeO

als Bestandtheile von kohlensaurem Eisenoxydul und Olivin. Dieser Überschuss des Oxydul's über das Oxyd spricht dafür, dass das Oxyd als Magnetieisen vorhanden war. Wäre bei einem Basalt das direct gefundene Eisenoxydul nicht hinreichend, um mit dem durch Zinnchlorür direct gefundenen Eisenoxyd Magnetieisen zu bilden, so wäre natürlich auch die Berechnung auf Fe₃O₄ nicht zulässig.

In den Basalten und Grünsteinen kommt nicht selten Schwefelkies und Magnetkies vor. Der letztere zersetzt sich durch Salzsäure in Schwefelwasserstoff und dieser mit Eisenchlorid unter Ausscheiden von Schwefel in Eisenchlorür. Für einen solchen Fall würde die Magnetieisenbestimmung unrichtig werden. Es gibt jedoch in diesem Falle kein Mittel, die Bestimmung des einen oder anderen zu bewerkstelligen, weil wir im Basalt nicht selten sechs verschiedene Mineralien haben, welche von Salz-

Phosphorsaures Eisenoxyd, Raseneisenstein.

Zur Bestimmung der Phosphorsäure eignet sich am besten die Ausziehung derselben durch kohlensaures Alkali und Fällung mit Magnesiamischung. Man verfährt in folgender Weise:

Wenn sich Kieselerde aufgelöst haben sollte, so dampft man mit Salmiak zur Trockne ein, filtrirt und fällt nun die Phosphorsäure wie oben.

5 g Raseneisenstein verloren durch Glühen 0,570 g = 11,4 Proc.; der Rest mit obigem Gemenge geschmolzen, ausgewaschen und gegläut wog 4,366 g.
VIII. Angewandter Theil.

Die abfiltrirte Flüssigkeit mit Magnesiumxitür gefällt gab 0·116 g pyrophosphorsaure Bittererde = 0·07424 g Phosphorsäure; dies ergiebt

<table>
<thead>
<tr>
<th>Eisenoxyd (und Manganoxyd)</th>
<th>87·320 Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorsäure</td>
<td>1·485 „</td>
</tr>
<tr>
<td>Wasser</td>
<td>11·400 „</td>
</tr>
<tr>
<td>100·205 Proc.</td>
<td></td>
</tr>
</tbody>
</table>

Dann auch durch die Molybdänmethode.

Schwefel, Phosphor und Kupfer in Eisenerzen.

Das feingepulverte Erz wird mit dem im vorigen Artikel beschriebenen Gemenge von kohlensaurem Kali und Natron, Chlorkalium und Chlornatrium, dem man jetzt noch 1/4 Salpeter zusetzt, im Platintiegel über der Weingeistlampe, um den Schwefelgehalt des Leuchtgases zu vermeiden, 1/4 Stunde lang eingeschmolzen, in Wasser aufgeweicht, mit Salzsäure zur Trockne gebracht, um Kieselerde auszuscheiden, dann wieder in Wasser aufgenommen und filtrirt. Da die Beimengungen sehr klein sind, so darf man nicht zu kleine Mengen des Erzes anwenden, sondern etwa 5 bis 10 g und diese zu 500 ccm verdünnen. Hat man 10 g Erz genommen, so entsprechen 100 ccm der Verdünnung 2 g des Erzes.

Man nimmt 250 ccm = 5 g Erz aus der Flasche, übersäurt mit Salzsäure und fällt die Schwefelsäure mit Chlorbaryum. Im Filtrat von schwefelsaurem Baryt fällt man das Kupfer kochend mit Schwefelwasserstoff.

Die zweite Hälfte von jenen 500 ccm fällt man mit Ammoniak und Bittererdemixtur und erhält phosphorsaures Bittererde-Ammoniak, welches geglüht die Phosphorsäure giebt.

Eisenvitriol mit Kupfervitriol.

Man kann den Gehalt an Eisenoxydul direct durch Chamäleon in bekannter Weise bestimmen, und aus derselben Flüssigkeit, oder besser aus einer neuen gleich schweren Menge das Kupfer mit Zink unter Zusatz von Salzsäure fällen und wägen.
Eisenvitriol mit Kupfervitriol.

Das ausgeschiedene Kupfer kann man auch in Eisenchlorid und Salzsäure lösen und das gebildete Eisenoxydul mit Chamäleon bestimmen. Da nun hier der Fall vorliegt, dass beide Körper mit derselben Massenflüssigkeit gemessen werden können, so kann auch die Analyse ohne Wage und Gewichte (S. 61) und mit Titerflüssigkeit von unbekannter Stärke ausgeführt werden.

Wenn zwei Körper von ungleichem Atomgewicht in ganz gleicher Art auf eine gemeinschaftliche Massenflüssigkeit wirken, so wird für gleiche Mengen Substanz derjenige die kleinste Menge der Flüssigkeit verbrauchen, der das grösste Atomgewicht hat, und zwar wird dies genau im Verhältnisse der Atomgewichte sein. Man muss also, wie schon oben (S. 61) auseinander gesetzt wurde, die verbrauchten Mengen der Massenflüssigkeit mit dem Atomgewicht multiplizieren. Im vorliegenden Falle wirken aber beide Körper verschieden auf das Chamäleon.

Das Eisenoxydul wird oxydiert, wenn zu 1 Atom Eisenoxydul $\frac{1}{2}$ Atom Sauerstoff kommt. 1 Atom Kupfer macht aber aus 1 Atom Eisenchlorid 2 Atome Eisenchlorür frei:

$$\text{Cu} + \text{Fe}_2\text{Cl}_3 = \text{CuCl} + 2\text{FeCl}_2.$$

Man gebraucht also für das Kupfer doppelt so viel Chamäleon, als für die äquivalente Menge Eisenoxydul, und deshalb muss in diesem besonderen Falle das Chamäleon für das Kupfer mit dem halben Atomgewicht des Kupfervitriols multipliziert werden.

Ein wirklich ausgeführter Versuch wird dies deutlicher machen.

Es wurden auf einer Wage gleiche Mengen reiner Kupfervitriol und Eisenvitriol abgewogen, ohne dass man das absolute Gewicht kannte. Man weiss nur, dass gleiche Mengen im Spiele sind.

Der Eisenvitriol erforderte 35,5 cbcm eines seiner Stärke nach unbekannten Chamäleons. Der Kupfervitriol wurde mit Schwefelsäure und Zink gefällt, das metallische Kupfer in Eisenchlorid und Salzsäure gelöst und mit demselben Chamäleon gemessen; es wurden 78,8 cbcm davon verbraucht.

Multipliciren wir nun 35,5 mit 139, dem Atomgewicht des kristallisierten Eisenvitriols, so erhalten wir die Zahl

$$4934,5;$$

und ferner die 78,8 cbcm mit 62,34, dem halben Atomgewicht des kristallisierten Kupfervitriol, so erhalten wir die Zahl

$$4912,39.$$

Die relativen Mengen beider Vitriole sind also

$$4934,5$$

und $$4912,39,$$

d. h. gleiche Theile mit Zugutehaltung kleiner unvermeidlicher Beobachtungsfehler.
Eisenvitriol, Kupfervitriol und Zinkvitriol.

Man kann das Kupfer mit Zink niederschlagen und wägen, und das Eisen direct mit Chamäleon bestimmen, wo man dann das Zink aus dem Reste erhält. Der Beweis, dass ausser Kupfer und Eisen nur Zink vorhanden sei, wäre etwas umständlich beizubringen.

Anders kann man das Kupfer mit Eisendraht fallen und wägen (nach Kerl), aus dem Filtrate das Eisen durch Oxydation und Kochen mit essigsaurer Natron als Oxyd fällen, und im Filtrat das Zink mit Ammoniak und Schwefelnatrium bestimmen; das Eisen in einer besonderen Menge allein durch Chamäleon.

Auch lassen sich die drei Metalle durch Schwefelwasserstoff trennen. Das Kupfer fällt aus einer schwefelsauren Lösung durch Schwefelwasserstoff als Schwefelkupfer heraus, das Zink aus dem Filtrat nach Zusatz von essigsaurer Natron und viel Essigsäure ebenfalls durch Schwefelwasserstoff als Schwefelzink; das Eisen in dem letzten Filtrate nach Entfernung des Schwefelwasserstoffs direct mit Chamäleon gemessen, die beiden Schwefelmetalle nach Behandlung mit Eisenchlorid und Salzsäure. Man erhält so drei Zahlen von Chamäleon. Da das Eisen direct nur \(\frac{1}{3} \) At. Sauerstoff aufnimmt, die beiden Schwefelmetalle aber jedes 2 At. Eisenoxydul frei macht, die 1 At. Sauerstoff aufnehmen, so muss das Chamäleon des Eisens mit dem doppelten Atomgewicht des Eisenvitriols, die beiden anderen Zahlen mit dem einfachen Atomgewicht der beiden Vitriole multiplicirt werden.

Kupfervitriol und Zinkvitriol mit freier Säure (galvanische Flüssigkeit).

Die freie Säure kann nach Kieffer mit Kupferoxyd-Ammoniak (S. 134) bestimmt werden.

Kupfer und Zink kann man mit Schwefelwasserstoff trennen, das Zink ebenfalls als Schwefelzink fallen, und beide Schwefelmetalle mit schwefelsaurem Eisenoxyd und Schwefelsäure in Eisen umsetzen und mit Chamäleon bestimmen. Um das Verhältniss der Metalle zu der freien Säure zu bestimmen, muss hier das Chamäleon einen bestimmten Titer
Künstliches Schwefeleisen.

0,5 g Gahn'sches Schwefeleisen wurde in der beschriebenen Art behandelt. Die Eisenoxydullösung zu 300 ecbm verdünnt und 100 ecbm herausgenommen, erforderten 40,8 ecbm Chamäleon; im Ganzen also 122,4 ecbm. Von dieser Chamäleonslösung wurden 33,8 ecbm verbraucht, um 0,1 g eben gelösten Eisendraht zu oxydiren. Die 122,4 ecbm entsprechen also

\[
\frac{122,4 \times 0,1}{33,8} = 0,3621 \text{g} = 72,42 \text{Proc. metallischem Eisen.}
\]
VIII. Angewandter Theil.

In die Entwicklungsflasche waren 90,63 ccm Zehntel-Jodlösung gekommen, und nach geschehener Zersetzung 9,6 ccm zehntel-unterschweflige saures Natron verbraucht worden. Der Schwefel ist also durch 81,03 ccm Zehntel-Jodlösung gemessen; diese geben (mit 0,0016 multiplicirt) 0,129648 g = 25,93 Proc. Schwefel, und wir hätten demnach gefunden:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gewicht (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefel</td>
<td>25,93</td>
</tr>
<tr>
<td>Eisen</td>
<td>72,42</td>
</tr>
<tr>
<td>Fremde Stoffe</td>
<td>1,65</td>
</tr>
<tr>
<td>Summe</td>
<td>100</td>
</tr>
</tbody>
</table>

Das vorliegende Schwefeleisen enthält also weit weniger als 1 Atom Schwefel (36,36 Proc.) und freies Eisen, welches auch mit der Thatskache ubereinstimmt, dass das entwickelte Gas niemals ganz absorbirt wurde. Ein anderes kaufliches Schwefeleisen vom Harz zeigte 27,16 Procent Schwefel und 69,76 Procent Eisen, hatte also ebenfalls einen Ueberschuss von Eisen. Wenn das Schwefeleisen mehr als 1 Atom Schwefel, also eine gewisse Menge Doppelt-Schwefeleisen enthält, so bleibt dasselbe in Säuren ungelöst zurück. Man bestimmt dann den löslichen Theil, wie oben, sondert den ungelösten auf einem Asbestpfropf in einer Gläsrohre ab, und bringt nachher den ganzen Asbestpfropf mit seinem Inhalt in Salpetersalzsäure, worin sich der Schwefel zu Schwefelsäure löst und durch Barytsalze bestimmt werden kann, der Eisengehalt aber in gewöhnlicher Weise durch Chamäleon bestimmt wird. Von Interesse ist nur der als Schwefelwasserstoff entwickelte Schwefel.

Schwefel

Die Schwefelbestimmung gelingt ganz gut, wenn die Aufschliessung gelingt. Dies ist aber nicht immer der Fall. Es mögen hier noch einige spezielle Anwendungen Platz finden.

Bleiglanz.

0.5 g Bleiglanz mit 2 g Alkalimischung und 1 g chlorsaurem Kali eingeschmolzen und noch etwas chlorsaures Kali nachgegeben. Das ausgeschiedene Bleioxyd hatte die Farbe der Mennige.

Zum Filtrat 10 cbcm Normal-Chlorbaryumlösung, dann mit kohlensaurem Ammoniak ausgefällt. Der kohlensaure Baryt sättigte

1. 5.5 cbcm Normalsalzsäure,
2. 5.7 "

Im ersten Falle entsprechen dem Schwefel 10 - 5.5 = 4.5 cbcm Normal-Chlorbaryumlösung. Diese mit 0.016 multiplizirt geben 0.072 g = 14.4 Proc. Schwefel.

Im zweiten Falle kommen 10 - 5.7 = 4.3 cbcm Normal-Chlorbaryumlösung zur Anwendung. 4.3 \times 0.016 = 0.0688 g = 13.76 Proc. Schwefel. Die Formel verlangt 13.88 Proc. Schwefel.

Schwefel in Kiesen und Blenden als Schwefelsäure alkalimetrisch bestimmt.

Diese von Pelouze 1) für Bestimmung des Schwefels in den zur Schwefelsäuresfabrikation verwendeten Kiesen angewandte Methode be-

Zur Ausführung des Verfahrens wird 1 g des höchst fein zerrriebenen Erzes mit 5 g frisch geübertem und aufs genaueste gewogenem kohlensauren Natron und annähernd 7 g chlorosarem Kali und etwa 5 g abgeknistertem Kochsalz in einem Mörser aufs Innigste gemengt und in einem Platintiegel oder schmiedeisernen Löffel 8 bis 10 Minuten zur dunkeln Rothgluth gebracht. — Nach dem Erkalten kocht man mit Wasser aus und filtrirt in eine 500-cbm-Flasche, oder man giesst in eine solche ohne Filtration ein und lässt absetzen; dann zieht man 100 cbcem heraus, und misst sie alkaliometrisch mit Lackmus und Normal-Salzsäure. Da die Schwefelsäure 1 Atom Schwefel enthält und auch 1 Atom Schwefelsäure sich mit dem Natron verbindet, so entspricht 1 cbcem Normalsalze 1/1000 Atom Schwefel, also 0,016 g Schwefel. Hat man 1,6 g Erz abgewogen, so sind die minder verbrauchten Cubikcentimeter Normalsalze unmittelbar Procente an Schwefel. Wäre die Masse reiner Schwefel gewesen, so würden 1,6 g davon genau 4 g wasserleere Schwefelsäure geben haben und diese würden 5,3 g kohlensauren Natron sättigen, die nach dem System in 100 cbcem vorhanden sind.

Da das äußere Ausglühen von kohlensauren Natron unangenehm ist, so wäge man eine Anzahl Mengen von 5 g ab, wenn man eben das kohlensaurer Natron frisch ausgetrocknet hat. Man füllt diese Mengen in Kapseln von schwarzem Glanzpapier mit der Glanzseite nach innen und bewahrt sie in einem weithalsigen Glase, welches mit Glasstopfen und Talg gut verschlossen ist. Es wird dadurch das Wasseranziehen und Zusammenbacken zu einem festen Kuchen vermieden und später beim Gebrauche die Möglichkeit eines Verlustes verhindert.

Die Methode von Pelouze ist von mehreren Analytikern beanstandet
worden, weil sie bei schwachen Erzen sehr ungleiche Resultate gibt. Solche, die Eisenoxyd enthalten, sollen Chlor entwickeln.

Kolb\(^1\) schlägt folgende Methode vor. Man wägt bei Erzen, welche mehr als 10 Proc. Schwefel enthalten, 5 g, bei schwächeren 10 g im feingepulverten Zustande ab, und mischt innig mit 50 g feingepulverten Kupferoxydes und mit 5 g chemisch reinem und trocknem kohlensauren Natron. Das Gemenge wird in einer Platinschale (oder aus Eisen, Kupfer) über einer Gasflamme offen unter Umrühren erhitzt, ohne die Rothglühhitze zu erreichen. Nach einer Viertelstunde ist die Oxydation des Schwefels beendigt. Man zieht mit heissem Wasser aus, und bestimmt den Rest des kohlensauren Natrons alkalimetrisch mit Normalsalzsäure.

Eisenerze.

Man versteht darunter nur die oxydischen. Diese sind Eisenoxyd (Eisenglanz, Glaskopf, Rothenstein), Eisenoxydhydrat (Braun- und Gelbenstein, Bohnerz, Raseneisenstein), Oxydul (Magneteisen), kohlensaures Oxydul (Spatheisenstein).

Wenn es sich bloss um den Gehalt an Eisen handelt, so verfährt man mit 1 g des feinen Pulvers nach S. 191, 237 oder 295. Der Eisengehalt wird in den beiden ersten Methoden an der Bürette abgelesen.

Es kann noch Mangan, Kalk und Bittererde darin enthalten sein, deren Bestimmung verlangt wird.

Man oxydiert die salzaure Lösung unter Erwärmung mit tropfenweise zugesetzter Salpetersäure, kocht das Stickoxydgas ab, verdünnt etwas und setzt kohlensaures Natron zu, bis das erste Eisenoxyd gefällt wird, dann essigsaures Natron und fällt das Eisenoxyd durch Kochen. Filtration.

Aus dem Eisenoxyd auf dem Filtrum kann man durch Lösung in Salzsäure und Behandeln mit Zink auch das Eisen bestimmen.

In dem essigsauren Filtrat stumpft man die freie Säure mit reinem

\(^1\) Journ. de Pharm. (4) 10, 401; Fresenius' Zeitschr. für analyt. Chem. 9, 407; Jahresbericht 1869, 846.
oder kohlensaurem Natron ab und fällt das Mangan mit Bromwasser (oder unterchlorigsaurem Natron) in der Wärme, wodurch sich das Hyperoxyd dicht abscheidet und sogleich filtriren lässt. Das durch Filtration geschiedene und ausgewaschene Manganhyperoxylhydrat kann mit Jodkalium und Salzsäure zersetzt und mit unterschwefligsäurem Natron (S. 304) oder mit einer gewogenen Menge Eisendoppelsalz unter Rückmessen mit Chamaeleon (S. 195) gemessen werden. \(\text{Fe} \times 0.491 = \text{Mn} \); oder es wird nach dem Glühen als Mn\(_3\)O\(_4\) gewogen.

Chromeisenstein.

\(^1\) Fresenius' Zeitschr. für analyt. Chem. 15, 187.
feine Pulver mit der achtfachen Menge geschmolzenem Borax eine halbe Stunde in Rothgluth stehen. Das Chrom geht als Chromsäure in Lösung. Die Chromsäure wird nach S. 223 am leichtesten durch das Eisendoppelsalz bestimmt. Man übersättigt die filtrirte, verdünnte und erkalte Lösung des chromsauren Kalis mit Schwefelsäure, und wirft aus einem tarrirten und mit Eisendoppelsalz gefüllten Gefässe mit einem Löffelchen kleine Mengen dieses Salzes in die saure chromsaure Lösung, bis die Farbe durch viele Abstufungen von Gelb, Braun und Grünlichbraun in reines Smaragdgrün übergegangen ist. Man bestimmt nun auf der Wage durch zugelegte Gewichte die Menge des verbrauchten Doppelsalzes. Da es aber jedenfalls in einem kleinen Überschuss angewendet worden, so bestimmt man diesen durch Chämäleon. Der Eisengehalt des zugesetzten Eisensalzes, weniger dem an der Chämäleonbürette abgelesenen mit 0·91 multiplizirt gibt das Chromoxyd, und mit 0·312 das metallische Chrom.

Das auf dem Filtrum übriggebliebene Eisenoxyd löst man in kochender stark überreiner Salzsäure, indem man das Filtrum auf dem Trichter mit der erhitzen Salzsäure übergießt, und das Filtrat allenfalls unter Zuziehung eines zweiten Untersetzglases nochmals erwärmt aufgießt, bis sich Alles auf dem Filtrum gelöst hat, was überhaupt löslich ist. Häufig bleibt etwas unaufgeschlossenes Pulver von Chromoeisenstein übrig. Nach der Einäscherung des Filters kann man dieses Pulver rein erhalten, im Achatmörser frisch zerreiben und einer neuen Ausschliessung unterwerfen.

Das abfiltrirte Eisenchlorid nach Aussussung des Filters wird auf Zink gegossen, zu Chlorür reducirt und dies nach starker Verdünnung mit Chämäleon bestimmt. Wenn man der Schmelze ursprünglich Salpeter oder chlorsaures Kali zugesetzt hat, so können Reste dieser Salze in der ersten Lösung vorhanden sein. Man kann dann nicht unmittelbar auf die Chromsäure losgehen, sondern muss sie erst, nach Abstumpfung des kohlensauren Alkalis durch Salzsäure, mit Chlorbaryum fallen, den ausgewaschenen noch feuchten Niederschlag durch längere Digestion mit Schwefelsäure und Eisendoppelsalz zersetzen, und den Rest des letzteren mit Chämäleon bestimmen.

Kupfererze und Hüttenproducte.

a. Oxidische Erze.

Rothkupfererz, Malachit, phosphorsaures Kupferyxid.

Sie sind die selteneren und am leichtesten zu bestimmen. Es kommt in der Regel nur auf den Gehalt an Kupfer an. Das abgewogene Erz,

Bei armen Erzen wendet man 10 g Substanz an.

b. Schwefelte Erze.

1. Das Kupfer metallisch ausgeschieden.

Kupferkies (Cu₂S + Fe₂S₃), in Procenten 34,56 Kupfer, 30,54 Eisen, 34,90 Schwefel; Buntkupfererz (3 Cu₂S + Fe₂S₃); Kupferglas (Cu₂S).

Bestimmung des Kupfers allein.

in eine kleine Porzellananschale etwas Schwefelwasserstoffwasser und gibt dann mit einem Glasstabe einen Tropfen der überstehenden Lösung hinzu. Es darf keine braune Färbung, sondern nur eine weisse Fällung von Schwefelzink entstehen. Tritt das ein, so giesst man die Flüssigkeit klar ab in ein Becherglas, verdünnt mit heissem Wasser und giesst nach dem Umrühren und Absetzen in das Becherglas ab. Zuletzt spritzt man den ganzen Inhalt des Glases, mit Zurücklassung des Zinkstückchens, in einen Platintiegel, welcher auf einem Porzellanteller steht, den man an dem Rand des Tisches rückt, Fig. 157. Das Glas hält man mit der Mündung

Fig. 157.

Sammeln des Kupfers im Platintiegel.

Mohr’s Titirbuch.

Als Wasserstoffentwicklungsapparat dient dieselbe Konstruktion, welche, als zur Schwefelwasserstoffbereitung passend, beschrieben werden wird.

Die beschriebene Methode ist in ihren Resultaten ganz zuverlässig und giebt übereinstimmende sehr genaue Zahlen, wie dies mit aufgelöstem und wieder niedergeschlagenem Kupfer bewiesen worden ist.

hängende galvanoplastisch gebildete Schale loslösen, wenn man vorher die ursprüngliche Schale mit einer Spur Fett eingereiben hat.

Das Kupfer in der Platinschale lässt sich ebenfalls im Wasserstoffstrom stark erhitzen und dann sicherer wägen.

2. Das Kupfer als Halbschwefelkupfer bestimmt.

Die Aufschlüsselung und Ausscheidung von Blei, Zinn, Antimon durch Schwefelsäure und Salpetersäure geschieht wie oben. Das heisse Filtrat enthält alles Kupfer und daneben immer Eisen als Oxyd, kann auch noch Zink, Mangan und Erden enthalten. Aus dieser Flüssigkeit wird durch eine Operation das Kupfer allein ausgeschieden, und zwar durch Schwefelwasserstoff. Man erhitzt die Flüssigkeit zum Kochen und lässt einen kräftigen Strom von Schwefelwasserstoffgas hineinströmen, während man zuweilen umschüttelt. Dazu dient am besten ein Apparat, der zu einer Entwicklung beständig bereit ist. Man hat mehrere Formen davon. Der Apparat von Kipp, Fig. 158, ist in den Laboratorien bekannt. Das

Fig. 158.

Schwefelwasserstoffentwicklung.

Schwefeleisen befindet sich in der mittleren Kugel, und die Säure ist rohe mit gleich viel Wasser verdünnte Salzsäure. Um die Oxydation des Eisenoxyduls zu verhindern, kann man in die obere Kugel eine dünne Schicht
Petroleum gießen. Statt des gezeichneten Stengelglases wählt man eine Kochflasche mit geraden nach oben in die Mündung auslaufenden Wänden. Zu demselben Zwecke dient der Babo’sche Apparat, Fig. 159. Die beiden mit einander in Verbindung stehenden Kugeln ruhen in einem hölzernen Gestelle, welches man durch eine Schraube in jeder beliebigen Stellung befestigen kann. Wenn der Apparat nicht gebraucht wird, so neigt man die Kugel, worin die Säure sich befindet, nach unten, um den Druck aufzuheben.

Fig. 159.

v. Babo’s Schwefelwasserstoffapparat.

Die Fällung des Schwefelkupfers geht mit einem solchen Apparat sehr rasch vor sich, und der Hauptvorteil besteht darin, dass sich in der Hitze das Schwefelkupfer leicht balt und absetzt, und dass man durch Halten der Entwicklungsröhre in die obere klare Schicht erkennen kann, ob alles Kupfer gefällt ist. Dies ist geschehen, sobald hier keine braune Färbung mehr eintritt. Die noch heisse Flüssigkeit wird auf ein kleines Filter gebracht, wo sie sehr rasch durchläuft, und das dichte Schwefelkupfer mit heissem Wasser vollkommen ausgewaschen. Das so entstandene Schwefelkupfer hat nicht die Unart des kalt gefallenen, sich auf dem
Filtrum zu oxydiren, sondern es trocknet ohne Veränderung zu einer blauschwarzen dichten Masse ein.

Das Fällen des Kupfers aus saurer Lösung durch Kochen mit unterschweifigsäurem Natron ist eine ganz schlechte Operation, die einen mit viel Schwefel vermengten, sich nicht absetzenden Niederschlag ergibt.

Es ist nun das Kürzeste, das Schwefelkupfer in einem Strom von Wasserstoff oder Leuchtgas in Halbschwefelkupfer zu verwandeln und als solches zu wägen. Nachdem Niederschlag und Filtrum getrocknet sind, Fig. 160.

Schwefelwasserstoff.

verbrennt man das Filtrum allein in freier Luft an einer Pinzette hängend und lässt die Asche in den Platintiegel fallen, der zur Vorsicht auf einem Porzellanteller steht. Das Filtrum wird so vollständig verbrannt, bis keine Kohle mehr glimmt, dann fügt man das Schwefelkupfer hinzu, bedeckt den Tiegel mit einer durchbohrten Glimmerplatte, durch welche die Gasleitungsröhre mit ihrer Spitze führt, lässt den Gasstrom gehen, und vergrößert dann die Gas- oder Weingeistflamme bis zum Hellrothglühen des Tiegels. Der Wasserstoff verbrennt mit dem verflüchtigten Schwefel an der Spalte zwischen Tiegel und Deckel. Der Kupferniederschlag ist für sich Einfach-Schwefelkupfer, enthält aber von dem immer vorhandenen Eisenoxyd noch einen Überschuss an Schwefel. Es ist deshalb Schwefel genug vorhanden, um die kleinen Mengen oxydirten Kupfers vom Filtrum wieder in Schwefelkupfer zu verwandeln. Bei dieser Opera-
tion muss die Hitze stark sein, weil sonst noch mehr als $\frac{1}{2}$ Atom Schwefel zurückbleibt. Die Berechnung geschieht einfach mit dem Factor: $\text{Cu}_2\text{S} \times 0.798 = 2 \text{Cu}$.

3. Titrimetrisch.

Kupfererze und Hüttenprodukte.

schliessung sehr leicht, da derselbe als Schwefelsäure im ersten Filtrat enthalten ist, und nach Ansäuerung mit Chlorbaryum gefällt werden kann. Löst man das ausgewaschene schwarze Pulver in Salzsäure statt Schwefelsäure, so kann man auch das Eisen in der vom metallischen Kupfer abgegossenen Flüssigkeit durch Chamäleon bestimmen.

Die Mansfelder Ober-Berg- und Hüttendirection hatte speziell für eine Untersuchungsmethode ihrer schwachen Kupfererze einen Preis ausgeschrieben und denselben in erster Linie dem Verfahren des Herrn Dr. Steinbeck zuerkannt.

Ueber diese Methode lässt sich von analytischer Seite Folgendes bemerken.

Da die Aufschliessung des Kupfererzes durch Salzsäure und Salpetersäure geschieht, so geht das Blei als Chlorid in Lösung, und da dieses mit dem Kupfer durch Zink gefällt wird, so wurde die zweite Auflösung des Kupfers nothwendig. Wenn man dagegen mit Salpetersäure und Schwefelsäure, oder mit Salzsäure, Salpetersäure und Ueberschuss von Schwefelsäure aufschliesst, in einer Porzellananschale bis zur Trockenheit
VIII. Angewandter Theil.

Was nun die Wahl des Cyankaliums betrifft, um damit das Kupfer zu messen, so ist darüber nur eine Meinung, dass sie leicht zu Fehlern Veranlassung gebe. Steinbeck sucht nun diese durch Einhaltung möglichst gleichmässiger Verhältnisse in Konzentration und Temperatur zu vermeiden, und kann auch einigermaassen diesen Zweck erreichen. Er kann jedoch eine Methode niemals empfehlen, dass man unter Einhaltung gleicher Umstände eine Anzahl nahe übereinstimmender Resultate erhält, sondern die Methode ist um so sicherer, je mehr sie von diesen Bedingungen abzusehen erlaubt; vor Allem aber gilt die Frage, ob sie überhaupt nothwendig ist. Schon Fleitemann hatte empfohlen, das metallisch gefällte Kupfer in Eisenchlorid, besser schwefelsaurem Eisenoxyd, zu lösen und dann mit Chamäleon zu messen. Diese Bestimmung war in jedem Falle eben so gut und besser als jene mit Cyankalium. Die Operation ist kürzer und leichter auszuführen, als die Wägung nach Glühren im Wasserstoffstrom.
Eine zweite von der Berg- und Hüttengesellschaft anerkannte Methode der Kupferbestimmung ist die galvanische von Luckow, welche manches Eigentümliche hat, sich aber wegen der dabei nöthigen kleinen Volta'schen Batterie zum hüttenmännischen Gebrauch nur bei täglichem Bedarf eignet.

Die Erze werden erst geröstet, was aber nur bei den bituminösen einen Zweck hat, im Allgemeinen aber überflüssig ist. Die anzuwendenden Mengen, welche kleiner genommen werden, von 3 bis 1 g herab, werden in einem Becherglase von 5 bis 6 cm Höhe und 4 cm Weite mit 2 bis 3 ebem Salpetersäure und 10 bis 15 Tropfen reiner konzentrirter Schwefelsäure im Sandbade erst bedeckt, dann offen erhitzt, bis alle Schwefelsäure verdampft ist. Ein Zusatz von etwas Salzsäure soll das Eindampfen befördern und das Spritzen verhindern. Diese Aufschüsselungs methode genügt nur bei den armem Mansfelder Erzen, worin das Schwefel kupfer schon in sehr vertheiltem Zustande vorhanden ist, aber nicht bei reichen Kupferkiesen.

Es wird nun das Deckelglas mit etwas verdünnter Salpetersäure abgespritzt, dann das Glas bis zur Hälfte mit verdünnter Salpetersäure angefüllt, und nun, ohne Filtration, eine flache Drahtspirale aus etwas kräftigem Platindraht auf den am Boden liegenden Erzkuchen gebracht, und diese Spirale mit dem Wasserstoffpol einer kleinen Volta'schen Becher batterie von 4 bis 6 Elementen in Verbindung gesetzt. Das Kupfer scheidet sich nun in fester Gestalt auf die Platinspirale aus, wird mit dieser herausgezogen, abgespritzt, getrocknet und gewogen. Der zweite oder Sauerstoffpol der Kette endigt in einen hohlen Cylinder aus dünnem Platinblech und schwebt 3 mm über der Platinspirale. So lange der Strom dauert, hindert die Gegenwart der Salpetersäure nicht die Aus fällung des Kupfers, sobald er aber unterbrochen wird, beginnt die Wiederauflösung des Kupfers. Man hebt also die Platinspirale sammt dem Platinzymlinder zugleich aus, ehe die Kette geöffnet ist, und taucht die Spirale sogleich in reines Wasser. Der Bleigehalt scheidet sich als Hy perox yd an dem Sauerstoffpol, dem Platinzymlinder, ab.

Es ist also ersichtlich, dass die Direction in der Auswahl der Methoden und Beurtheilung des Werthes derselben nicht ganz das Richtige getroffen hat, und dass der Vorzug, den sie dieser Methode gegeben hat, noch keinen Vorzug begründet.

Zinkerze.

Die in Betracht kommenden Zinkerze sind:

1) Galmei, ein Gemenge von kohlensaurem Zinkoxyd, Eiseinoxid, Kieselerde, Thonerde etc.

2) Die Zinkblende, im reinsten Falle Schwefelzink, sonst immer Gemenge dieses mit Schwefeleisen, Schwefelkadmium und als Schalenblende in schichtweiser sichtbarer Abwechslung mit Bleiglanz, Kupferkies.

3) Geröstete Blende, von der Schwefelsäuresubstanz aus Blende erhalten, rothbraunes Pulver.

4) Kieselzinkerz, wasserhaltiges als Kieselgalmei, wasserleeres als Willemit.

Glätet man die oxydischen Erze vorher, so lösen sich die Zinkverbindungen in schwacher Salpetersäure, aber nur ein Theil des Eisenoxyds, was vortheilhaft ist. Eben so lassen sich die Zinkerze in einer nur wenig verdünnten Schwefelsäure durch Eindampfen bis zur Trockne aufschliessen, wodurch sämtliche Kieselerde unlöslich wird. Es geht dann alles Eisenoxyd in Lösung über.

Die Zinkblende wird wegen ihrer grossen Kohäsion von Salzsäure allein nicht vollständig oder erst nach sehr langem Kochen gelöst, man muss also mit etwas chlorsaurem Kali oder Salpetersäure gegen Ende zu Hälfte kommen. Kieselsaures Zinkerz, Willemit, wird einige Male mit Salzsäure zur Trockne abgedämpft, dann wieder gelöst.

Zur Abscheidung des Eisenoxyds werden vorzugsweise zwei Methoden angewendet:

1) Durch Ammoniak.
2) Durch Kochen mit essigsaurer Natron.

Die zweite Ausscheidung des Eisenoxydes geschieht durch essigsaures Natron. Man stumpft die freie Salzsäure mit verdünntem ätzenden oder kohlensauren Natron so weit ab, dass sich einige Eisenoxydflocken nach längerer Digestion nicht mehr lösen. Blaues Lackmuspapier muss immer freie Säure erzeugen, auch muss die gelbe oder rothbraune Färbung der Flüssigkeit anzeigen, dass noch Eisenoxyd gelöst ist. Man fügt nun essigsaures Natron in Krystallen zu, verdünnt ansehnlich und bringt das Ganze zum Kochen. Es scheidet sich hierbei alles Eisenoxyd ab, welches nach einigem Kochen dichter wird und eine klare farblose Flüssigkeit durch Absetzen sichtbar macht. Doch soll das Kochen nicht längere Zeit dauern,
weil dadurch das Eisenoxyd kolloidal wird und schwer auszusüßen ist. Man muss sich durch eine Probe auf einem Teller mit einem Tropfen Flüssigkeit und einem Tropfen Blutangensalzlösung überzeugen, dass kein Eisen mehr gelöst ist, wenn keine blaue Färbung mehr entsteht. Es wird vom Eisenoxyd abfiltrirt und dies mit heissem Wasser ausgewaschen, was zuweilen ziemlich langsam geht, wenn das Eisenoxyd kolloidal geworden ist. Es ist dies der Grund, warum die erste Methode trotz ihres kleinen Fehlers von den Praktikern vorgezogen wird. Am besten wird die Aufschlüsselung des Erzes, Oxydirung und Fällung des Eisens in einem geräumigen Stielpflänzchen mit gutem Ausguß vorgenommen und dann erst filtrirt. Das Filtrat wird mit Salmiak und Ammoniak zur Wiederauflösung des Niederschlags versetzt und auf ein gemessenes Volum (300 ccm) verdünnt; hat man 3 g Erz aufgeschlossen, so hat man dreimal 100 ccm = 1 g Erz zur Disposition und kann damit wenigstens zwei Messungen vornehmen.

Nachdem also das Eisen, wie oben, durch Ammoniak oder essigsaures Natron geschieden ist, fällt man im Filtrat das Zink durch Schwefelwasserstoff, wäscht aus und bestimmt das Schwefelzink durch schwefelsaures Eisenoxyd und Chamäleon nach S. 215.

Die Bereithaltung oder Instandsetzung einer Schwefelwasserstoffentwicklung ist das größte Hinderniss für diese Methode. Man umgeht sie, wenn man sich ein mit Schwefelwasserstoff gesättigtes Schwefelnatrium zu gelegener Zeit darstellt, und damit die Fällung vornimmt, bis die überstehende Flüssigkeit mit Nickelchlorür einen Gehalt von Schwefelnatrium anzeigt.

Gewöhnlich bestimmt man das Zink in der ammoniakalischen Lösung durch Fällen mit titrirtem Schwefelnatrium, wie dies oben (S. 412) beschrieben wurde.

Eine nicht zu verachtende Bestimmung geschieht durch Gewichtsanalyse. Die reine essigsäure Zinklösung, wie sie vom Eisenoxyd abfiltrirt ist, wird nicht mit Salmiak versetzt, sondern kochend mit kohlensaurem Natron gefällt, das kohlensaure Zinkoxyd ausgewaschen und nach dem Trocknen geglätzt. ZnO × 0,802 = Zn. Da die Zinkblende durch Rösten schweflige Säure ausgibt, welche zur Darstellung von Schwefel-

Metallisches Zink.

Zur Untersuchung des Zinks darf man keine zu kleine Menge dieses Metalles anwenden, weil seine Verunreinigungen nur sehr wenig betragen, und deshalb bei kleinen Mengen kaum nachzuweisen sind.

rasch zu Boden. Man giesst in ein reines Glas ab, spült noch einigemal unter Absetzenlassen ab, und vereinigt die abgegossenen Flüssigkeiten. Man misst mit der zehntel-empirischen Chamäleonlösung von S. 179, von welcher 1 ccm = 0.001 g Fe ist. In ein zweites Becherglas von nahezu gleichen Dimensionen bringt man eine der Probeflüssigkeit gleiche Menge destillirtes Wasser, und färbt dasselbe aus der Bürette lichtroth.

Die Anzahl der Tropfen oder Cubikcentimeter notirt man. Dies Glas lässt man zum Vergleich daneben stehen, und färbt man die Probe vorsichtig ebenso stark, wie das reine Wasser. Man zieht die für das Wasser verbrauchte Menge Chamäleon von der auf die Probe verbrauchten ab, und der Rest gibt in den Cubikcentimern die Milligramme des metallischen Eisens der Probe.

Die abgegossene Flüssigkeit enthält das Blei als neutrales salpetersaures Blei. Man setzt Oxalsäure und Weingeist zu, lässt in der Wärme dicht werden und absetzen, und bestimmt das oxalsaure Bleioxyd nach S. 198 mit zehntel-empirischer Chamäleonlösung. Der Factor des Bleies muss natürlich durch 10 dividirt werden, oder die oben der zehntel-empirischen Lösung durch Versetzung des Punktes um eine Stelle nach rechts in empirische verwandelt werden.

Kupfer und Zink.
(Messing, Tombak, Similor, Talmigold.)

Um das Kupfer allein zu bestimmen, löst man die Legirung in Salzsäure, der man tropfenweise Salpetersäure zufügt, bis keine Gasentwick-

Kupfer und Zinn.

(Bronze, Kanonengut, Glockenmetall)

Man bringe die gewogene Probe in Salzsäure, setze tropfenweise Salpetersäure zu und erwärme, um die Lösung zu bewirken. Sobald die Gaseentwicklung aufhört, setze man wieder Salpetersäure tropfenweise zu, bis Alles gelöst ist. Hat die Flüssigkeit eine braungrüne Farbe, so fehlt es an Salpetersäure und es ist Kupferchlorür vorhanden. Man setze dann unter Erhitzen Salpetersäure zu, bis die grüne Farbe des konzentrierten Kupferchlorids eintritt.

Man verdünne mit Wasser, setze Ammoniak zu, bis ein schwacher bleibender Niederschlag entsteht, dann etwas verdünnte Schwefelsäure und erhitzte zum Kochen. Nun werfe man Glaubersalzkrystalle hinein, bis unter fortgesetztem Kochen alles Zinnoxyd gefällt ist. Das Zinnoxydhydrat setzt sich leicht ab, und man kann die überstehende Flüssigkeit auf Zinngehalt prüfen, wenn man einige Tropfen der klaren Flüssigkeit mit Glaubersalzösung in einem Probirröhrchen erhitzt. Sobald keine Trübung mehr entsteht, ist die Fällung beendet. Man filtrirt, das aus-
gewaschene Zinnoxydhydrat wird geglüht und gewogen. In der filtrirten Flüssigkeit kann man das Kupfer am kürzesten nach Zusatz von essigsaurem Natron mit Jodkalium und unterschweifsgaurem Natron oder Zinnoxydhydrat bestimmen.

Die gewöhnliche Trennungsmethode des Zinns durch Salpetersäure ist bei weitem weniger genau und leicht, weil sie ein kupferhaltiges Zinnoxyd liefert und eine langweilige Abdampfung erfordert.

1 g von einem Drehspahn einer Kanone aus der Geschützgiesserei zu Spandau wurde in Salzsäure und Salpetersäure gelöst, mit Ammoniak etwas abgestumpft, dann wenig Schwefelsäure und viel Glaubersalz unter Erhitzen zugesetzt und das Zinnoxyd gefällt. Dasselbe wurde ausgewaschen und geglüht. Es wog 0,110 g = 0,0864776 g Zinn. Das Filtrat wurde mit Ammoniak bis zur bleibenden Trübung, dann mit Essigsäure bis zur Klärung versetzt und mit überschüssigem Jodkalium in einer Stöpselflasche 1 Stunde hingestellt. Zum Aufheben der blauen Farbe nach Stärkezusatz wurden 144 chem. zehntel-unterschweifsgaures Natron verbraucht. Diese entsprechen 144 × 0,006336 = 0,912384 g Kupfer. Es sind also erhalten worden 0,912384 g Kupfer, 0,0864776 „ Zinn, 0,9988616 g statt 1 g.

Bleierz.

Es ist zunächst zu bemerken, dass es keine gute maassanalytische Bestimmung des Bleies gibt, welche zu hüttenmännischen Zwecken brauchbar wäre. Alle von Domonte, Schwarz, Streng und mir vorge-
Bleierze. 641

Schwefelsaures Blei oxyd $\times 0'683 =$ metallischem Blei. Es ist zu bemerken, dass der Kalk bei dieser Behandlung aus der sehr sauren Lösung oft gar nicht, zuweilen erst nach mehreren Stunden als Gyps gefällt wird. Dieser bildet zusammenhängende Gruppen von grösseren

Mohr's Titrischeh.
nadelförmigen Krystallen, die von dem pulverigen Bloindnerschlag leicht zu unterscheiden sind.

3) Gemischte Bleierze. Da die Weißbleierze in Meckernich und Maubach aus Bleiglanz entstanden zu sein scheinen, so kommen oft Stelle vor, wo Bleiglanz innig mit kohlensaurem Bleioxyd gemengt ist. Die Analyse geschieht dann so.

Die fein gepulverte Probe von 10 g wird mit verdünnter Salpetersäure gekocht und filtrirt. Der Rest wird vom Filtrum in das Becherglas gespritzt, mit Salzsäure erhitzt und dann Zink hinein gehangen. Es
Metallisches Blei auf fremde Beimischungen.

Man wäge bis zu 100 g Blei genau ab, was keine Schwierigkeiten hat, und löse es in einer geräumigen Kochflasche in sehr verdünnter reinen Salpetersäure auf. Diese Auflösung muss durch Wärme unterstützt werden, und dauert ziemlich lange, für die angenommene Menge 3 bis 6 Stunden. Wenn das Blei vollständig gelöst ist, erkennt man an der Klärheit der Lösung, ob Kohlenstoff, Antimon, Zinn oder Schwefel darin vorhanden war. Eine weisse Trübung kann Antimon, Zinn und schwefelsaures Blei anzeigen. In diesem Falle filtrirt man ab und untersucht den Rückstand auf diese Stoffe. In den käuflichen guten Bleisorten hat sich mir noch keine Trübung der salpetersauren Lösung gezeigt.

Man filtrirt nun vom schwefelsauren Bleioxyd ab, und wäscht mit

Das Eisenoxydul in der Lösung titrirt man mit Chamäleonlösung.

Das Schwefelkupfer spritzt man mit warmem Wasser vom Filtrum in eine Porzellan- oder Platinschale, setzt einige Tropfen Salpantsure und einen Tropfen Schwefelsäure hinzu und verdampft zur Trockne. Es bleibt wasserleeres schwefelsaures Kuperoxid. Dieses löst man in warmem Wasser, bringt die Lösung in ein Stöpselglas und setzt reinen Jodkalium hinzu, fügt dann nach vollständiger Zersetzung Chlorzinkstärke hinzu, und titrirt das Kupfer mit Hundertstel unterschwefligsaurem Na tron (2,48 g auf 1 Liter).

Bei solchen kleinen Mengen Substanz ist die Titirrmethode ganz unschätzbare, weil sie von der Asche des Filters unabhängig macht. Hat man es mit einzigen Milligrammen Eisenoxyd zu thun, so hört alle Sicherheit auf, wenn die Filterasche selbst 3 Milligramme beträgt. Da man diese nicht mit dem Filtrum selbst, sondern mit einem anderen gleich grossen bestimmt, so macht 1 Milligramm Differenz bei 2 Milligrammen Eisenoxyd 50 Proc. des Eisenoxydies aus.

Die Titirung des Kupfers durch Jodausscheidung nach de Haen und Fresenius lässt wenig zu wünschen übrig, wenn man reines schwefelsaures Kuperoxid hat, wie es hier der Fall ist. Man sieht an dem ausgeschiedenen Kupferjodür, dass man wirklich Kupfer unter Händen hat, und wäre selbst noch ein fremdes Metall dem Kupfer beigemischt, so wird es nicht mit titrirt, wohl aber mit gewogen. (Vgl. Fresenius' Zeitschr. f. analyt. Chem. 8, 148.)
Bleizucker.

Bei der Untersuchung wird der Wassergehalt durch Austrocknen bei 120° C. bestimmt. Der richtige Wassergehalt nach der Formel PbO, C₆H₃O₈, 3 Aq = 189·57 beträgt 14·348 Proc. Dann löst man 10 g in reinem destillirten Wasser heiss auf und filtrirt in die 250-cbm-Flasche durch ein gewogenes oder zwei gleich schwere Filtra. Es bleibt kohlensaures Blei zurück. 50 cbcg = 2 g Salz mit der Pipette herausgezogen werden mit Wasser verdünnt, stark erhitzt und ein Ueberschuss von Oxalsäure zugesetzt. Beim anfangenden Kochen geht das oxalsaurer Bleioxyd dicht zusammen und die Flüssigkeit steht ganz klar darüber. Der ausgewaschene Nieder- schlag wird mit Schwefelsäure versetzt und mit empirischer Chamäleonlösung ausgemessen. $F \times 1\cdot991 = \text{Bleioxyd}; \times 3\cdot384 = \text{Bleizucker}.$

2 g Bleizucker, der sich trüb löste, wurden mit Oxalsäure gefällt, das oxalsaurer Blei ausgewaschen. Das Filtrat gab mit Schwefelammonium kaum eine Spur einer gelbblichen Färbung. Das oxalsaurer Blei war $= 60\cdot1$ cbcg empirischem Chamäleon $= 0\cdot601$ g Fe, welche mit 1·991 multiplizirt $1\cdot196591$ g Bleioxyd geben $= 59\cdot829$ Proc. 1 g Bleizucker mit kohlensaurem Natron gefällt, gekocht und das kohlensaure Blei gelb gebrannt hinterliess 0·598 g $= 59\cdot8$ Proc. Bleioxyd. Die Bestimmung der Essigsäure fällt mit der allgemeinen Säurebestimmung von S.169 u. f. zusammen.

Fresenius hat eine Werthbestimmung des Bleizuckers mitgetheilt, welche darin besteht, dass er den gewogenen Bleizucker mit Normal- schwefelsäure eben zersetzt und die Masse in einer Messflasche auf ein bestimmtes Volum bringt. Die klar abgesetzte Flüssigkeit enthält alle Essigsäure und einen kleinen Ueberschuss an Schwefelsäure. In herausgenommenen bestimmten Mengen wird nun in einer durch Normalnatrium die Gesammtsaure, in einer anderen die Schwefelsäure durch Baryt be-

\textbf{Zinn und Blei.}

(Werkzinn, Schnellloth, Stanniol.)

Die gewogene Substanz wird in einer Porzellanschale, mit Uhrglas bedeckt, in verdünnter Salpetersäure aufgelöst, dann bei offener Schale zur Trockne gebracht. Der Rest wird mit heissem Wasser und einigen Tropfen Salpetersäure aufgenommen und filtrirt. Auf dem Filtrum bleibt Zinnoxyd, welches nach Verbrennen des Filters im Platintiegel gewogen wird. Zinnoxyd $\times 0.786 = \text{Zinn}$. Das Filtrat wird erhitzt und kristallisierte Oxalsäure hineingeworfen und bis zum Dichtwerden des oxalsauren Bleioxydes erwärmt. Filtration und Bestimmung des Bleies durch die Oxalsäure nach S. 199 mit empirischer Chamäleonlösung. $\text{Fe} \times 1.849 = \text{Pb}$.

Beispiel: 0.633 g Stanniol gaben 0.169 g $\text{SnO}_2 = 0.1328$ g Zinn; das oxalsaure Blei erforderte 27 cbom empirischen Chamäleon $= 0.270$ g $\text{Fe} \times 0.786 = 0.49923$ g Pb; zusammen 0.63206 statt 0.633 g.

1) Dessen Zeitschr. f. analyt. Chem. 5, 315 u. 14, 172.
Blei und Antimon. — Zinnsalz.

Blei und Antimon.

(Letternmetall.)

Die Typen werden vielfach aus 8 Blei und 2 Antimon zusammengeschmolzen.

Zinnsalz.

SnCl₃.H₂O = 103.46; Sn = 56.05 Procent.

Das Zinnsalz als Handelsartikel wird am bequemsten mit 1/10 chromsaurem Kali unter Zusatz von Stärkelösung und Jodkalium gemessen, d.h. nach der ursprünglichen Streng'schen Methode. Da es durch längeres
VIII. Angewandter Theil.

Aufbewahren Sauerstoff angezogen und Zinnoxyd gebildet hat, so kommt es darauf an, zu bestimmen, wie viel Zinn noch als Chlorür darin enthalten ist. Man nimmt den Titer mit reinem, durch Zink gefällten Zinn, von welchem man 0'5 g in einer Probirröhre mit etwas Platinblech, oder in einer bedeckten Platinschale in viel Salzsäure auflöst; man setzt nach der Auflösung Stärkelösung und einige Tropfen Jodkalium zu, und lässt die Zehntel-Chromlösungs (4'919 g doppelt chromsaures Kali im Liter) einfließen, bis die durchsichtige grünblaue Farbe des Chromchlorids in die undurchsichtige tiefblaue Farbe der Jodstärke übergeht. Eben so behandelt man eine gewogene Menge des Zinnsalzes mit Salzsäure und den übrigen Zusätzen. Oxydirtes Zinnsalz bildet einen weissen Satz, der durch alle Filtra durchläuft, also nicht abgeschieden werden kann. Er stört aber auch nicht bei der Titirung. 0'5 reines Zinn erforderte 80'8 cbcm Zehntel-Chromlösung, wonach 1 cbcm $\frac{0'5}{80'8} = 0'00618$ g Zinn ist.

Hierin liegt der Fehler der Methode, denn es müsste eigentlich 0'0059 g herauskommen; allein dadurch, dass man die im System unrichtige Zahl annimmt, gleicht man den Fehler wieder aus. Man vermeide nur ungleiche und zu starke Verdünnungen anzunehmen. 1 g eines sehr lange gestandenen Zinnsalzes brauchte 32'2 cbcm Chamäleonlösung. Wir haben dann 80'8 : 1 = 32'2 : x, woraus $x = 0'260176$ g ist. Das Zinnsalz enthielt also nur 26'0176 Procent Zinn als Chlorür statt 56'05 Procent.

Nickel in seinen Erzen.

Das Nickel kommt in seinen geschwefelten Erzen in verhältnismässig kleiner Menge mit einer sehr grossen Menge anderer Schwefelmetalle verbunden vor. Den grössten Antheil derselben macht der Schwefelkies aus, dann noch daneben Kupfer, Kobalt, Mangan, Zink, Blei, Antimon, Arsenik.

nischen Analyse wesentlich darauf an, dass das Hauptmetall, hier Nickel, mit der grössten Genauigkeit bestimmt werde. Um dies zu erreichen, ist es nothwendig, den Gang der Analyse so zu wählen, dass alle fremden Metalle von selbst ausgeschieden werden, ohne dass man ge-
nöthigt sei, auf dieselben seine Aufmerksamkeit zu richten. Nach viel-
lichen Versuchen wurde der folgende Gang als der sicherste und kürzeste
befunden.

Das geschwefelte Nickelerz wird aufs Feinste pulverisirt und davon
5 g in Arbeit genommen. Man bringe sie in eine kleine Porsellanschale
und brenne sie drei- bis viermal mit kleinen Mengen starker Salpetersäure
in gleicher Weise ab, wie dies bei der Analyse der Kupfererze ge-
nan beschrieben wurde. Die Schale ist bei dieser Operation mit einem
flachen Boden einer Retorte oder eines Kolbens bedeckt. Bei kleinen
Mengen von Salpetersäure findet kein Spritzen statt, so lange alle Be-
standtheile zusammen sind. Hat man aber einmal mit Wasser gelöst und
behandelt den Rest in gleicher Art, so spritzt er sehr bedeutend. Es ist
deshalb nothwendig, dass die Aufschliessung vollständig sei, ehe man ans
Ausziehen geht. Man erkennt an der Einwirkung der frischen Salpetersäure,
oh no unaufgelöste Theile vorhanden sind. Beim letzten Ab-
brennen setze man etwas Schwefelsäure zu und erhitzte bis zur scharfen
Trockne. Durch diese Operation wird Antimon, Zinn, Blei und der grösste
Theil des Eisens ausgeschieden und in Wasser unlöslich. Man kocht den
Rest mit destilliertem Wasser und filtrirt in eine Kochflasche mit voll-
ständigem Aussüssen. Im Filtrate sind die Sulphate von Nickel, Kobalt,
Zink und Kupfer, und noch ein grosser Theil Eisenoxyd und Arsensäure
enthalten. Die erste Arbeit ist die vollständige Ausscheidung des Eisen-
oxys. Man erhitzt die blasse grüne verdünnte Flüssigkeit beinahe bis
zum Kochen und fügt dann tropfenweise verdünntes Aetznatron hinzu,
bis das ausgeschiedene Eisenoxyd sich nicht mehr beim Umschütteln
und längeren Stehen löst. Kohlensäures Natron wird deshalb nicht angewen-
det, weil beim Aufbrausen die kochende Flüssigkeit leicht übersteigt.
Jetzt setzt man eine konzentrierte Lösung von essigsaurer Natron zu,
wodurch sich das Eisenoxyd mit Arsensäure ausscheidet, und erhitzt bis
zum Kochen. Man muss sich jedoch durch einen Versuch überzeugen,
dass wirklich alles Eisenoxyd gefällt sei, weil davon die ganze folgende
Operation abhängt. Man setzt mit einem Glasstabe einen kleinen Tropfen
der Flüssigkeit auf Filtrirpapier und gleich daneben einen Tropfen Blut-
laugensalz; wenn von der Vermischungsstelle nicht die kleinste Spur einer
blauen Färbung mehr eintritt, so ist das Eisenoxyd gefällt. Dies findet
aber nur statt, wenn die Menge der freien Essigsäure klein ist. Im Falle
sich die blaue Farbe zeigt, so gebe man aus einer Pipette einzelne Tropfen
von verdünntem Aetznatron zu, bis die verlangte Bedingung geleistet ist.
Die Flüssigkeit ist nun noch ganz deutlich sauer und enthält die Lösung
von Nickel, Kobalt, Kupfer und Zink.

Von hier an sind zweierlei Wege möglich. Entweder scheidet man
das Kupfer und Zink aus der eben erhaltenen essigsauren Lösung durch Schwefelwasserstoff kalt aus, wo dann im Filtrat nur Nickel, Kobalt und Mangan übrig bleiben; oder man setzt erst etwas Salzsäure hinzu, um das essigsaurer Natron zu übersättigen, fällt das Kupfer und Rest von Arsen kochend mit Schwefelwasserstoff, und aus dem Filtrat das Zink nach vorherigem Zusatz von essigsaurer Natron, in der Kälte durch Schwefelwasserstoff. Essigsauers Nickeloxyd wird auch durch dieses Gas in der Wärme und bei zu langer Einwirkung schwarz niedergeschlagen, weshalb die Trennung vom Zink kalt und rasch vorgenommen werden muss. Ist kein Mangan vorhanden, so kann man das Nickeloxyd durch Kalihydrat, oder als Sesquioxyd durch kohlensaures oder unterchlorig-
saures Natron fallen und durch Wägen bestimmen.

Ist Mangan vorhanden, so muss die Trennung durch das ungleiche Verhalten der Schwefelverbindungen gegen verdünnte Salzsäure stattfinden; sie werden beide mit Schwefelammonium als Schwefelmetallemfälle und das Schwefelmangan mit sehr verdünnter Salzsäure wieder gelöst.

Bei weniger komplizierten Erzen ist die Scheidung einfacher. Das Arsennickel, auch Kupfernickel genannt, mit der Zusammensetzung Ni₂As löst man in Schwefelsäure unter Zusatz von Salpetersäure und fällt das Arsen mit schweflgsaurem Natron und Schwefelwasserstoff.

A r g e n t a n.

Im Argentan oder Neusilber sind drei Metalle mit einander verbunden, nämlich Kupfer, Zink und Nickel, welche sich schwierig von einander

Diese Methoden sind jedoch nur die gewöhnlichen gewichtsanalytischen, und es ist dadurch für die Technik nichts gewonnen, welche auf leichtere Weise und mit geringerem Zeitverlust analytische Resultate zu erhalten benötigt ist. Herr Hermann Maste in Iserlohn hat sich vielfach damit beschäftigt, die Methoden der Massenanalyse auf die Zersetzung des Neusilbers anzuwenden, und hierbei manche schätzenswerte Beobachtungen gemacht, deren Resultate zum Theil auch negativer Natur sind. Er fand zunächst, dass, wenn man Zink und Nickel beide durch Schwefelwasserstoff als Schwefelmetalle fällt, diese sich nicht durch verdünnte Salzsäure von einander trennen lassen, was man aus ihrem Verhalten für sich hätte vermuten können. Er fand ferner, dass, wenn man die

Um nun die einzelnen Methoden auf die Richtigkeit ihrer Resultate zu prüfen, analysirte Letzterer ein Argentan auf gewichtsanalytischem Wege, und verglich mit diesen Resultaten die durch die anzuwendenden Maassmethoden erhaltenen Resultate. Es wurden demnach 2'016 g Argentan abgewogen, in Salpetersäure gelöst, woraus sich kein Zinnoxyd abschied, darauf mit Schwefelsäure behufs der Bestimmung des Bleies zur Trockne eingedampft, wieder gelöst, filtrirt, das Kupfer mit Schwefelwasserstoff gefällt, nach dem Filtriren und Aussäumen mit Schwefelwasserstoff aus der essigsauren Lösung das Zink ausgeschieden und in üblicher Weise die Oxyde gefällt, gegläult und gewogen. Es wurden erhalten:

<table>
<thead>
<tr>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
</tr>
<tr>
<td>Zink</td>
</tr>
<tr>
<td>Nickel</td>
</tr>
<tr>
<td>Blei</td>
</tr>
</tbody>
</table>

2'0298 g statt 2'016; 100'68 statt 100.

Nun wurden zur Titirianalyse 4'008 g desselben Argentans gelöst, die Lösung zu 300 cbcm verdünnt und dann folgendermaassen verfahren:
1. Aus 50 cbcm wurde das Kupfer mittels Eisendrahts gefällt, getrocknet und gewogen; es ergab sich 0'4035 g statt 0'409 g.
2. Aus 50 cbcm durch Zink das Kupfer gefällt gab 0'418 g statt 0'409 g.
3. Aus 50 cbcm mit Schwefelwasserstoff das Kupfer gefällt und nachher aus der essigsauen Lösung das Zink mit Schwefelwasserstoff. Das Schwefelzink, aus essigsaurem Natron bestimmt, gab 0'107 g Zink statt 0'176 g.
4. 50 cbcm wurden mit unterchlorigsaurem Natron mit Aetzkali gefällt, und das Nickeloxyd mit Eisendoppelsalz gemessen. Es ergab sich 0'067 g Nickel statt 0'084 g.

Obwohl dies eine maassanalytische Bestimmung des Nickels ist, so ist damit für die Technik doch nicht viel gewonnen, weil das Austitiriren des oxalsauren Nickeloxys so viel Zeit wegnimmt und in seiner Erscheinung nicht sehr klar ist, da die Flüssigkeit noch trübe von Nieder-
VIII. Angewandter Theil.

schlag und zugleich roth von Chamäleon sein kann. Da bliebe es doch einfacher, das oxalsaure Nickelsalz nach getrennter Verbrennung des Filters im geschlossenen Platintiegel im Wasserstoffstrom zu reduciren und als Metall zu wägen.

Kobalt und Nickel.

Zu den bekannten Trennungsmethoden von Laugier, Philipp und Anderen kommt eine neuere von Fleischer.

Quecksilber. — Zinnerze.

Quecksilber er ze.

Meistens Zinnober; aber auch alle übrigen Vorkommenisse werden in gleicher Weise auf Quecksilbergehalt probirt. Wenn die Probe einen Werth haben soll, muss sie aus grösseren Mengen Erzes durch eine richtige Manipulation gewonnen sein. Alle Quecksilberverbindungen geben durch Glühen mit wasserleerem kohlensauren Natron metallisches Quecksilber aus.

Zinnerze.

Vorzugsweise Zinnstein. Das fein gepulverte Erz wird mit dem sechsfachen Gewicht eines Gemenges aus gleichviel wasserleerem kohlensauren Natron und Schwefel in einem bedeckten Porzellantiegel oder irdenen Tiegel eingeschmolzen. Wenn der überschüssige Schwefel verbrannt ist, lässt man erkalten, löst die Schmelze in heissem Wasser und filtrirt. Im
Filtrat ist das Zinn als Doppelt-SchwefelszinSchwefelnatrium vorhanden, und wird durch Salzsäure als SnS₂ gefällt. Dies wird ausgewaschen und durch Kochen mit Eisenchlorid in Lösung gebracht, wobei sich Schwefel ausscheidet. Die stark verdünnte Flüssigkeit wird mit empirischer Chamaeleonlösung auf Farbe titriert. $\text{Fe} \times 0.527 = \text{Sn}$.

Chromgelb.

$\text{Fe} \times 1.926 = \text{CrO}_3, \text{PbO}$.

Die im Handel vorkommenden gelben Chromfarben enthalten meistens nur eine sehr kleine Menge chromsaures Bleioxyd, daneben aber bedeutende Mengen schwefelsaures Bleioxyd. Der eigentliche Werth wird durch Bestimmung des reinen chromsauren Bleioxyds gefunden, und dazu genügt, die Chromsäure allein zu bestimmen.

Wir haben dazu zwei Methoden kennen gelernt, nämlich die Zersetzung der chromsauren Verbindung durch freie Salzsäure und überflüssiges Eisendoppelsalz, und die Rückmengung des nicht oxydirten Eisens mit empirischer Chamaeleonlösung oder eben solcher chromsaurer Kalilösung. (Vergl. S. 223 u. 238).

Das reine Chromgelb ist CrO₃, PbO mit dem Atomgewicht 161.81. Die Chromsäure gibt die Hälfte ihres Sauerstoffs, also $1\frac{1}{2}$ Atom ab, und diese oxydiren das Oxydul von 3 Atomen Eisen. Der Factor des Eisens für Chromgelb ist also $\frac{161.81}{84} = 1.926$. Für absolut reines Chromgelb würden $\frac{3 \text{ Atome Eisensalz}}{161.81}$ oder die 3.63 fache, in jedem Falle die vierfache Menge Eisensalz genügen, bei den geringeren Sorten entsprechend weniger. Es ist aber eine besondere Schwierigkeit, das Chromgelb vollständig zu zersetzen, ohne dass gelbe Punkte am Boden des Glases liegen. Nach vielfachen Versuchen fand ich den folgenden Gang am passendsten. Das abgewogene Chromgelb wird mit der ebenfalls abgewogenen Menge Eisensalz und etwas Wasser in eine Kochflasche gebracht, und zugleich eine ansehnliche Menge Granate oder dicke Glasperlen beigegben. Man schüttelt tüchtig um, damit das Chromgelb zu einem feinen Schlamme verteilt werde; dann fügt man Salzsäure und Wasser hinzu, und schliessst die Flasche mit einem Kantschukventil, wie dasselbe S. 181 beschrieben und abgebildet ist. Man bringt dies Gemenge rasch zum Kochen, um alle Luft zu verdrängen, und stellt das Glas in ein Sandbad, um es nach Be-
dürfniss lange genug erwärmen zu können. Da die Zersetzung nur lang-
sam vor sich geht, so war der Ausschuss der Luft nothwendig, ohne
welchen auch Eisenoxydul sich auf Kosten der Luft oxydirt haben würde.
Am Boden des Glases erkennt man, ob noch unzersetztes Chromgelb vor-
handen ist. Das ausgeschiedene Chlorblei zeigt in der Eisenchloridlösung
auch eine gelbliche Farbe, die aber leicht von der des Chromgelbes zu
unterscheiden ist. Wenn Alles aufgeschlossen und zersetzt ist, kühlt man
ab, verdünnt die Flüssigkeit in einem Becherglaas, in dem man zugleich
die Granaten abspült, und misst das übrig gebliebene Eisensalz mit Cha-
malon oder chromsaurem Kali rückwärts.

1 g reines chromsaures Bleioxyd wurde in dieser Art mit 4 g Eisen-
doppelsalz digerirt, verdünnt und erforderte 7·2 cbcm empirischer
Chamäleonlösung zu bleibender Röthung. Die 4 g Eisensalz sind $\frac{4}{7}$
$= 0·591$ g Fe; davon gehen ab die 7·2 cbcm Chamäleon mit $0·072$ g Fe; es
bleiben also $0·519$ g Fe und diese mit $1·926$ multiplicirt geben $0·999594$ g
Chromgelb statt 1 g.

Die Bestimmung des schwefelsauren Bleioxydes im Chromgelb wird
wohl selten ausgeführt, kann aber durch Kochen mit gemessenem oder ge-
wogenem kohlenauren Natron und Rückmessung des nicht zersetzen im
Filtrat vorgenommen werden.

Alauerde.

Die Alauerde ist ein erdiges Gemenge von fein vertheiltem Schwefel-
kies, Thon und Braunkohle.

Man pulverisirt die zu untersuchende Probe, trocknet sie im Wasser-
oder Sandbade bei 110° C. und bringt die Substanz in ein weithalsiges,
mit gut schliessendem Stopfen versehenes Glas, aus welchem man die
einzelnen Proben abwägt.

1. Bestimmung des Schwefels.

Man vermischt 1 g Alauerde mit 5 bis 6 g eines Gemenges von
gleichen Atomen reinen kohlensauren Kalis und Natrons (etwa 4 Thle.
kohlensaures Kali und 3 Thle. kohlensaures Natron) und 1 g chlorserauen
Kalies; dieses Gemenge erhitzt man in einem Platintiegel, bis es mit merk-
barem Zischen (Kohle) anfängt zersetzt zu werden, vermindert das Feuer,

2. Eisenbestimmung.

Das Filtrum aus der vorigen Operation, welches das Eisenoxyd von 1 g Alaunerde enthält, wird getrocknet, im Platintiegel zu Asche verbrannt und dann im Tiegel in starker reiner Salzsäure das Eisenoxyd gelöst. Das Eisenchlorid wird mit Zink behandelt und mit empirischer Chamäleonlösung gemessen.

4. Die organischen Bestandtheile.

Eine organische Analyse ist bei diesem Körper kaum angezeigt. Es genügt, wenn man die Summe der organischen Stoffe, die Braunkohle sind, bis auf ein Procent genau weiss.

Den Schwefelgehalt kennt man aus der Analyse und ebenso den Eisengehalt. Man berechnet, wie viel das vorhandene Eisen Sauerstoff aufnimmt, um in Oxyd überzugehen; dieses wird vom Schwefel und der Rest vom Glühverlust im Sauerstoff abgezogen. Der letzte Rest gibt die organische Substanz.

Th on.

(Kaolin, Pfeifenthon, Walkererde etc.)

$\text{Al}_2\text{O}_3, 2\text{SiO}_2, 2\text{H}_2\text{O}.$

Natürliche wasserhaltige Thonerdesilicate aus krystallinischen Silicaten durch Kohlensäure entstanden. Sie bilden die Grundlage der Töpferkunst vom rothen Ziegel bis zum echten Porzellan.

100 ccm obiger Flüssigkeit bringt man mit reinem Zink zusammen, um das Eisen zu bestimmen. Nach vollständiger Reduction (5 bis 6 Stunden) misst man mit $\frac{1}{10}$ empirischer Chamäleonlösung aus.

Aus der anderen Hälfte fällt man Thonerde und Eisenoxyd kochend mit Ammoniak, wäscht aus und bestimmt dem Gewichte nach. Das berechnete Eisenoxyd zieht man davon ab.

Steinkohle.

Die Prüfung derselben bezieht sich auf ihre absolute Heizkraft und ihre Verwendbarkeit zu besonderen Zwecken. Die Heizkraft hängt wesentlich von Aschenmenge ab, denn Alles, was nicht als Asche zurückbleibt, ist brennbar.

1. **Feuchtigkeit.**

2. **Koksausbeute.**

Die zu feinem Pulver zerriebene Steinkohle wird, nicht über 1 g. in einem geräumigen Platintiegel erst langsam, dann stärker bis zum Entzünden der Gasarten zwischen Tiegel und Deckel erhitzt und so lange im Feuer gelassen, bis weder Flammen noch Rauch mehr herausstreiten, dann nach dem Erkalten gewogen. Bei stark aufblühenden Kohlen muss der Tiegel 30 bis 40 mm Höhe haben. Die Koke darf den Deckel nicht berühren. Um vergleichbare Resultate zu erhalten, muss man bei allen Versuchen denselben Tiegel, dieselbe Entfernung des Tiegelbodens von
der Brennerründung und dieselbe Flammenstärke beibehalten, auch das Kohlenpulver immer durch dasselbe Sieb gehen lassen.

3. Asche.

Die Arbeit wird erheblich abgekürzt, wenn man gleich im Anfang das Kohlenpulver mit Alkohol befeuchtet und diesen abbrennt, sowie diese Operation mehrere Male wiederholt. Das Verbrennen der Kohle erfordert eine lange, andauernde und sehr hohe Temperatur, welche durch eine Weingeistflamme kaum hervorgebracht werden kann. Wo die Arbeit öfter vorkommt, würde sich ein Musselofen empfehlen, dessen Muffel durch Steinkohlenfeuer geheizt wird.

4. Schwefel.

Dieser Körper ist in der Steinkohle als Schwefelkies enthalten, der nicht gleichmässig verttheilt ist, sondern sich in Schlieren und Adern,

Braunkohle, Torf.

Die Bestimmung der Feuchtigkeit hat keinen dauernden Werth, da diese beiden Brennstoffe an der Luft Feuchtigkeit aufnehmen und verlieren, gleichsam Hygrometer sind. Grössere Mengen (10 g) der gepulverten

1) Fresenius' Zeitschrift f. analyt. Chem. 13, 344.
2) Fresenius' Zeitschrift f. analyt. Chem. 12, 32.
Trennungen der Bittererde und Alkalien.

Trennungen der Bittererde und Alkalien.

Der gewöhnliche Verlauf der Mineralanalyse, wobei keine seltenen Stoffe vorkommen, ist der, dass man nach Abscheidung der Kieselerde aus dem salzauren Filtrat Eisenoxyd und Thonerde durch Ammoniak fällt, diese nachher wieder löst und trennt, im Filtrat vom Eisenoxyd den Kalk mit oxalsäurem Ammoniak fällt und dann noch die Alkalien und Bittererde in der Lösung behält. Dampft man nun ein und zerstört durch Glühen die Ammoniaksalze und die Oxalsäure, so behält man die Alkalien und Bittererde. Diese sind entweder als schwefelsaure Salze oder als Chlormetalle vorhanden und darnach sind die Trennungs- methoden verschieden.

A. Aus der schwefelsauren Verbindung.

2) Einfacher: Man fällt mit Barytwasser in kleinem Überschuss,
dampft zur Trockne ab, wobei sich der übrige Baryt kohlensauer ausscheidet und hat im Filtrat die Alkalien allein; Baryt und Bittererde trennt man mit Schwefelsäure.

3) Man wägt im Zustande neutraler Sulfate, löst und theilt die Lösung in zwei gleiche Theile; in dem einen bestimmt man die Bittererde mit phosphorsaurem Natron-Ammoniak; im anderen das Kali mit Chlorplatin; das Natron wird aus der Differenz berechnet (Scheerer).

4) C. Rabe (Fresen. Zeitschrift 4, 415) schlägt vor, die Sulfatlösung nicht zu theilen, sondern das Kali mit Chlorplatin zu fällen (und Schwefelsäure?), das Filtrat zur Abscheidung des Kalireses nochmals einzudämpfen, die Lösung durch Salmiak vom Platinchlorid zu befreien, die Bittererde mit phosphorsaurem Natron zu fällen und das Natron aus der Differenz zu bestimmen (?).

B. Aus der Chlorverbindung.

5) Glühen unter Einwirkung von kohlensaurem Ammoniak, wodurch die Bittererde in kohlensäure übergeht und unlöslich wird, die Alkalien aber löslich bleiben, Trennung durch Wasser. Bei einigen Grammen Substanz sind acht Glühungen nothwendig.

6) Nach Bertelius: Glühen der Chlorverbindung mit Quecksilberoxyd, wodurch Chlormagnesium zersetzt wird, die Chloralkalien aber unverändert bleiben. Trennung durch Wasser.

8) Nach Mitscherlich: Durch mehrmaliges Eindampfen mit Oxalsäure und Glühen, wodurch beide als Carbonate übrig bleiben, welche durch Wasser getrennt werden.

10) Nach Sonnenschein (Pogg. 74, 313): Durch 10 Minuten langes Kochen mit kohlensaurem Silberoxyd; gibt kohlensaure Alkalien und Bittererde; die ersten werden mit Wasser ausgezogen, die Bittererde mit Salzsäure und dann beliebig bestimmt.

Diese Methode hat vor den anderen angeführten den wesentlichen Vorzug, dass man keinen fremden Körper mehr auszuscheiden hat, wie oben bei 1) und 2) den Baryt, bei 9) die Phosphorsäure und das Bleisalz, bei 10) kleine Mengen Silber.

Die Bestimmung der Bittererde ist genügend scharf. 2 g Bittersalz gaben 0·330 g Bittererde und 4 g ergaben 0·662 g, statt 0·3252 und 0·6504.

Mineralische Rohsäuren.

1. Rohe Salzsäure.

Man lasse aus einer richtigen Pipette 10 obcm der Salzsäure in ein genau tarirtes 200-obcm-Glas und wäge aus. Das Komma um eine Stelle zur Linken gerückt, gibt das specifische Gewicht. Dann fülle man mit Wasser bis an die Marke an und schüttele um.
VIII. Angewandter Theil.

a) 50 cbcm dieser Flüssigkeit herausgenommen und mit Normal-Kali oder reducirter Barytflüssigkeit auf Blau titrirt gibt die Säurewirkung vom vierten Theil der obigen Gewichtsbestimmung überhaupt. Dieselbe Flüssigkeit, wenn mit Baryt gemessen, mit einigen Tropfen reiner Salzsäure roth gemacht, erhitzt und filtrirt, gibt gewogen schwefelsauren Baryt der Schwefelsäure entsprechend. Der schwefelsaure Baryt $\times 0.343$ gibt wasserleere Schwefelsäure, und diese $\times 0.911$ gibt die entsprechende Menge Salzsäure; oder kürzer, beide Verhältnisse multipliziert ($0.911 \times 0.343 = 0.3125$), so gibt der schwefelsaure Baryt $\times 0.3125$ unmittelbar die entsprechende Menge wasserleerer Salzsäure.

Wird die Gesammt säurewirkung auf wasserleere Salzsäure berechnet (die Cubikcentimeter Normal $\times 0.03646$), so hat man davon die letzt gewonnene Menge Salzsäure abzuziehen und den Rest auf Procente zu berechnen.

c) Arsen. Man verdünne eine grössere Menge Salzsäure mit der 6- bis 8 fachen Menge Wasser, leite Schwefelwasserstoff in die nur $1/4$ gefüllte Flasche und lasse unter Glasstopfenverschluss längere Zeit warm stehen. Der Absatz, welcher immer freien Schwefel enthält, wird auf einem Filtrum ausgewaschen, dann mit Ammoniak in eine leichte Platinoscale filtrirt und zur Trockne abgedampft, wobei Schwefelarsen übrig bleibt, wenn Arsen vorhanden war. Übrigens ist die bloße Nachweisung von Arsen ohne Gewichtsbestimmung schon genügend zur Beurtheilung oder Verurtheilung.

2. Rohe Schwefelsäure.

3. Salpetersäure, Scheidewasser.

Wasserglas.

Flüssiges.

1. Man wägt eine kleine Menge in einer Platinschale genau ab, verdampft das Wasser mit einer kleinen Flamme, zuletzt aber so stark, dass eine aufgelegte kalte Glasplatte nicht mehr beschlägt und auch alles Knistern aufgehört hat. Der Rest stellt eine schwammartig aufgetriebene Masse dar. Der gewogene Rest gibt durch Berechnung die Procente an wasserleerer Substanz und Wasser.

Beispiel: 3·300 g Natronwasserglas hinterliessen geglüht 1·080 g

4·3 g Wasserglas erforderten 10·2 ccbm Normalsalzsäure = 0·3162 g
= 7·35 Proc. Natron; diese von 32·72 Proc. Substanz abgezogen, lassen 25·37 Proc. Kieselerde. Es sind also erhalten worden:

Natron . . . 7·35
Kieselerde . . . 25·37
Wasser . . . 67·28

100·00
Flüssiges Wasserglas kann keine Erden oder Metalloxyde enthalten, deren Silicate unlöslich sind. Festes Wasserglas muss erst fein gepulvert und durch Kochen gelöst werden und wird dann durch eine Titrierung mit Normalsalzsäure vollständig analysirt, falls nur ein Alkali vorhanden ist. Sollte Kali bestimmt werden, so muss erst die Kieselerde durch Ein dampfen mit Salzsäure ausgeschieden, und dann im Filtrat das Kali des Chlorkalium in bekannter Weise bestimmt werden.

H a r n.

Die meisten der quantitativen Bestimmung fähigen Bestandtheile des Harns können massanalytisch bestimmt werden. Es gibt Fälle, wo man nur einen Bestandtheil zu bestimmen wünscht (das Kochsalz bei Nerven fiebern), meistens werden die drei Bestandtheile Kochsalz, Harnstoff und Phosphorsäure bestimmt. In einzelnen Fällen werden noch einige andere Bestandtheile aufgesucht. Die Menge des gelassenen Harns wird aus schliesslich nur nach Volum angegeben, indem man sich dazu graduirter Zylinder bedient, die nöthigenfalls mehrmals ausgeleert werden. Aus diesem Grunde werden die Bestandtheile auch nur auf Volum reduziert, weil man den Vortheil hat, die einzelnen Mengen Harn geradezu aus einer Bürette auslaufen lassen zu können, und die Gewichtsbestimmung eines einzelnen Körpers, auf das ganze gelassene Volum reduziert, sogleich die ganze ausgeschiedene Menge eines einzelnen Körpers für den Tag oder die gelassene Menge Harn ergibt. Da das Ansauge des Harns in Pipetten etwas Unangenehmes hat, so bedient man sich zum Messen einer in der Etagère stehenden Bürette von 50 bis 60 cccm. Inhalt, die in fünftel Cubikcentimeter geteilt ist.

Der zur Analyse bestimmte Harn wird zweckmässig vor dem Versuche filtrirt, weil die auch in jedem gesunden Harn befindlichen Epithelialzellen die Erscheinungen trüben und spätere Filtrationen erschweren. Man habe also mit dem filtrirten Harn eine Bürette gefüllt und gehe zur Analyse über.

1. Kochsalzbestimmung.

Wenn man den Chorgehalt des Kochsalzes im Harn direct durch Zehntel-Silberlösung unter Zusatz von neutralem chromsauren Kali als
Indicator bestimmen will, so bemerkt man gegen Ende der Operation nicht jenes plötzliche Eintreten der rothen Färbung, wie bei reinen Salzen, sondern die Farbe geht durch zunehmendes Gelb so allmählich in die röthliche über, dass zwei Beobachter um namhafte Volumtheile der Massenflüssigkeit von einander abweichen. Directe Versuche mit reiner Kochsalzlösung unter Zusatz von phosphorsaurem Natron und dann von Harnstoff zeigten, dass diese beiden Bestandtheile des Harns nicht die Ursache der abweichenden Erscheinung sind. Es scheint ziemlich festzustehen, dass die Extractiv- und Farbestoffe des Harns, über deren Natur man so wenig weiß, die Veranlassung zu der erwähnten trüben Erscheinung geben.

Der Farbstoff des Harns lässt sich durch keines der bekannten Entfärbungsmittel, wie Kohle, Thonerde, Kalkmilch, entfernen und es musste ein Verfahren gesucht werden, denselben auf eine leichte Weise zu zerstören. Es geschieht dies am leichtesten durch Eindampfen und Erhitzen mit Salpeter.

Wenn man 5'85 cbm Harn aus einer geteiltlen Pipette abfiessen lässt, und darin durch eine zuverlässige Methode mit Zehntel-Silberlösung das Chlor bestimmt, so sind die Cubikcentimeter der verwendeten Silberlösung Gramme Kochsalz im Liter. Die Zahl 5'85 cbm ist nämlich der zehnte Theil des Atomgewichtes des Kochsalzes, und nach dem Systeme der Titrimethode wird die Substanz immer im Gewichte des zu suchenden Körpers angewendet (S. 51).

Man lässt aus einer in Zehntelcubikcentimeter geteilten Pipette die 5'85 cbm Harn in eine kleine Schale (am besten aus Platin) ablaufen, setzt 1 g chlorfreien Salpeter hinzu, dampft die kleine Menge rasch (3 bis 4 Minuten) zur Trockne ab, und erhitzt bei allmählich gesteigerter Hitze, bis die Kohle sich oxydiert und der Rest ein geschmolzenes farbloses Salz darstellt. Wenn man langsam arbeitet, so findet kaum eine Lichterscheinung statt. Eine Schale verdient den Vorzug vor einem Tiegel, weil in letzterem die Masse zu hoch steigt und leicht kleine Verpuffungen eintreten. Eine Silberschale würde auch anwendbar sein, sogar eine eiserne; eine Porzellanlschale lässt sich nicht leicht zu der nöthigen Hitze bringen. Die Menge des zugesetzten Salpetters ist bei weitem grösser, als zur Verbrennung der Kohle nöthig ist, da schon 0'2 g Salpeter hinreichen. Allein je richtiger das Atomverhältniss genommen wird, desto heftiger ist die Deflagration, so dass der überschüssige Salpeter nur zur Mässigung der Hitze hinzugefügt wird. Die Salzsmaße löst man in wenig Wasser. Sie bedarf keiner Filtration. Da durch die Zersetzung des Salpeters kohlensaures Kali entsteht, die Titirung des Chlors am deutlichsten aber in einer neutralen Flüssigkeit auftritt, so sättigt man dies kohlensaure Alkalii durch Hinzufügen von salpetersaurem Kalk, wodurch kohlensauren Kalk gefällt wird, der in der Flüssigkeit bleiben kann. Man setzt einige Tropfen chromsaure Kalilösung hinzu, und bestimmt den Chlorgehalt in bekannter Weise.
Ein und derselbe Harn zeigte nach diesem Verfahren einen Chlor-gehalt, welcher durch die Zahlen 11.8, 11.9, 11.85 cbcm gemessen wurde, also einen Kochsalzgehalt von 11.8, 11.9, 11.85 g Chlornatrium im Liter, während der natürliche Harn ohne Glühung 13.1 und 12.8 g zeigte. Man ersieht hieraus die Grösse des Fehlers, den man ohne die Zerstörung der Farbstoffe begeht, abgesehen von der Unsicherheit in der Beurtheilung.

2. Harnstoffbestimmung.

a. Ohne Korrektion.

Man lässt 10 cbcm Harn aus der Bürette in ein Becherglas ausfließen, bringt sie unter die Bürette mit der empirischen salpetersauren Quecksilberoxydlosung (Seite 440) und lässt so lange davon hinzu, bis eine kleine auf ein Uehrglas gegossene Menge Flüssigkeit mit einer Lösung von kohlensaurem Natron eine gelbliche Färbung erzeugt. Dies tritt erst nach einiger Zeit ein, weshalb man das Uehrglas, ohne durch Rütteln zu mischen, eine Zeit lang ruhig hinstellt. Die verbrauchten Cubikzentimeter Quecksilberlösung durch 10 dividirt geben die Procente Harnstoff.

b. Mit Korrektion.

Man mische 50 cbcm Harn, den man aus der Bürette ausfließen lässt, mit 50 cbcm Barytwasser, schüttele um und filtriere. Von dem Filtrat nehme man 20 cbcm = 10 cbcm Harn, stumpsse das freie Baryhydrat mit einigen Tropfen Salpetersäure ab und versetze sie mit so viel Zehntel-Silberlösung, wie aus der vorher ausgeführten Kochsalzbestimmung zur
vollständigen Fällung des Kochsalzes nötig ist. Man weiß, wie viel Silberlösung man auf 5:85 cbcm Harn verbraucht hat, und berechnet die Menge für 10 cbcm Harn durch eine Proportion. Diese Flüssigkeit braucht man nicht zu filtrieren, sondern bringt sie mit dem Chlorsilber unter die Quecksilberbürette und bestimmt den Harnstoff in der bekannten Weise. Da kohlensaures Natron nicht auf Chlorsilber wirkt, so ist dessen Anwesenheit nicht schädlich.

3. Phosphorsäure.

Man versetze 100 ccbm filtrirten Harn mit Essigsäure und dann mit oxalsaurer Ammoniak, lasse in der Wärme absetzen, filtrire, wasche aus, und bestimme die Oxalsäure mit empirischem Chamäleon:

\[\text{Fe} \times 0.5 = \text{CaO}. \]

Hat man das Chamäleon auf krystallisirte Oxalsäure gestellt, so ist

\[\text{Kalk} = \frac{28}{63}, \text{also Oxalsäure} \times 0.444 = \text{Kalk}. \]

5. Eisen.

Man dampfe 100 ccbm Harn ein und verbrenne den Rest in einem Platintiegel unter Zuwerfen von salpetersaurer Ammoniak, die geglühte Masse ziehe man mit Salzsäure kochend aus, bringe die Lösung (filtrirt oder nicht) auf Zink und bestimme Eisen mit Chamäleon. Metallisches Eisen liest man an der Bürette ab und dies mit 10 multiplicant und mit 7 dividirt gibt Eisenoxyd.

6. Harnsäure.

Man versetze 300 ccbm Harn mit 5 ccbm englischer Schwefelsäure, lasse einen oder einige Tage möglichst kalt stehen, giesse die Flüssigkeit sanft vom Niederschlage ab, füge etwas kaltes Wasser hinzu und giesse nochmals ab. Den Niederschlag löse man in wenig warmem Kali, verdünne, setze viel Schwefelsäure zu und bestimme die Harnsäure mit Chamäleon.

\[\text{Fe} \times 1.21 = C_8\text{H}_9\text{N}_3\text{O}_2,\text{H}_2\text{O}. \]

unberücksichtigt lässt. Uebrigens hat die Gewichtsbestimmung der ausgeschiedenen Harnsäure dieselben Fehler, die ebenfalls nicht beseitigt werden können.

Zabelin hat (Annal. d. Chem. u. Pharm. 2. Suppl. 313) die blosse Ausscheidung der Harnsäure durch Salzsäure zum Gegenstand einer Untersuchung gemacht, und den Verlust, der durch die Löschlichkeit der Harnsäure entsteht, durch eine Korrektion beseitigt, indem er für jede 100 cbm der nach der Filtration und dem Auswaschen gemessenen Flüssigkeit, im Mittel von vielen Bestimmungen, 4-5 mg Harnsäure der gewogenen Menge hinzufügt, dabei aber überschreiten, dass Neubauer schon 6 Jahre früher dasselbe Korrectionsverfahren ausgeführt und veröffentlicht hat, welcher Letzter die mit Zabelin sehr übereinstimmende Korrektion von 3-9 mg für je 100 cbm Flüssigkeit gefunden hatte. Diese Korrektion kann beim Arbeiten mit reiner Harnsäure sicher angebracht werden, dagegen weniger bei röthlichem Harn, da sich die Harnsäure fast niemals farblos ausscheidet, also jedenfalls noch mit Farbstoffen behaftet ist. Da aber die Farbstoffe auch Chamäleon entfärben, so habe ich vorgezogen, keine Korrektion anzubringen, weil beide Fehler sich bis zu einem gewissen Grade ausgleichen.

Die Harnsäure, \(\text{C}_3\text{H}_2\text{N}_4\text{O}_7\cdot\text{H}_2\text{O} \), ist eine einbasische Säure und stellt im reinen Zustande ein aus mikroskopischen Krystallen bestehendes sehr lockeres Pulver dar. In kaltem Wasser wirkt sie auf Lackmustinctur gar nicht, beim Erwärmen färbt sie die Lackmustinctur wie Kohlensäure. Sie kann nicht alkaliometrisch bestimmt werden.

Von Jodlösung wird sie nicht verändert und der erste Tropfen selber färbt die beigemengte Stärkelösung blau. In alkalischer Lösung wird Jod eine Zeit lang aufgenommen und die zuerst gebildete blaue Farbe verschwindet wieder. Man bleibt aber zuletzt ganz unwissend, weil die blaue Farbe erst nach längerer Zeit verschwindet. Man kann daraus schliessen, dass sich organische Verbindungen bilden, die selbst nicht ganz empfindlich gegen freies Jod sind.

Gegen freie Chromsäure ist die Harnsäure unempfindlich in saurer und alkalischer Lösung, ebenso lässt Kaliumeisencyanid keine bestimmte Reaction erkennen.

Eine alkalische Lösung von Harnsäure färbt Chamäleon erst grün, wie Zucker und andere Körper, und setzt ein Manganoxysd als braunes Pulver ab, so dass nur die Bestimmung durch Uebermangansäure in saurer Lösung übrig blieb. Die Zahlen bei reiner Harnsäure stimmen ziemlich gut mit einander.

7. Freie Säure.

Man messe 100 cbm Harn ab, bringe sie unter die Bürette mit Normalalkali, lasse dies tropfenweise einfließen und prüfe durch Streichen mit einem Glashöfe oder einer Federfahne über violettess Lackmuspapier,

Mohr, Titirrbuch.
VIII. Angewandter Theil.

8. Ammoniak.

Bei näherer Betrachtung der eigenthümlichen Zersetzung des Harnstoffs und der Ammoniaksalze gelang es, eine directere und viel einfacher Bestimmung des Ammoniaks aufzustellen.

WENN Ammoniaksalze mit fiesen Alkalien zersetzt werden, so geht die Säure an das Alkali, und das Ammoniak entweicht im Kochen. Wenn die ausbrechenden Wasserdämpfe keinen Ammoniakgehalt mehr durch geröstetes Lackmuspapier zu erkennen geben, ist die Zersetzung vollendet und das zugesetzte Alkali hat eben so viel an Alkalität verloren, als dem entwichenen Ammoniak entsprach. Wird Harnstoff durch Kochen mit Aetzkali zersetzt, so entweicht ebenfalls Ammoniak, aber das Kali bleibt als kohlensaures Kali zurück und hat nichts an seiner Alkalität eingebüßt. Es ist also ganz gleichgültig, ob bei der Destillation des Harns
mit Aetzkali der Harnstoff zersetzt wird oder nicht. Wir messen nicht die Alkalität des entweichenden Ammoniaks, welches zum Theil vom Harnstoff kommt, sondern nur die übrigbleibende Alkalität des gemessenen Alkalis. Die Operation führt sich in der folgenden Art aus.

1 cbcm Normalkali = 0'017 g Ammoniak.

Versuch. 100 cbcm Harn erforderten zur Sättigung der freien Säure 0'6 cbcm Normalkali. Es würden nun noch 10 cbcm Normalkali zugefügt und der Harn damit abgekocht. Zur Sättigung des überschüssigen Kalis wurden verbrannt 3'5 cbcm Normalsalzsäure. Es waren also 6'5 cbcm davon gesättigt. Diese mit 0'017 multiplicirt geben 0'1105 g oder Procent Ammoniak.

Eine Wiederholung derselben Analyse mit demselben Harn, wobei sehr lange gekocht wurde, gab 3'4 cbcm Normalsalzsäure zur Sättigung des nicht abgestumpften Kalis. Es kamen also 6'6 cbcm Normalkali zur Berechnung = 0'1122 Proc. Ammoniak.

Diese Methode ist leichter auszuführen, als die von Schloësing; man kann die Beendigung der Zersetzung an einem sicheren Zeichen erkennen und dieselbe beliebig herbeiführen.

VIII. Angewandter Theil.

ing'sche Verfahren sämtliches Ammoniak ausgetrieben und gewonnen werde. In der 2. Auflage des Commentars zur preussischen Pharmacopoë habe ich (II, 77) nachgewiesen, dass bei gleichen Theilen Salmiak und Aetzkalk, also bei 2 At. Kalk, und Abdestilliren bis zur Trockne sich noch Salmiak unzersetzt im Rückstand befand. Bei dem Schlössing'schen Verfahren lässt sich auch die Probe nicht anstellen, denn bei stärkerem Erwärmen, was grundsätzlich vermieden wird, zersetzen sich auch Harnstoff und andere Körper 1).

Man erhitzt eine gemessene Menge Harn in einer Kochflasche und saugt mittelst eines Aspirators einen Strom atmosphärischer Luft, der durch eine Glaubersalzkalkröhre gegangen ist, durch den stark erwärmten Harn und dann durch Barytwasser in eine Knieröhre.

was jetzt viel leichter geschieht, um zu sehen, ob noch feuerbeständige Reste vorhanden sind.

Durch das Barytwasser wurden Schwefelsäure, Phosphorsäure, Kalk, Bittererde und Eisenoxyd gefällt, durch das kohlensäure Ammoniak der überschüssige Baryt. Es konnten also im Filtrat nur die Salze der fixen Alkalien und des Ammoniaks vorhanden sein mit den organischen Stoffen, welche durch die spätere Glühung zerstört wurden.

Da die indirekte Analyse leicht Veranlassung zu größeren Fehlern gibt, als die direkte Ausmessung und Wägung eines Körpers, und da die Bestimmung des Natrons wegen des Kochsalzgenusses keinen Werth hat, so ist es zweckmässig, die Bestimmung des Kalis allein vorzunehmen, und dazu die Platinmethode oder die Weinsteinmethode (S. 153) zu wählen.

11. Harnzucker.

Man vermischt eine gemessene Menge Harn mit etwas Kalkmilch, verdünnt ihn zu seinem doppelten Volum und filtrirt. Das Filtrat kommt in die Blasebürette (S. 20, Fig. 32). In einer PorzellanSchale löse man eine Portion weinsaures Kupferyoxyd, welche für 0,5 g oder 1 g reinen Stärkekzucker titrit ist (S. 448), in Aetznatron auf, erhitze bis nahe zum Kochen und lasse nun den Harn hinzu, bis die bekannte Erscheinung der Entfärbung eingetreten ist. Das verbrauchte Volum Harn, welches wegen seiner Verdünnung nur der Hälfte natürlichen Harms entspricht, enthält alsdann 0,5 oder 1 g Zucker, wonach man den Procentgehalt berechnet; oder man falle eine gemessene Menge Harn mit der alkalischen Kupferlösung und bestimme das Kupferyoxydul mit Chamäleon nach S. 226.

12. Jod.

Dieser Körper kann nur im Harn enthalten sein, wenn er durch Arzneien, Bäder oder Einreibungen in den Körper gelangt ist. In den meisten Fällen genügt es, die Gegenwart des Jods durch eine der vielen Methoden 1) nachzuweisen, wenn man erkennen will, ob Jod überhaupt in den Körper gekommen sei, was bei Bädern und Einreibungen allein zweifelhaft sein könnte. Will man das Jod quantitativ bestimmen, so ist zu bemerken, dass es sich hier durch Eisenchlorid nicht ausscheiden lässt, da auch andere Stoffe im Harn das Eisenchlorid reduciren, wie die Harnsäure. Es ist am zweckmässigsten, eine gemessene Menge Harn mit

1) Das Jod kann ausgeschieden werden 1. durch Chlor, 2. Brom, 3. unterchloris-

kohlensaurem Kali einzudampfen und durch Schmelzen die organischen Körper zu zerstören, den Rückstand mit Wasser auszuziehen und mit Eisenchlorid und Salzsäure zu destillieren. Im Destillat kann man dann das Jod durch Stärke und Zehntel oder Hundertstel unterschweifligsaures Natron bestimmen.

Dieselbe lässt sich nicht durch Eindampfen im Wasserbad oder einem trocknen Luftstrome bestimmen, weil sich gegen Ende Harnstoff zersetzt, Ammoniak entweicht, ja unter Umständen sogar kohlensaures Ammoniak sublimirt. Neubauer (Fresen. Zeitschr. 1, 166) hat diese Frage erschöpfend behandelt, und zu Normalbestimmungen eine sehr mühsame Methode angewendet, wo das entweichende Ammoniak von Säuren aufgesammelt und durch Rückmessung alkalmétrisch bestimmt wird. Indem man es auf Harnstoff reducirte und dem übrigen Rest zufügte, erhielt man die Summe der Bestandtheile. Neubauer hat diese mühsame Arbeit unternommen, um die Beziehungen zum spezifischen Gewichte des Harnes festzustellen, wodurch dann Anderen die Mühe derselben Arbeit erspart bleibt, weil man aus dem spezifischen Gewichte die Summe der festen Bestandtheile berechnen kann. Er fand nun übereinstimmend mit einer früheren Arbeit von Häser, dass, wenn man das spezifische Gewicht des Harnes auf 4 Decimalen bestimmt, die drei letzten Decimalen mit 0·233 multiplicirt annähernd die Summe der Bestandtheile in 1000 Theilen geben. Wäre zum Beispiel das spezifische Gewicht = 1·0160 gefunden worden, so würden die drei letzten Ziffern als Ganze genommen und mit 0·233 multiplicirt die Summe geben: 160×0·233 = 37·28. Der Versuch hatte 37·4 gegeben, oder 3·74 Proc. Für das spezifische Gewicht 1·0137 wäre 137×0·233 = 31·92; der Versuch hatte 32·55 gegeben.

Da sich aus der Summe der Bestandtheile medicinisch nicht viel machen lässt, und wissenschaftlich noch weniger, so dürfte man sich bei diesem einfachen Verfahren beruhigen.

15. Harnsedimente.

a. Freie Harnsäure.

Das Bestimmen des Gewichtes eines solchen Sedimentes ist misslich. Man bestimmt am einfachsten die Harnsäure selbst, löst den Niederschlag in wenig heissem Aetzkali, verdünnt bis zu 300 ccbm, nimmt 50 oder 100 ccbm heraus, versetzt sie mit viel Wasser und überschüssiger Schwefelsäure und bestimmt die Harnsäure mit Chamäleon.

c. Oxalsaurer Kalk, Maulbeersteine.

d. Phorphorsaure Ammoniak-Magnesia.

Sollte gleichzeitig Kalk vorhanden sein, so kann dieser durch Oxalsäure in essigsaurer Lösung gefällt und durch Chamäleon bestimmt werden; aus dem Filtrat vom oxalsauren Kalk kann die Bittererde mit Ammoniak als Doppelsalz gefällt und nach dem Auswaschen bestimmt werden.
e. Harnsaures Ammoniak.

Das Ammoniak kann man durch Destillation mit Aetzkali, Auffangen des Destillats in einer gemessen Menge Normalsalzsäure und Rückwärtsbindestimmen der noch nicht gesättigten Salzsäure bestimmen; die Harnsäure in der der Destillation unterworfenen Flüssigkeit durch Verdünnen, Uebersättigen mit Schwefelsäure und Bestimmen der Harnsäure mit Chamäleon (s. oben Nr. 6).

Indigo.

Tröpfelt man in eine schwefelsaure Indiglösung von bedeutender Verdünnung Chamäleonlösung, so bemerkt man im ersten Augenblick wegen der Intensität der Farbe keine Veränderung, allmählich aber geht die bläue Farbe in die grüne über und diese wird heller, indem sich ein brauner Ton beimengt; lässt man nun Chamäleon unter beständigem Umschwenken tropfenweise hineinfallen, so verschwindet mit einem Male der letzte Stich von Grün, und ein schmutziges Gelb, bei grösserer Konzentration ein schwaches Braun, ist an die Stelle getreten. Die Operation ist nun vollendet. Gibt man mehr Chamäleon hinzu, so wird die Farbe noch eine Zeit lang heller, allein die rothe Farbe des Chamaleons tritt noch lange nicht ein, weil die aus dem Indig entstandenen organischen Körper noch viel Chamäleon zerstören können, ohne selbst merkbare Erscheinungen darzubieten. Man hat also bei dieser Operation das Verschwinden der blauen und grünen Tinten, nicht aber das Eintreten der rothen Farbe des Chamaleons abzuwarten. Und darin liegt auch die

Berechtigung des Schlusses, dass die Färbekraft des Indigs proportional sei der zu seiner Zerstörung nöthigen Menge Chamäleonlösung, weil nur der Farbstoff zerstört wird. Um eine solche Bestimmung auf absolutes Maass zurückzuführen, hätte man nur noch die Beziehung der empirischen Chamäleonlösung zu reinem Indigblau festzustellen.

Es tritt jedoch bei allen diesen auf Zerstörung der Farbe gerichteten Erscheinungen eine Schwierigkeit ein, welche den Resultaten eine gewisse Unsicherheit und Willktürllichkeit giebt. Der Farbstoff ist allerdings der zerstörbarste Theil des Gemenges, allein bei nicht vollständiger Durchdringung beider Flüssigkeiten wirkt sowohl das Chlor als das Chamäleon auch auf andere Stoffe, mit denen es in Berührung kommt. Bei starkem Schütteln während des Mengens braucht man weniger Entfärbungsmittel, als wenn man schwach schüttelt, weil im letzteren Falle vor vollständiger Zerstörung des Farbstoffes auch andere Stoffe angegriffen werden, und sogar der entfärbte Farbstoff weiter gechlort oder oxydiert wird.

Von einer schwefelsauren Indigelösung wurden 50 cbcm herausspitgetirt und unter starkem Schütteln mit Chlorwasser, welches aus einer Bürette ausfloss, gemengt. Es waren 46'7 cbcm Chlorwasser gebraucht worden. Es wurden nun wieder 50 cbcm derselben Indigelösung genommen und 46'7 cbcm Chlorwasser hinzugelassen, dann das Glas verschlossen hingestellt und erst nach einigen Minuten umgerüttelt. Die Flüssigkeit war jetzt noch ganz blau, und um sie wie die erste Probe zu entfärben, mussten noch 10'8 cbcm Chlorwasser hinzugelassen werden. Es ist klar, dass man bei verschiedener Manipulation des Mischens jede Zahl zwischen 46'7 und 57'5 cbcm hätte erhalten können, und bei noch langsamerem Mischen weit über 57'5 cbcm hinaus. Es muss deshalb bei allen derartigen Versuchen eine ganz gleiche Manipulation beobachtet werden, und bei den noch immer verschiedenen Zahlen ist offenbar die niedrigste der Wahrheit am nächsten. Es bleibt aber immer die Entfärbungsmethode bei Indigo eine der am wenigsten sicheren massanalytischen Methoden und dürfte auch nicht leicht gründlich verbessert werden können, ausser wenn man einen Stoff entdeckte, welcher nur den blauen Farbstoff veränderte, wozu wenig Hoffnung vorhanden ist.

Der zu prüfende Indig muss unter allen Umständen in schwefelsaurer Lösung sein. Der im Wasser vertheilte Indig gibt gar keine deutlich wahrnehmbaren Farbenveränderungen und erfordert viel mehr Entfärbungsmittel als der wirklich in Lösung befindliche.

Von einer schwefelsauren Indigelösung, welche 1 g Indig im Liter enthielt, wurden 50 cbcm durch 46'7 cbcm Chlorwasser entfärbt.

Als 1 g Indig in 1 Liter Wasser fein aufgeschlämmt war, konnten zu 50 cbcm frisch geschüttelter Flüssigkeit 94 cbcm Chlorwasser zugegeben werden, und noch erschien die Flüssigkeit trüb blau. Sie roch durchdringend nach Chlor und war noch nicht entfärbt. Chamäleon wirkt besser; es entfärbt auch suspendirten Indig vollständig, allein es geht eine weit grössere Menge darauf.

Um den Indig vollständig mit der Schwefelsäure in Berührung zu bringen und bei abgehaltenem Luftzutritt beliebig lange zerdücken zu können, bedient man sich mit dem besten Erfolg der folgenden Methode.

Man wägt 1 g feingepulverten Indig genau ab, bringt ihn in ein mit Glasstopfen gut verschliessbares, etwa 120 cbcm haltendes trockenes Glas, worin sich 60 bis 80 g kleine Granaten befinden. Diese Steine werden in Böhmen aus dem Granatsels heraushemalen und zum Tarieren verwendet. Man kann sie pfundweise in Apparatenhandlungen zu sehr billigem Preise erhalten. Man vertheilt das Indigpulver erst trocken durch kräftiges Umschütteln und gibt dann 12 bis 15 g konzentrirte Schwefelsäure mit etwas Nordhäuser Vitriolöl, was gemessen 7 bis 8 cbcm ausmacht, hinzu, setzt nun den Glasstopfen fest auf und schüttelt kräftig mit den Granaten um. Es findet dadurch die vollständigste Vertheilung statt, und wenn man das Glas 6 bis 8 Stunden bei dann und wann wiederholtem Schütteln an einen mildwarmen Platz stellt, so ist die Auflösung, soweit sie überhaupt möglich ist, erfolgt. Man öffnet nun die
Indigo.

Schlumberger (Dingler’s polytechn. Journal, Bd. 84, Seite 369) titriert seine Chlkalklösung mit reinem Indig, den er durch Oxydation einer Indigkäfe an der Luft dargestellt hat. Indem er diesen Indig als rein = 100 Proc. annimmt und danach seine Chlkalklösung abliest, kann er den Verbrauch derselben Chlkalklösung bei anderen Indigsorten auf reinen Indig berechnen. Da die Chlkalklösung nicht haltbar ist, so erfordert jeder Versuch nach längerer Zeit eine neue Titirung mit reinem Indig, welcher ein schwierig herzustellender und theuerer Körper ist. Schlumberger nimmt den Schaum von seinen Indigkäpfen, den er mit Salzsäure und Wasser auswäsch, was aber nicht jedem zu Gebote steht.

Penny (Dingler’s polytechn. Journal, Bd. 128, S. 208) wendet saures chlorsaures Kali und Salzsäure zur Entfärbung des Indigs an. Da sich durch Wechselwirkung dieser Stoffe ebenfalls Chlor bildet, so tritt diese Methode in die Reihe der mit Chlor arbeitenden. Sie gehört mit zu den besseren, da das saure chlorsaure Kali seinen Titer behält, die Lösung auch zu anderen Arbeiten der Maassanalyse dienlich ist und mit Salzsäure bei gewöhnlicher Temperatur auf Indig wirkt, was es vor dem chlorsauren Kali voraus hat. Dass das gebildete Chromchlorid eine grüne Farbe hat, ist ein Nachtheil, welcher das Erkennen erschwert.

Alle Chlormethoden haben die Eigenthümlichkeit des Nachbleichens. Schwach grüne Flüssigkeiten verlieren nach einiger Zeit den Rest der grünen Farbe und erscheinen dann ganz gebleicht; stark nach Chlor riechende Flüssigkeiten sind anfangs noch grün gefärbt. Setzt man einer eben entfärben Probe frische Indiglösung zu, so wird sie nicht sogleich
Opium, Morphium.

Beidem Morphium sind es zwei Eigenschaften gewesen, auf welche sich die einzuschlagenden Methoden gründen sollten: seine Alkalität und seine Zerstörbarkeit durch oxydirende Körper.

Die Alkalität des Morphiums ist so schwach und sein Atomgewicht so hoch, dass von dieser Eigenschaft kein wesentlicher Nutzen gezogen werden konnte. Nach der Formel würde 1 cbcm Normalsäure 0,308 g krystallisirtes Morphium vorstellen, und ein ganzen Gramm Morphium würde nur 3,3 cbcm Normalsäure darstellen. Bei einem dieserhalf angestellten Versuche wurde 0,1 g Morphium in 10 cbcm Normalsalzsäure gelöst und dagegen 9,7 cbcm Normalkali gebraucht, wonach 0,1 g krystallisirtes Morphium = 0,3 cbcm Normalsäure ist. Ebenso wurde 1 g Morphium in 10 cbcm Normaloxalsäure gelöst, und 6,8 cbcm Normalkali dagegen gebraucht, wonach 1 g Morphium = 3,2 cbcm Normalsäure zu stehen käme, was mit der Voraussetzung ziemlich stimmte. Es wäre aber dann die Morphiumbestimmung von allen alkaliometrischen Proben die am wenigsten genaue, weil das Atomgewicht das höchste ist. Uebrigens sieht man den Farbenwechsel mit kohlensäurefreiem Alkali ganz deutlich, und es wäre mit sehr fein getheilten und engen Büretten ein ziemlicher Grad von Genauigkeit zu erreichen.

Einem anderen Gedanken, das Morphium in seinen neutralen Salzen durch seine Wirkung auf Kupferoxyd-Ammoniak zu bestimmen, hat Kieffer keine weitere Folge gegeben, weil, wenn einmal das Morphium als solches oder als reines Salz dargestellt ist, seiner Wägung kein Hinderniss entgegensteht.

Eine andere Reihe von Methoden, das Morphium zu bestimmen, gründet sich auf dessen Oxydirbarkeit durch Sauerstoff abgebende Körper.
Das Morphinum entfärbt in saurer Lösung die Chamäleonlösung, anfangs rasch, gegen Ende immer langsamer, so dass man die Vollendung der Zersetz ung gar nicht mehr beurtheilen kann.

Ein Agens, womit Kieffer eine Reihe von Versuchen anstellte, ist das Kaliumeisencyanid. Auch dieses Salz wird vom Morphinum in seiner alkalischen Lösung zersetzt, und Kieffer glaubte zu finden, dass sich gleiche Atome beider Körper zersetzen und dass die Wirkung augenblicklich wäre. Wenn sich dieses bestätigte, so war darin eine Bestimmung des Morphiums durch Restanalyse gegeben, indem das Kaliumeisencyanid sehr leicht durch Jodkalium und Zinkvitriol in eine äquivalente Menge Jod übergeführt und dieses durch Stärke und unterschwefligaures Natron bestimmt werden konnte. Meine Versuche gaben kein günstiges Resultat. Der Anfang der Zersetzung ist zwar augenblicklich, so dass man bald gebildetes Blutlaugensalz nachweisen kann, allein das Ende hängt von der Menge des zugesetzten Kaliumeisencyanids, der Zeit und Erwär mung ab.

Da sich der Salzsäuregehalt des salzsauren Morphiums sehr scharf durch Silberlösung bestimmen lässt, so wurde noch ein Versuch angestellt, durch Bestimmung des Chlors die Menge des Morphiums zu finden.

0,3 g reines salzsaures Morphium erforderten bis zur Erscheinung der rothen Farbe des chromsauren Silberoxyds genau 8 ccm Zehntel-Silberlösung. Diese sind $= 8 \times 0,03646 = 0,0029168$ g Salzsäure, und dies macht nach der Proportion:

$0,3 : 0,029168 = 100 : 9,723$ Proc. Salzsäure im salzsauren Morphium.

Die Formel $C_{34}H_{19}NO_6 + ClH + 6 Aq. = 375,46$ gibt \[
\frac{36,46\times 100}{375,46} = 9,71 \text{ Proc. Salzsäure, was mit der gefundenen Zahl sehr gut stimmt.}
\]

Es wurde nun 0,1 g Morphinum in verdünnter Salzsäure gelöst und in einer Porzellananschale bei milder Ofenwärme zur Trockne gebracht. Es blieb ein fihnissartiger fester Körper zurück. Bei seiner Lösung in destillirtem Wasser zeigte er eine etwas saure Reaction. Es wurden ihm einige Tropfen einer Lösung von doppeltkohlensaures Natron zugesetzt, und mit chromsaurem Kali und Zehntel-Silberlösung das Chlor gefällt. Es wurden gerade 5 ccm gebraucht.

0,2 g Morphinum in gleicher Art behandelt erforderten 9 ccm Zehntel-Silberlösung. Man erseht daraus, dass die Resultate bei Weitem nicht
so genau mit einander stimmen, als es die sehr scharfe Silbermethode zulässt. Der Grund davon liegt darin, dass es nicht thunlich ist, das Mor-
phium durch Abdampfen in den Zustand des neutralen Salzes überzu-
führen. Die ungleiche Menge dabei bleibender Salzsäure hängt von der
angewendeten Wärme ab. Auch geben die Zahlen ein zu starkes Re-
sultat.

Nach der Formel \(C_{34}H_{19}NO_6 + 2\text{Aq.} = 303 \) entspricht jeder
Cubikzentimeter Zehntel-Silberlösung einem zehntausendstel Atom oder
0.00303 g krystallisirtem Morphin. Der erste Versuch gibt 0.1515 g
Morphium statt 0.1 g, der zweite 0.2727 g statt 0.2 g. Die deutlich saure
Reaktion des Rückstandes erklärt dies zur Genüge. Hätten die Zahlen
unter sich gestimmt, so hätte sich ein empirisches Verhältnisse feststellen
lassen. Da aber dies so wenig, als das richtige atomistische Verhältniss
eintrat, so musste die Sache fallen gelassen und bis auf bessere Zeiten
zurückgelegt werden.

Seifen.

Bei Bestimmung der Zusammensetzung der Seifen kommt es wesent-
lich auf die Menge

1. der Fettsäuren,
2. des Alkalis,
3. des Wassergehaltes und fremder Stoffe an.

Man schabe die Seife auf einem Querschnitt des Stückes, so dass man

gleich viel von der etwas trockener Rinde und dem feuchteren Inneren
bekommt und wäge davon 10 g ab. Man trockne dieselbe auf einer
Papierkapsel, bis zwei hinter einander folgende Wägungen gleiches Ge-
richt geben, wobei man eine Temperatur von 110 bis 120° C. anwenden
cann. Durch den Gewichtsverlust erhält man den Wassergehalt.

Man löse die Seife in einer Porzellan schale in destilliertem Wasser
auf, dass sie eine ganz dünne Flüssigkeit gebe. Man lasse jetzt Normal-
salzsäure zuletzt tropfenweise zufließen, bis die Flüssigkeit auf blaues
Lackmuspapier einen schwachrothen Fleck macht. Dadurch ist die Menge
des Alkalis direct bestimmt.

Die heisse Flüssigkeit lasse man eine Zeit lang kochen, bis die erst
trübe Flüssigkeit durch Ausscheidung der Fettsäure-Kügelchen klar ge-
worden ist, und lasse erhalten. Die Fettsäuren schwimmen obenauf, als
eine feste Schicht. Man lasse die unterstehende Flüssigkeit in eine Porzellan- schale fließen und wasche mit kaltem Wasser ab. Die Fettsäuren schmelze man bei einer Temperatur von 110 bis 120° C. in der Porzellan- schale, bis sie ganz klar erscheinen und keine Wasser dampfe mehr aus- geben. Hat man die Schale vorher gewogen, so wäge man sie mit den Fettsäuren wieder und erhält durch Abzug des Gewichtes der Schale die Menge der Fettsäuren.

Der Erstarrungspunkt der ausgeschiedenen Fettsäuren gibt annähernd die Abstammung der Seife zu erkennen.

Nach Stockhardt liegt der Erstarrungspunkt der Fettsäuren bei

<table>
<thead>
<tr>
<th>Seife</th>
<th>Erstarrungspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>reiner Talgseife</td>
<td>bei 44 bis 45° C.</td>
</tr>
<tr>
<td>reiner Palmölseife</td>
<td>38 ° 39</td>
</tr>
<tr>
<td>1 Thl. Talg-, 1/3 Thl. Cocosölseife</td>
<td>29 ° 30</td>
</tr>
<tr>
<td>gleich viel Talg- und Cocosölseife</td>
<td>27 ° 28</td>
</tr>
<tr>
<td>2 Thl. Palmöl-, 1/3 Thl. Cocosölseife</td>
<td>27 ° 28</td>
</tr>
<tr>
<td>reiner Cocosölseife</td>
<td>23 ° 24</td>
</tr>
</tbody>
</table>

Sehr zweckmässig ist es nach der Bestimmung des Alkalis der heissen Flüssigkeit eine gewogene Menge Wachs, etwa das Doppelte der Seife, zuzusetzen, durch Schmelzen die Fettsäuren zu vereinigen und dann er- starren zu lassen. Es lassen sich dann die Fettnasse zusammenhangend herausnehmen und in einer kleineren Schale durch Schmelzen bei 120° C. und Abzug des zugesetzten Wachses bestimmen.

Es genügt übrigens, ohne den Wassergehalt zu bestimmen, was auch am wenigsten sicher ist, weil das vollständige Austrocknen der Seifen schwerer ist, als es scheint, die gewogene Seife sogleich zu lösen, das Alkali mit Normalsäure, die Fettsäuren durch Ausscheidung zu bestim- men und den Rest als Wasser und Unreinigkeiten zu berechnen.

Es kann nun noch die Frage gestellt werden, ob die Seife freies kohlensaures Natron enthalte. Um dies zu finden, löse man eine gewo- gene Menge (10 g) Seife in starkem Weingeist. Löst sich Alles zu einer klaren Flüssigkeit, so ist kein kohlensaures Natron vorhanden gewesen.

Bleibt ein Rest ungelöst, so bringt man denselben auf ein Filtrum und wäscht mit Weingeist aus, wobei man den Trichter mit einer Glasplatte bedeckt hält. Zuletzt setzt man ein anderes Glas unter und wäscht mit heissem Wasser aus. Die durchgelaufene Flüssigkeit mit Normalsäure
gemessen, gibt die Menge des kohlensauren Alkalis. Unverseiftes Fett kann man durch Aether aus der Seife ausziehen, und nach Verdunstung des Aethers prüfen, ob der Rest auf Papier einen Fettflecken gebe, da der Aether auch etwas Seife auflöst.

Gerbsäure, Tannin.

Viele Pflanzen enthalten schwach saure Körper, welche die Eigenschaft mit einander gemein haben, tierische Haut zu gerben, d. h. sich damit in einer der Haut ähnlichen, aber nach dem Trocknen biegsamen und der Faulnis in der Nässe widerstehenden Masse, dem Leder, zu verleihen; sie werden deshalb Gerbsäure, Tannin, genannt. Sie haben einen herben zusammenschiebenden Geschmack, rötlen Lackmuspapier schwach und fallen Leim aus seinen Auflösungen. Diese Körper sind sehr unter einander verschieden, wenn sie in verschiedenen Pflanzen vorkommen. Sie geben mit vielen Metallsalzen Niederschläge und unter diesen ist der mit Eisenoxyd der bezeichnendste. Viele geben damit schwarze, andere grüne oder graue Niederschläge, und man hat eisenbläulenden und eisengrünen Gerbstoff unterschieden, was jedoch nicht viel besagen will. Die Niederschläge müssen überhaupt in neutraler oder schwach alkalischer (durch doppelt kohlensaures Natron) Lösung beurtheilt werden.

Eine eigenthümliche Schwierigkeit liegt darin, dass man keine reine Titersubstanz hat. Die eigentliche Gerbsäure, worum es sich handelt, ist die in der Eichenrinde enthaltene, doch ist dieselbe nicht gleichartig mit dem aus Galläpfeln dargestellten Tannin, mit dem man nicht gerben kann. Es lässt sich jedoch kein anderer in dieser Reinheit darstellen. Aber auch das aus Galläpfeln dargestellte Tannin ist nichts als der Ver-
dampfungserst eines ätherisch-weingeistigen Auszuges und da in diesem Lösungsmittel auch Gallussäure löslich ist, und ein Trennungsmittel bei der Körper nicht bekannt ist, so bleibt kein anderer Ausweg, als das nach guten Methoden dargestellte Tannin zu nehmen.

Die meisten empfohlenen Methoden sind später wieder von anderen Beobachtern verworfen worden, und wir können nur einen Bericht darüber geben:

2) Mit essigsaurer Kuperoxodyl nach Fleck. Der Niederschlag ist sehr charakteristisch, von schmutzig brauner Farbe. Er ist löslich in Säuren, selbst in Essigsäure. Es soll die Gerbsäure durch eine gemessene Menge essigsaurer Kuperoxodylösung im Ueberschuss gefällt, filtrirt und im Filtrat der Ueberschuss des Kupfers durch Cyankalium zurückgemessen werden. Das geht bei reinem Tannin wohl an, aber wie schon E. Wolff bemerkte, nicht bei Eichenrinde und anderen gefärbten Gerbstoffen.

3) Mit Zinnchlorür, nach Risler-Beunat 2). Der Niederschlag soll in graduirten Cylindern 12 Stunden absetzen gelassen und seinem Volum nach gemessen werden. Sehr unsicher, wie alle Sedimentirmethoden.

5) Mit Leimlösung nach Fehling, oder Leim und Alun nach Müller 4).

sprechen nach der Tafel bestimmten Gehalten, und die Differenz beider Gehalte ist das Resultat. Nach Ham.

B i e r , W e i n.

Es scheint nun unter allen Umständen wünschenswerther, sich an die Fundamentalversuche selbst halten zu können, als an davon auf irgend welchem Wege abgeleitete Schlüsse und Tabellen. Einen anderen Grund kann man für das neue Verfahren doch nicht angeben, als leichtere Ausführbarkeit. Was die Sicherheit der Resultate anbelangt, so verhält sie sich zur Destillationsmethode wie das Radbarometer zum Hebebarometer. Die Destillation ist darum so missliebig geworden, weil das unvermeidliche Uebersteigen des Bieres diese Arbeit zur langweiligsten machte. Nachdem es mir gelungen ist, jedes noch so fermenthaltige Bier ohne Schwierigkeit einer raschen Destillation zu unterwerfen, schien es zweckgemäss, die Alkoholbestimmung wieder auf diese Grundlage zurückzuführen und dabei ein Verfahren zu ermitteln, welches nach Art einer Formel mit der leichtesten Mühe das sicherste Resultat erzielt. Ich schlage deshalb

Von Apparaten ist nothwendig eine gute Wage zu 150 g und Grammengewichte und die bekannten gläsernen Röhrendestillirgeräthschaften.

Vor Allem kommt es darauf an, ein sehr genaues 100 g Gläschen zu besitzen; es muss einen langen und engen Hals haben und die Marke der 100 g muss an den engen Theil des Halses kommen.

Dieses Gläschen wird in der folgenden Art graduirt. Man trocknet es aus und stellt es mit dem 100-g-Stück auf die rechte Seite der Wage, bringt es durch Schrote ins Gleichgewicht und macht sich ein Gegen gewicht, welches so schwer ist als das 100-g-Glas mit dem 100-g-Gewicht. Das Gegengewicht ist am besten ein Glas mit Glasstopfen, welches mit Schrot und zuletzt mit Rauschgold ins Gleichgewicht gebracht wird. Um den Stopfen unveränderlich zu befestigen, erwärmt man den Hals des Gläschens und setzt den Glasstopfen kalt in den erwärmten Hals. Durch Zusammenschieben des Halses beim Erkalten wird der Stopfen fest geklemmt, und kann nicht durch Zufall lose werden.

Man nehme nun das 100-g-Gewicht von der Wage und giessse destillirtes Wasser von 14° R. in das Glas, indem man gegen Ende mit einer feinen Pipette oder einem eingetauchten Glasstabe einzelne Tropfen herausnimmt, bis das Gleichgewicht aufs Schärfste hergestellt ist. An die Stelle, wo der unterste Punkt mit der concaven Wasserfläche steht, mache man eine scharfe und sarte Marke, sei es mit einem Diamant oder mit einer neuen scharfen dreikantigen Feile. Man erhält so als Einheit des specifischen Gewichtes das absolute Gewicht von 100 g Wasser bei 14° R. und zwar gerade von denselben 100 g, die man besitzt, da es wohl nicht so scharf zutreffen möchte, wenn man ein 100-g-Glas aus einer und den Gewichtssatz aus einer anderen Handlung beziehen wollte.

Dieses 100-g-Glas dient nun sowohl zum Abmessen der Flüssigkeits, als zur Bestimmung des specifischen Gewichthes.

Specielles Verfahren.

1. Alkoholbestimmung.

Man messe zweimal das 100-g-Gläschen bis an die Marke voll Bier oder Wein, giessse jedesmal den Inhalt in eine Kochflasche von ungefähr 300 bis 400 cbcm Inhalt, spüle sodann das Fläschchen nach und bringe in die Kochflasche 100 bis 200 g trocknes Chlorkalciunm nebst einer Messerspitze voll Tannin. Da das Aufschäumen des Bieres von seinem Kleber gehalt herrührt, so wird es ganz vermieden, wenn man den Kleber in eine unlösliche Verbindung bringt. Dies geschieht durch das Tannin. Es entsteht sogleich ein reichlicher Niederschlag, der sich übrigens auch durch Kochen nicht absetzt und durch jedes Filter läuft. Man
kann auch Galläpfelpulver anwenden, doch ist seine Wirkung nicht so sicher und plötzlich.

Man legt das 100-g-Gläschen als Vorlage vor und destillirt 100 cbcm, d. h. bis an die Marke ab. Diese 100 cbcm Destillat enthalten den ganzen Alkoholgehalt, wovon ich mich durch Versuche überzeugt habe, indem der Nachlauf nach den 100 cbm kristallisierte Chromsäure mit gelber Farbe löste, ohne selbst beim Erhitzen die kleinste Menge davon zu zersetzen. Nachdem die Temperatur des Destillats genau auf 14° R. gebracht ist, setzt man das aussen trockne 100-g-Glas auf die rechte Seite der Wage, das Gegengewicht auf die linke und legt Gewichte rechter Hand zu, bis Gleichgewicht eintritt. Die zugelegten Gewichte wiegt das Destillat weniger als die 100 g, welche auf der Wage gelegen hatten. Man zieht das zugelegte Gewicht von 100 ab, und wenn man das Komma oder den Punkt um zwei Stellen links rückt, hat man das spezifisch Gewicht des Destillats. Kann man Milligramme auswäge, so erhält man das spezifische Gewicht mit 5 Decimalstellen, wovon 3 zuverlässig sind. Das erhaltene spezifische Gewicht verwandelt man nach der Tabelle (Otto a. a. O. S. 221) in Alkoholprocente nach Gewicht, wovon die Hälfte genommen wird, da man mit 200 cbcm gearbeitet hat. Alkoholvolumprocenten haben in wissenschaftlicher Untersuchung keinen Sinn und sind nur für Branntweinbrenner in der Welt. Es wäre sehr zu wünschen, dass alle Volum-Aräometer und -Tabellen vollkommen aufgegeben würden, da die Wirkung des Weingeistes zum Verbrennen, zur Aether- oder Essigbereitung doch nur von seinem Gewichtsgehalt an Alkohol abhängig ist. Es würde dann auch das verwirklichte Kapitel der Physik, die Aräometrie des Weingeistes, einfacher werden.

2. Malzextrakt.

Zur Bestimmung des Malzextractes bedient man sich vielfach der folgenden Methode. Man lässt 10 cbcm Bier aus einer Pipette in den Austrocknungsapparat, Fig. 161, wie bei der organischen Analyse, einführen, verbindet das eine Ende mit einem Aspirator (auslaufender Gasometer) und das andere mit einer Chlorkalkiumröhrre. Dann senkt man den Apparat in

Man messe 100 cbcm Bier in der Flasche ab, gieße sie in ein Porzellantischchen, erhitze dies, bis etwa ein Drittheil oder die Hälfte des Bieres verdampft ist, bringe die Lösung wieder in die 100-Cubikzentimeter-flasche, spüle die Schale mit destillirtem Wasser nach, welches das verdampfte ersetzen muss, und bringe so den letzten Rest des in der Schale befindlichen Extractes in die 100-Cubikzentimeter-Flasche. Nachdem diese auf 14° R. abgekühlt und strichvoll gemacht ist, bestimmt man das absolute Gewicht wie oben, indem die Gewichte links gelegt werden, während rechts die gefüllte Flasche steht. Die hinzugelegten Gewichte zu den 100 g addirt geben das specifische Gewicht mit der grössten Schärfe, wenn man das Komma um zwei Stellen nach links rückt. Vor einem Saccharometer mit Spindel hat diese Bestimmung den Vorzug der grösseren Schärfe, absoluter Sicherheit und dass man mit viel weniger Flüssigkeit zu arbeiten hat, als wenn man eine Spindel einsenken will.

Zu dem gefundenen specifischen Gewichte sucht man in der Tafel (Otto, a. a. O. S. 133) den Malzextractgehalt in Procenten.

Endlich kann man noch den Gehalt an Stärkezucker durch weinsaures Kupferoxyd in alkalischer Lösung (S. 446) bestimmen.

M i l c h.

Die Untersuchung der Milch hat wesentlich den Zweck, absichtliche Verschlechterungen zu entdecken. Zu diesem Zwecke muss man die normale Zusammensetzung der Milch, worunter hier Kuhmilch ver-
standen wird, kennen. 100 cbcm Milch wiegen im Durchschnitt von vielen Proben 102'90 g; dies gibt das specif. Gewicht = 1'029.

Die normale Zusammensetzung als Mittel vieler Proben ist:

- Fett 3'16
- Casein 4'16
- Milchzucker 4'76
- Wasser 90'09
- Asche 0'73

102'90

Zunächst ist zu bemerken, dass mit dem specif. Gewicht gar nichts zu machen ist, denn eine Milch, der man den Rahmen abgeschnipft hat, ist specifisch schwerer als die frische Milch, und wenn man ihr dann eine bestimmte Menge Wasser zugesetzt hat, kann sie dasselbe specif. Gew., wie die frische Milch zeigen. Es sind deshalb alle Galactometer, Aräometerspindeln etc. ganz bei Seite zu lassen. Die zugänglichen Bestimmungen sind:

1) Feste Bestandtheile, d. h. alles ausser Wasser. Man lasse aus einer Pipette 5 oder 10 cbcm Milch in eine leichte Platinschale fließen, von der man ein genaues Gegengewicht hat, lässt die Flüssigkeit im Wasserbade verdampfen unter öfterem Zerbreen der Käsehaut, die sich bildet. Wenn das Gewicht nicht mehr abnimmt, wägt man aus. Die Summe der nichtflüchtigen Stofte in 100 cbcm Milch steht zwischen den Grenzen von 12'9 bis 14 g auf 100 cbcm, oder 1'29 bis 1'4 g auf 10 cbcm.

2) Asche oder unverbrennliche Bestandtheile. Man benutzt dazu die Platinschale mit Inhalt des vorigen Versuches, indem man allmälig erhitzt, zuletzt bis zum lebhaften Glühen, bis alle Kohle verbrannt ist. Die Masse verbrennt ziemlich leicht und gibt eine fast ganz weisse Asche von schwach alkalischer Reaction durch die Phosphate. Die Aschennenge für 100 cbcm bewegt sich zwischen 0'68 bis 0'76 g. Wenn die Milch mit Wasser versetzt ist, so gibt sich dies durch die geringeren Aschennengen am deutlichsten zu erkennen. Zusätze, um dies zu verdecken, kann man nicht wohl machen, denn alle loslichen und feuerbeständigen Stoffe haben einen ausgesprochenen Geschmack, der in der milde schmeckenden Milch leicht wahrgenommen wird.

3) Milchzucker. Man bringt eine gemessene Menge Milch (etwa 200 cbcm) in einem Becherglase zu der Temperatur von 60 bis 70° C. und tröpfelt dann 2 bis 3 Tropfen Salzsäure hinein. Nach einmaligem Umschwenken und einigem Stehen setzt sich das Casein als eine constante Masse zusammengebalt ab. Man giesst durch Leinen, presst den Käestoff durch Ringen aus, und ergänzt die Molken zu dem ursprünglichen Volum der angewandten Milch. Von dieser filtrirt man eine gewisse Menge ab, und nimmt daraus mit einer Vollpipette ein bestimmtes Volum
zur Bestimmung des Milchzuckers. Man erhitzt eine jedenfalls überschüssige Menge der Fehling'schen Kupferlösung in einem Becherglase bis nahe zum Kochen und lässt die gemessenen Molken hinzu. Unter längerem Warmhalten und Umschwenken setzt sich rother Kuperoxydul ab.

Der Niederschlag wird in gleicher Weise mit heissem Wasser ausgewaschen, dann von unten in ein Becherglas geblasen, in diesem mit schwefelsaurem Eisenoxyd und Schwefelsäure versetzt und mit empirischer Chamäleonlösung ausgemessen. Der Milchzucker zersetzte viel weniger Kuperoxyd als der Traubenzucker. Als Mittel vieler Versuche, die aber nur ziemlich übereinstimmten, ergab sich das Verhältniss Fe × 1.06 = Milchzucker. Der Mangel an Uebereinstimmung verschiedener Versuche liegt in der Zersetzung selbst.

5) Käsestoff. Der mit Aether erschöpfte Käsestoff wird getrocknet, bis er nicht mehr an Gewicht verliert, und gewogen.

6) Butter. Das zu dichten Massen vereinigte Milchfett trägt den Namen Butter. In derselben sind zu bestimmen der Gehalt an Wasser,
VIII. Angewandter Theil.

8) Kumys:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>89.16</td>
</tr>
<tr>
<td>Alkohol</td>
<td>1.80</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>1.50</td>
</tr>
<tr>
<td>Feste Stoffe</td>
<td>7.54</td>
</tr>
</tbody>
</table>

100.00

Die Methoden der Bestimmung ergeben sich aus dem Vorangehenden.

9) kondensirte Milch, in der Schweiz durch Eindampfen im Vacuum unter Zusatz von Rohrzucker eingedickte Milch.

Eine Analyse ergab:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>51.12</td>
</tr>
<tr>
<td>Fett</td>
<td>12.11</td>
</tr>
<tr>
<td>Casein</td>
<td>13.64</td>
</tr>
<tr>
<td>Milchzucker</td>
<td>20.36</td>
</tr>
<tr>
<td>Asche</td>
<td>2.77</td>
</tr>
</tbody>
</table>

100.00

Auf Rohrzucker ist hier kein Bezug genommen.

Weinstein.

Weinstein.

2 g chemisch reinen Weinstains erforderten 10.6 cbcm Normal-Natron; 2 g eines natürlichen Weinsteins dagegen 9.8 cbcm. Der Gehalt an reinem Weinstein ist also \(\frac{9.8}{10.6} = 92.45\) Proc.

Ein nie fehlender Bestandtheil aller natürlichen und der meisten raffinierten Weinsteinsorten ist der neutrale weinsaure Kalk mit 4 Atom Wasser (\(\text{Ca}_4\text{H}_8\text{O}_{13}\), CaO, 4 Ag = 130). Man bestimmt am besten den Kalkgehalt, weil das mit der grössten Schärfe geschehen kann.

Es ist nicht zu empfehlen, das Kali aus dem Filtrat des gegluhten Weinsteins zu bestimmen, weil sich kohlensaures Kali und kohlensaurer Kalk durch Wasser nicht vollständig trennen lassen. Das Kali ist genügend durch den Weinstein bestimmt, der ein höheres Atomgewicht als das kohlensaure Kali hat.
Weinsäure, Zitronensäure.

Süße Früchte.

Trauben, Birnen, Aepfel, Stachel-, Johannis-, Himbeeren etc.

1) **Traubenzucker.** Man wäge eine bestimmte Menge oder Zahl der Früchte ab, zerstösse sie in einem Mörser zu feinem Brei, kochte diesen mit Kalkwasser auf und filtrirte in eine Messflasche; Auswaschen mit heissem Wasser und Anfüllen bis zu 300 oder 500 cubm. Von dieser Flüssigkeit wird ein mit der Pipette oder der 100-cubm-Flasche abgemessener Theil mit überschüssiger Kupferlösung (S. 446) längere Zeit erhitzen, das Kupferoxydul auswaschen und mit empirischer Chämäleonlösung gemessen. Fe \(\times 0.642 \) = Traubenzucker (vergl. S. 226).

2) **Freie Säure.** Eine gewogene Menge zerstossener Früchte wird mit Wasser aufgekocht und durch Leinwand in eine Messflasche (300 cubm) gefüllt. Nach dem Absetzen wird ein Theil abfiltrirt und alkalimetrisch mit Barytwasser und Curcumapapier nach S. 166 ausgemessen.
Technisch-chemische Gasanalyse.

Viele stark wirkende Gase können durch Absorption und nachher durch Titrirung gemessen werden. In dieser Weise können Schwefelwasserstoff, schweflige Säure, Kohlensäure, Chlor, Ammoniak sehr scharf bestimmt werden. Als Absorptionsapparate können die Vorrichtungen von S. 525, Fig. 132 verwendet werden.

Eine wirkliche Gasbürette ist von Clemens Winkler angegeben worden. Sie unterscheidet sich von ähnlichen Vorrichtungen durch einen eigenthümlichen, sehr sinnreich eingerichteten Dreiweghahn. Dieser Apparat besteht in der Haupt-sache aus einer zweisehnkligen Röhre, Fig. 163, deren einer Schenkel A durch zwei schwach gefettete Glashähne, a und b, luftdicht abgeschlos-sen werden kann. Der Inhalt des abgeschlossenen Theils beträgt ungefähr 100 cbc., ist ein- für allemal genau ge-messen und auf der Röhre verzeichnet. Dieser Inhalt wird gefunden durch genauen Auswägen einer Menge de-stillirten Wassers von 14° R. (= 17,5° C.), welches aus der Röhre von Hahn zu Hahn aus-fließt. Diese Röhre, welche die Messröhrhe heisst, ist von Hahn b zu Hahn a in Cubik- centimeter und deren Deci-malen (1/5 cbc.) getheilt, und zwar von oben anfangend, so dass die eingebogenen Theile der Röhre zwar mitgemessen, aber nicht graduirt sind. Die Theilung erstreckt sich also nur über den cylindrischen Theil der Röhre.

Die Messröhrhe dient zur Aufnahme des zu untersuchenden Gases und wird damit gefüllt, indem man dieses bei geöffneten Hähnen so lange durchsaugt, bis man sicher ist, alle Luft verdrängt zu haben, worauf su-
erst der die Communication aus dem Aspirator vermitteln und sodann der entgegengesetzte Hahn geschlossen wird. Wird die Füllung der Röhre nicht durch Ansaugen bewerkstelligt, sondern erfolgt sie durch Zuleiten des Gases aus einem Entwicklungsapparate oder einem Gasometer, also unter dem Druck einer Flüssigkeits säule, so schliesst man ebenfalls den Abzugsbahn der Messröhre zuerst, den Zuleitungsbahn zuletzt und beseitigt den Ueberdruck durch kurzes Oeffnen des einen Hahns, wodurch das Gleichgewicht mit der äusseren Luft hergestellt wird. Das Gas soll mit Wasserdampf gesättigt sein, was man dadurch erreicht, dass man es durch einen feuchten Baumwollenbauch durchgehen lässt, der zugleich Russ und Flugstaub zurückhält. Wenn die Messröhre unter Beobachtung der soeben gegebenen Regeln gefüllt ist, so schreitet man zur Bestimmung der einzelnen Gasbestandtheile, welche durch Verschluckung geschweige.

Zur Aufnahme der Absorptionsflüssigkeit dient der Röhrenschenkel B, welcher durch ein Kautschukrohr mit der Messröhre A verbunden ist.

Beim Eingießen der Absorptionsflüssigkeit in die Röhre B bildet sich unterhalb des an der Messröhre befindlichen Hahnes a eine Einsackung von Luft, welche zuerst entfernt werden muss. Zu dem Ende ist dieser Hahn mit zwei Durchbohrungen versehen; die eine ist die gewöhnliche Querdurchbohrung und vermittelt die Verbindung der beiden Röhrenschenkel; die zweite geht in der Richtung des Hahnschlüssels, welcher in eine Röhrenspitze ausläuft, die ihrerseits wieder durch einen Kautschukschlauch und einen Quetschhahn abgeschlossen werden kann. Auf diese Weise wird der eingesackten Luft durch die Längsdurchbohrung des Hahnes a auszutreten gestattet und durch Schliessen des Quetschhahnes das fernere Aus treten der Flüssigkeit verhindert. Die verschiedenen Stellungen des Hahnes sind aus den Figuren 164 a, b und c ersichtlich. Die Stellung a verbindet die beiden Röhrenschenkel, die Stellung b verbindet B mit der äusseren Luft und die Stellung c vermittelt die Verbindung der Messröhre A mit der äusseren Luft.
Man giesst nun die Absorptionsflüssigkeit in die Röhre B und stellt die Verbindung der beiden Röhren durch die betreffende Stellung des Hahnes a her. Es tritt Absorptionsflüssigkeit in die Messröhre schon durch den Druck der Flüssigkeit, dann auch sogleich durch die Raumverminderung des Gases durch Verschluckung. Der Apparat lässt sich nun um eine Axe drehen, so dass die Röhren horizontal zu liegen kommen, wodurch die Absorptionsflüssigkeit eine grössere Oberfläche darbietet.

Fig. 165.

Man richtet den Apparat mehrere Male auf, und lässt dann die Absorptionsflüssigkeit nach dem Hahn c zutreten, bis keine Raumverminderung mehr stattfindet. Jetzt lässt man aus dem seitlichen Hahn c so viel Flüssigkeit ausfliesen, bis diese mit dem Niveau in der Messröhre auf gleicher Höhe steht und also das Gas sich unter atmosphärischem Druck befindet. Man liest jetzt ab und berechnet den verschluckten Theil des Gases in Procenten auf das angewendete Volum.

Der obige Glashahn ist wegen seiner zwei Kanäle sehr schwierig darzustellen. Der Längskanal muss vor der Glasbläserlampe unmittelbar gebildet und dann so weit eingeschliffen werden, bis er mit den Öffnungen in den Ansätzen stimmt. Seine feste Verbindung mit der getheilten Röhre macht jeden Bruch zu einem Verlust des ganzen Apparates.

Ganz denselben Dienst leistet eine Gasbürette, welche nach Fig. 165 mit Quetschhähnen dargestellt ist. Man bedient sich dazu einer Vorrichtung, wie sie auf Seite 17 Fig. 24 abgebildet ist. Ein kleines Glashörnchen mit in der Mitte angeschmolzenem Schenkel bietet die Möglichkeit dar, nach drei Richtungen Durchlass zu gestatten. Jede Öffnung ist mit
einem Quetschhahn abgeschlossen. Wenn die Quetschhähne dauernd geöffnet sein sollen, so sperrt man ihre gespreizten Schenkel durch ein eingestecktes Holzkeilchen auf.

Es befinden sich fünf Quetschhähne an dem Apparate. Zum Füllen der Messröhre mit Gas sind die Quetschhähne 1, 2 und 4 geöffnet; das Gas kann oben bei 1 oder unten bei 4 eingelassen werden. Zur Verdrängung der Luft aus der Seitenröhre sind die Hähne 3 und 4 geöffnet und zur Einlassung der Absorptionsflüssigkeit in die Messröhre sind die Hähne 2 und 3 geöffnet. Die beiden Röhren sind durch zwischengelegte Korke auseinander gehalten und durch fest zugeschnürt. Bindedraht auf diese angezogen. Die Messröhre klemmt man in die Spitze eines Retor- enthalters, mit Hilfe dessen sie sich horizontal legen lässt. Die Röhre, welche die Absorptionsflüssigkeit aufnehmen soll, ist oben umgebogen und taucht in ein Gefäß, welches diese Flüssigkeit enthält. Saugt man unten an der Öffnung, welche durch den Quetschhahn 5 geschlossen ist, so steigt die Absorptionsflüssigkeit über und fällt durch Heberwirkung herunter, bis sie bei 5 ausfließt; man schliesst nun 5 und öffnet 3 und 4, wodurch alle eingeschlossene Luft entfernt wird. Nachdem 4 geschlossen, öffnet man 2 und 3, wodurch die Absorptionsflüssigkeit in die Messröhre steigt. Schliesst man nun einen der beiden Hähne 2 oder 3, so kann der Apparat horizontal gelegt werden, um die Absorption zu beschleunigen. Nach dem Aufrichten öffnet man den Hahn wieder und lässt die Flüssigkeit aufsteigen, bis keine mehr nachrückt. Dann Wiederherstellung des Gleichgewichtes und Ableisen wie oben.

Was nun die Bestimmung der einzelnen Körper betrifft, so ist zu bemerken, dass weder die Bürette noch die Wage die Natur des zu bestimmenden Körpers angibt, sondern nur seine Menge. Man muss also über die Natur des Körpers sich durch andere Versuche Gewissheit verschaffen.

Die absorbirende Flüssigkeit in der Messröhre muss noch gelb gefärbt bleiben, wenn man sicher sein will, alle schweflige Säure aufgenommen zu haben. Sicherer wird die schweflige Säure bestimmt, wenn man sie in einem der oben bezeichneten Absorptionsapparate durch eine Lösung von doppelt kohlensaurem Kali absorbiren lässt und diese Flüssigkeit mit $\frac{1}{10}$ Jodlösung ausmisst. Sauerstoff kann durch eine Auflösung von Pyrogallussäure in Kalihydrat, die man für jede Bestimmung frisch herstellt, gemessen werden. Man löst 1 bis 2 g Pyrogallussäure in wenig Wasser und setzt ungefähr 100 cbm einer ziemlich konzentrierten Aetzkali- lauge hinzu. Die Absorption geht anfangs rasch von Stat-

Eine noch einfachere Vorrichtung zu diesem Zwecke ist in dem Folgenden beschrieben: In Fig. 166 ist A die Messröhre von etwa 100 bis 150 cbcm Inhalt und von oben an in fünfstel cbcm getheilt. Der ganze zufällige Inhalt der Röhre von dem Hahn 1 bis 2 ist auf der Röhre notirt. Er wird durch Wägen des ausfließenden Wassers von 14° R. ermittelt. B ist die bei 2 durch einen Kautschukschlauch mit A verbundene Füllröhre, von 10 bis 15 mm Durchmesser, so dass sich Wasser und Luftblasen ausweichen können. Sie besitzt unten bei 3 und 4 zwei ange- schmolzene Glashörchen, die mit Kautschukschlauch und Quetschhahn geschlossen und geöffnet werden können. Durch B werden bei m die absorbirenden Flüssigkeiten eingegossen. Die Operationen sind nun folgende:

1. Füllen von A mit dem Gase.

Man füllt die untere Krümmung von B mit Wasser, setzt 1 mit der Gasquelle und 3 mit einem Aspirator in Verbindung, während 2 geöffnet ist. Das Gas tritt bei 1 ein, füllt die ganze Röhre und wenn so viel Gas
Technisch-chemische Gasanalyse.
durchgesaugt ist, dass man annehmen kann, dass keine Luft mehr in A sei, schliesst man 2 und 1.
Oder man füllt A mit Wasser, verbindet 1 mit dem Gas, und lässt das Wasser durch 2 und 3 ausflieessen.

2. Absorption des zu messenden Gases.

3. Herstellung des atmosphärischen Drucks in A.

Man öffnet 4, während 2 geöffnet ist und lässt Flüssigkeit ausflieessen, bis die Oberflächen in A und B gleich hoch stehen, liest jetzt in A ab, und findet durch Abzug des Restes an dem ganzen Inhalt von A die Menge des absorbirtten Gases. Die Berechnung nach Procenten ergibt sich von selbst, wenn man die absorbirte Gasmenge mit 100 multiplicirt und mit dem Inhalt der ganzen Röhre dividirt.

Zur Absorption von Sauerstoff dient eine concentrirte Lösung von Pyrogallussäure in Aetzlauge; zu Kohlensäure und schwefriger Säure dient Aetzkali. Man erhält das Volum beider Gase, wenn sie vorhanden sind; eine saure Lösung von doppelt chromsaurem Kali oder übermangansaurem Kali absorbirt schweflige Säure allein und Schwefelwasserstoff kann durch Metallsalze, essigsaures Zinkoxyd oder ein Cadmiumsalz absorbirt werden; Chlorgas durch Jodkalium u. s. w.

Während des Nichtgebrauchs werden die Quetschhähne abgezogen gehalten. Zum dauernden Öffnen derselben bei der Analyse dienen eingeschobene Holzkeile.
Azotometrie.

Azotometrische Apparate sind mehrere angegeben worden, wozu noch der nebenstehende hinzutritt. Die Beschreibung desselben ist schon oben bei Kohlensäure (S. 518) mitgeteilt worden. Das zu messende Ammoniaksalz kommt in die erste Flasche, welche durch das Kautschukrohr mit der Messröhre in Verbindung steht. Die zweite Flasche enthält die bromirte Lauge, und ein geschlossener Gummiball dient dazu, die Flüssigkeit der Flasche links in die Flasche rechts hinüber zu drücken, was sehr leicht geht. Der Gummiball öffnet sich wieder und es wird Luft aus der Flasche rechts in die links gesaugt, wodurch aber das Gesamtvolum nicht verändert wird. Durch den Quetschhahn lässt man Wasser auslaufen, bis die beiden Niveaus gleich sind und liest dann ab. Eine Tabelle zur Verwandlung der Cubikzentimeter Stickstoff in Gewicht ist von Dietrich berechnet worden und in Fresenius' Zeitschrift für analytische Chemie zweimal mitgeteilt, nämlich Bd. 5, S. 38 und 39 und Band 13 als Tafel VI. Es würde auch hier, wie bei der Kohlensäure, sicherer sein, an demselben Tage und mit demselben Apparate einen Gegenversuch mit einer gewogenen oder gemessenen Menge Salmiak zu machen und danach zu berechnen. Uebrigens leidet die Methode an gewissen Unsicherheiten, da die bromirten Flüssigkeiten nicht haltbar sind. Bei den Kontrolversuchen weiss man, was man zu erhalten hat; wenn man das aber nicht weiss, bleibt man unsicher, ob die ganze Menge des Stickstoffs als Gas entwickelt wurde.

1) Fresenius, Zeitschr. f. anal. Chem. 9, 225; 14, 247; ferner Paul Wagner, ebendas. 13, 383 und 15, 250.
Azotometer.
Anwendung der Titrirmethode in der Pharmacie.

Eine sehr ausgedehnte Anwendung kann die Titrirmethode in der Pharmacie finden, indem man durch sehr leichte und sichere Verfahrungsarten den Gehalt vieler Arzneimittel an ihren wirksamen Bestandtheilen ermitteln kann, was sonst nur mittelst zeitraubender Gewichtsanalyse möglich war. Nicht nur, dass der Apotheker beim Ankauf von Rohwaren, Säuren, Alkalien, Salzen, sich der Stärke seiner Waare versichern kann, auch die von ihm selbst gefertigten Arzneimittel kann er auf ihren gleichbleibenden Gehalt prüfen. Wir wollen nur die wichtigsten Anwendungen aufführen und dabei der alphabetischen Ordnung der preussischen Pharmacopoe folgen. Wir nehmen an, dass man sich der Grammgewichte und der nach Cubikcentimetern geteilten Büretten bediene.

Zunächst kommen die Säuren.

Acetum concentratum soll nach Angabe der Pharmacopoe 30 Proc. Essigsäurehydrat gleich 25-5 Proc. wasserleerer Essigsäure enthalten. Wenn man 5·1 g Acetum concentratum abwägt, so geben die bis zur blauen Färbung der Lackmustinctur verbrauchten Cubikcentimeter Normalkali direct die Procente an wasserleerer Essigsäure. Wägt man 6 g ab, so erhält man die Procente an Essigsäurehydrat. Da das specifische Gewicht des Acetum concentratum 1·040 ist, so sind \(\frac{5·1}{1·040} \) oder 4·9 cbcm gleich 5·1 g. Man kann also, statt 5·1 abzuwagen, in einer engen Pipette 4·9 cbcm Acetum concentratum ablauen lassen.

Wenn die Essigsäure Salzsäure enthält, so sättigt man sie mit reinem kohlensaurem Natron und bestimmt den Salzsäuregehalt durch chromsaures Kali und Zehntel-Silberlösung. Diese Verunreinigung ist nicht unmöglich, wenn das kohlensaure Natron, woraus das essigsäure bereitet wurde, Kochsalz enthielt.

Acetum crudum. Der Essig soll nach der Pharmacopoe germanica so stark sein, dass 20 Theile 1 Theil wasserleeres kohlensaures Natron sättigen. In diesem Falle enthalten die 20 Theile Essig 1·132 Thle. Essigsäurehydrat, nämlich \(\frac{60}{53} \), und diese machen von 20 Theilen 5·66 Proc. aus. Die 20 Thle. Essig müssen in diesem Falle \(\frac{1·132}{0·060} = 18·8 \) cbcm Normal-Alkali sättigen.

Acetum destillatum soll nach der Pharmacopoe germanica 6 Proc. Essigsäurehydrat enthalten, aber dieselbe Probe aushalten, was nicht ganz richtig ist.
Anwendung der Titrimethode in der Pharmacie.

Acidum aceticum soll 84 bis 85 Proc. wasserleerer Essigsäure enthalten. Es müssen also 5·1 g, oder, da das specif. Gewicht 1·06 ist, \[
\frac{5·1}{1·06} = 4·81 \text{ ebcm dieser Essigsäure 84 bis 85 ebcm Normalkali sättigen. Man wird finden, dass es fast nicht möglich ist, dieser Bedingung zu entsprechen.}
\]

Acidum hydrochlororatum purum und crudum können sehr scharf durch Normalkali gemessen werden.

Acidum hydrocyanatum wird auf seinen Gehalt sehr scharf nach S. 345 bestimmt.

Acidum nitricum purum, fumans und crudum können sehr scharf durch Normal-Kalisösung gemessen werden.

Das Atomgewicht der wasserleeren Salpetersäure ist 54. Es müssen also 5·4 g abgewogen oder \[
\frac{5·4}{1·2} = 4·5 \text{ ebcm abgemessen werden und diese bei reiner Salpetersäure 27·6 ebcm Normalkali sättigen.}
\]

Rohe und rauchende Salpetersäure verdünnt man mit warmem destillirten Wasser bis zum Farblosen und misst alsdann ihre Stärke mit Normalkali. Um das Volum von 5·4 g der Säure zu erhalten, dividirt man 5·4 durch das specifische Gewicht der Säure.

Um den Chlorgehalt der käuflichen rohen Salpetersäure zu bestimmen, sättigt man mit reinem kohlensauren Natron oder mit doppelt kohlensaurem Natron und bestimmt das Chlor mit Zehntel-Silberlösung in bekannter Weise.

Acidum pyrolignosum crudum und rectificatum werden mit Normalkali durch Antupfen von rothem Lackmuspapier geprüft.

Wenn die Säure die dreibasische (cPO₃) ist, so kann sie mit Ammoniak gesättigt und mit Magnesiamixtur gefällt, der ausgewaschene Niederschlag alkalimetrisch nach Stolba gemessen werden (s. Anhang).

Acidum sulphuricum, verdünnt und concentrirt, kann sehr scharf mit Normalkali bestimmt werden. Von der reinen rectificirten Säure müssen 4 g 81 ebcm Normalkali sättigen. Bei der ölichen Consistenz dieser Säure ist das Messen vom Volum nicht zulässig.

Aether aceticus kann nach S. 163 auf seinen wirklichen Gehalt an Aether geprüft werden.

Aqua Amygdalarum amarum auf Blausäure nach Seite 374.

Aqua Calcariæ nach S. 116.

Calcaria hypochlorosa nach S. 328.

Chloralhydrat, alkalimetrisch nach S. 165.

Cuprum sulphuricum venale. Sein Gehalt an Eisenvitriol kann mit Chamäleon entdeckt und bestimmt werden.

Ueber den Eisengehalt dieser Präparate existiren fast gar keine Angaben, weil man die Masse der Analyse scheute. Diejenigen Präparate, welche nur Eisenoxydul enthalten sollen, wie Ferrum sulphuricum, Ferrum chloratum, können ohne Weiteres in saurer Lösung mit Chamäleon ausgemessen werden. Wenn sie mit Zink digerirt mehr Chamäleon zerstören so haben sie auch Oxyd enthalten.

Kali aceticum. Sein Chlorgehalt lässt sich durch Silberlösung bestimmen.

Kali carbonicum crudum und depuratum werden zweckmässig auf ihre Stärke alkalimetrisch geprüft.

Im Kali chloricum lässt sich der Gehalt an Chlorkalium mit Zehntel-Silberlösung bestimmen.

Ebenso Liquor Kali hydrici und Liquor Natri hydrici.
Im *Kali nitricum* kann der Gehalt an Chlornatrium mit Zehntel-Silberlösung bestimmt werden.

Liquor Ammoniaci carbonici und *caustici* werden mit Normalsäure gemessen.

Liquor Chlori kann mit arsengesaurem Natron (nach S. 327) sehr genau ermittelt werden oder nach S. 269.

Im *Natron nitricum* und *sulphuricum* kann der Chlorgehalt mit Zehntel-Silberlösung leicht bestimmt werden.

Spiritus Ammoniaci caustici Dzondii kann auf seinen Ammoniakgehalt mit Normalsäure untersucht werden.

In den Fruchtsaftsyrupen kann der Gehalt an gebildetem Traubenzucker durch alkalische Kupferlösung erkannt und bestimmt werden.

Tartarus crudus und *depuratus* kann auf seinen Gehalt an reinem Weinstein mit Normalkali untersucht werden.

Tinctura Iodi kann durch unterschwefligsaures Natron sehr genau auf seinen Judgehalt geprüft werden (S. 259).

Bestimmung des spezifischen Gewichtes fester Körper mit der Pipette, v. V.

Bestimmung des specif. Gew. fester Körper etc. 715
tropfenweise einfließen, bis wieder Berührung des Index stattfindet. Das in der Pipette zurückgebliebene Wasser ist nothwendig dem Volum des Körpers gleich. Man liest es einfach nach Cubikcentimetern und Zehntel oder Hundertstel derselben ab. Dividirt man die Anzahl der Cubikcentimeter Wasser in das Gewicht des Körpers, so hat man das specifische Gewicht bei der Temperatur der Graduirung der Pipette.

Ein massiver Glasstopfen wog 44'64 g. Das von ihm beim Untersinken über die Mire erhobene Wasser betrug in fünf Versuchen 18'4; 18'35; 18'4; 18'4; 18'4 cbcm, also in der Mehrzahl 18'4 cbcm. Das specifische Gewicht durch Messung ist $\frac{44'64}{18'4} = 2'426$, durch Wägung 2'434.

Man kann auch das hydrostatische Problem, dass ein schwimmender Körper so viel Wasser verdrängt, als er selbst wiegt, leicht beweisen. Man verfährt in derselben Art wie oben, nur dass man den Körper schwimmen lässt und den Index mehr an der Seite einsetzt.

Eine Glasflasche wog in der Luft 89'34 g. Das in der Pipette zurückbleibende Wasser, als sie schwamm, betrug 89'1 cbcm. Ein Porzellantiegel wog 44'3 g. Als man ihn schwimm ließ, blieben in der Pipette

1. 44'4 cbcm Wasser
2. 44'41 "

zurück, also war das Problem vollkommen bewährheit.

Dass man das Volum von festen Körpern, etwa Edelsteinen, Goldstufen und anderen Dingen, ohne Wage bestimmen könne, ist schon aus dem Obigen klar.

Da die Dichtigkeit der Flüssigkeit, worin untergetaucht wird, keinen Einfluss auf diese Maasbestimmung hat, so kann man auch Weingeist oder Petroleum statt Wasser anwenden und das specifische Gewicht einer Menge Salze bestimmen, die in Wasser löslich sind. Man hat hier keine Correction für die Flüssigkeit zu machen, weil die Pipette für Wasser graduiirt ist.

Die vorstehende in der ersten Auflage dieses Werkes zuerst mitgeteilte Methode hat Veranlassung gegeben zu einer grossen Menge von Modificationen, denen aber allen gemeinschaftlich die Idee zu Grunde liegt, das Volum des verdrängten Wassers durch Messen in Röhren zu bestimmen.

Gesetzt, man habe eine kleine Bürette, welche sehr genau in 10tel Cubikcentimeter eingetheilt ist. Lässt man das Wasser scharf bis an eine gewisse Stelle ablaufen und wirft nun einen festen Körper hinein, dessen absolutes Gewicht vorher bestimmt ist, so steigt das Wasser um ebensoviel als der Körper Volum einnimmt. Man kann also das Volum des Körpers in der Bürette ablesen. Natürlich lässt sich auch jede grössere Bürette zu diesem Zwecke brauchen. Die Methode hat den Einwurf, dass das durch Einsenken gestiegene Wasser eine andere Form der Ober-
flächen hat, als das durch Abließen geeignete. Durch etwas Umschwenken kann man den Meniscus auch herstellen.

Das Ablesen in einer in 10tel Cubikcentimeter geteilten Bürette wird nicht leicht über $\frac{1}{20}$ cbcm gehen. Wenn diese Schärfe nicht genügt, kann man auch das Volum durch Wägen in folgender Art bestimmen. Eine kleine Glasröhrchen von der Weite einer Bürette versehe man mit Ausflussspitze und Quetschhahn. In der Mitte bringe man auf der Glasröhrchen einen einzigen sehr zarten, rund umlaufenden Diamantstiel an. Vor dem Versuche lasse man das Wasser bis an diesen Strich ablaufen und werfe nun den Körper in die Röhre, wodurch das Wasser über die Marke steigt. Sodann lasse man mittelst des Quetschhahns das Wasser in ein kleines sehr genaugen gewogenen Glaschen abfließen, bis es wieder an die Marke kommt. Das ausgeflossene Wasser, welches dem Volum des Körpers gleich ist, wird auf einer Wage genau ausgewogen, wo man dann bis in die Milligramme oder $\frac{1}{1000}$ Cubikcentimeter Wasser gehen kann. Diese Wägung ist jedenfalls schärfer als die Messung in der geteilten Röhre, die nur $\frac{1}{20}$ cbcm zu schätzen zuläßt.

Vielfach hat man das Princip zur Bestimmung des specif. Gewichtes der Kartoffel verwendet. Man habe ein cylindrisches Glasgefäß von 100 bis 120 mm Durchmesser, 150 bis 180 mm Höhe und mit einem Tubulus am Boden versehen. In diesen bringt man mit einem Korken einen messigen Hahn an, oder eine Glasröhrchen mit Kautschukrohr, Quetschhahn und Ausflussspitze. Dies Glasgefäß stelle man auf eine feste horizontale Unterlage, dass die geschliffene Randfläche ganz horizontal liegt, etwa mit einer Luftblasennivelle. Nun lege man die Mire wie in Fig. 186 S. 714 auf, fülle mit Wasser bis nahe an die Mire, und lasse aus einer Bürette, deren lange Ausflussspitze bis ins Wasser eintaucht, um keine Wellen zu schlagen, das Wasser sanft einfliesen, bis die Oberfläche des Wassers an die Mire anspringt, was man ungem ein scharf sieht. Aus diesem Grunde darf die Oberfläche des Wassers nicht bewegt werden, weil sonst die Wellenberge früher anschlagen. Man hebt nun die Mire ab und legt die in den Augen mit einem Pinsel befassche und vorher gewogene Kartoffel ein, setzt die Mire wieder ein und lässt aus dem Hahn in eine sehr genaue Flasche 100, 200 oder 300 cbcm ausfliesen, bis die Mire in der Luft schwebt. Nun lässt man Wasser aus der Bürette einfliesen, bis wiederum das Wasser an den Zeiger anspringt. Die ausgeflossene Menge Wasser, weniger der aus der Bürette eingeflossenen Menge gibt das Volum in Cubikcentimetern oder das Gewicht in Grammen Wasser an. Indem man dies ins absolute Gewicht dividiert, erhält man das specifische Gewicht. Eine Kartoffel wog 171.77 g. In drei Versuchen verdrängte sie 155.3, 155.8, 156 cbcm Wasser, und dies gibt die specif. Gewichte 1.106, 1.103, 1.101.

Um den Grund der Sicherheit des Einstellens mit der Mire beurtheilen zu können, wurde aus der Bürette Wasser einfliesen gelassen, bis es eben die Mire berührte. Nun liess man Wasser ausfliesen, goss das
Wasser in die Bürette zurück, und liess wieder einfließen bis zum Be-
rühren. Die Bürette zeigte 13'8, 13'6, 14, 13'8, 14, 14 cbcm. Die grösste
Differenz beträgt 0'4 cbcm. Da die Oberfläche des Wassers ein Kreis von
108 mm Durchmesser war, so betrug dieselbe 54² × 3'14 = 9156'24 qmm.
0'4 cbcm sind aber 400 cbbm; es ist also die Höhe des in den Versuchen
schwankenden Wassercylinders \(\frac{400}{9156'24} = 0'044\) mm; also die ganze
vorhandene Unsicherheit etwas mehr als 4 Hundertstel Millimeter. Nun
kann man aber mit Diamant nicht leicht einen Strich auf ein Glas machen,
dessen Breite nicht \(\frac{1}{10}\) mm betrage; und so ist das Einstellen mit dem
Zeiger ungleich schärfer als mit Strichen auf dem Glase.

Noch unsicherer, ja sogar fehlerhaft, ist das Verfahren, das ver-
drängte Wasser durch freiwilliges Ausfließen zu messen. Setzt man in
den Tubulus des Cylinders eine S-förmig gebogene Glasröhre, und lässt
man beim ersten Anfüllen das Glas sich so weit ausleeren, als es diese
Röhre mit sich bringt, so müsste nach dem Hineinwerfen der Kartoffel
alles über die Ausflussöffnung erhobene Wasser ausfließen. Dern ist
aber nicht so. Die bloße capilläre Adhäsion des letzten Tropfens an der
Ausflussmündung hält das Ausfließen gegen 8 mm Höhe zurück gegen
diese, dass man einen feuchten Glasstab oder Bindfaden an die Ausfluss-
mündung anlegt. Endlich ist bei abnehmender Höhe der drückenden
Säule das tropfenweise Ausfließen sehr langsam und dauert oft \(\frac{1}{4}\) Stunde
lang.

Es gibt deshalb kein Verfahren, welches nur annähernd dieselbe
Schärfe gäbe, als das Anspringenlassen an die aufgelegte schwarze und
mit Talg bestrichene Mire.

Bestimmung des specifischen Gewichts von Flüssig-
keiten mit maassanalytischen Apparaten.

Da diese Apparate auf absolutes Gewicht von destilliertem Wasser
von 14⁰R = 17'5⁰C. geacht sind, so kann man sie auch zum Bestim-
men des specifischen Gewichts von Flüssigkeiten benutzen. Man muss aber
dann unterscheiden, ob die Aichung auf „trocken“ oder auf „auslaufen“
gemacht ist. Die Flaschen von 250, 300, 500, 1000 g Wasser sind
trocken geacht und man hat sie also nur zu tariren, dann bis an die
Marke zu füllen und das absolute Gewicht des Inhaltes zu bestimmen,
und dies durch die Aichung dividirt gibt das specifische Gewicht. Die
grösseren Flaschen dienen passend bei Mineralwassern, Salzsoolen, Wein, Bier und ähnlichen Flüssigkeiten, die nicht weit von Wasser abstehen. Man thut in jedem Falle gut, seine Messflaschen einmal mit seinen eigenen Gewichten auf die Richtigkeit der Aiche zu probiren.

Die 100 obem-Flasche ist auf Auslaufen geaicht und kann also gefüllt nicht verwendet werden. Doch würde eine solche Flasche wegen der runden Zahl und wegen der passenden Grösse des absoluten Gewichts hier den besten Dienst leisten. Besitzt man eine solche Flasche ohne Marke, so richtet man sie zu dieser Arbeit in der Weise ein, wie oben S. 693 unter „Bier, Wein“ genauer beschrieben ist.

Bei der Benutzung stellt man die Wage ins Gleichgewicht, füllt die leere Flasche mit der zu bestimmenden Flüssigkeit genau bis an die Marke, stellt dann die Flasche auf die eine Seite und die Tara auf die andere Seite der Wage, und bestimmt nun das Gewicht, um welches die Flüssigkeit mehr oder weniger wiegt, als dasselbe Volum Wasser. Diese Gewichtsmenge addirt man zu 100, wenn die Flüssigkeit mehr wiegt, oder zieht von 100 ab, wenn sie weniger wiegt. Diese Operation kann auf dem analytischen Wege geschehen, wovon wir annehmen, dass Milligramme darauf ausgewogen werden können. Gesetzt, man habe auf die Seite der Tara 13‘578 g zulegen müssen, so wiegt die Flüssigkeit 100 + 13‘578 = 114‘578 g und ihr spezifisches Gewicht ist 1‘13578; oder man habe auf die Seite der Flasche 9‘939 g zulegen müssen, so wiegt die Flüssigkeit

\[
\begin{align*}
100 & \quad - \quad 9‘369 \\
90‘631 g
\end{align*}
\]

und ihr spezifisches Gewicht ist 0‘90631.

Man erhält so das spezifische Gewicht auf 5 Decimalen, von denen 3 sicher sind. Es ist dies eine sehr vortreffliche Methode, das spezifische Gewicht mit grosser Schärfe zu bestimmen, und diese hängt, ausser der Richtigkeit der Gewichte und der Aiche, wesentlich ab von der Enge des Halses der Flasche. Diese hat aber eine gewisse Grenze, weil sich Luft und Wasser im Halse ausweichen müssen. Ist die Weite unter 5 mm, so hat das Eingießen der Flüssigkeit, das nachherige Reinigen und Trocknen der Flasche besondere Schwierigkeiten. Um das zu vermeiden, hat man der Messflasche zwei Mündungen gegeben, durch deren eine die Flüssigkeit eintritt und durch die andere die Luft austritt.

Dieselben Bedingungen leistet eine Pipette in noch vollkommenem Maasse, weil hier Eingang und Ausgang an verschiedenen Enden sind. Die Pipetten sind nun alle auf Ausfluss geaicht, weil man das Ausspülen vermeiden will, und das geht auch bei Titrirflüssigkeiten sehr gut, weil alle wässrig und sehr verdünnt sind.

Beim Bestimmen des spezifischen Gewichts kommen aber Flüssigkeiten von sehr verschiedener Kohäsion vor, und man kann sich also nicht,
Bestimmung des spezifischen Gewichtes der festen Körper als Schwimmer, und der flüssigen durch Schwimmer.

Ein fester Körper in einer Flüssigkeit von gleichem spezifischen Gewichte sinkt weder zu Boden, noch schwimmt er mit Hervorragung, sondern er schwebt an jeder Stelle in vollkommener Ruhe. Wegen der grossen Beweglichkeit der Flüssigkeit ist es übrigens sehr schwer, diese Bedingung zu erfüllen. Wenn man das spezifische Gewicht einer Flüssigkeit durch Zersetzen von concentrirter Salzlösung oder Wasser so lange verändert, bis der Körper schwebt, ohne zu steigen und zu sinken, so hat er das spezifische Gewicht der Flüssigkeit, und man hat nur das spezifische Gewicht der Flüssigkeit zu bestimmen, was allenfalls mit Spindeln geschehen könnte, um das des festen Körpers ermittelt zu haben. Es ist dies eine der leichtesten Methoden, das spezifische Gewicht der Kartoffeln zu bestimmen. Im reinen Wasser sinkt eine Kartoffel zu Boden. Löst man Kochsalz darin auf, oder mischt man gesättigte Kochsalzlösung hinzu, die bekanntlich das spezifische Gewicht 1:205 hat, so tritt ein Punkt ein, wo die Kartoffel sich vom Boden erhebt und in der Flüssigkeit ruhig schwebt. Senkt man eine Spindel, welche das spezifische
VIII. Angewandter Theil.

Gewicht anzeigt, in die Flüssigkeit, so hat man das specifische Gewicht der Kartoffel ohne eine Wägung ermittelt. So lassen sich die specifischen Gewichte von fetten Oelen in Gemengen von Weingeist und Wasser bestimmen, im Ganzen aber nur sehr wenige feste Körper, deren specifisches Gewicht nicht hoch ist, und die in gesättigten Salzlösungen noch zum Schwimmen kommen.

Umgekehrt kann man das specifische Gewicht einer Flüssigkeit bestimmen, wenn man es durch Zumischen von Wasser so lange verändert, bis ein Schwimmer von vorher ermittelterm specifischem Gewichte darin schwebt, ohne zu sinken und zu steigen. Von Oechsle in Pforsheim wurde dies Prinzip angewendet, um die zunehmende Dichtigkeit des eingekochten Zuckerklärsels durch aufsteigende hohe Messingkugeln zu ermitteln, und Friedrich Scheefer in Mainz hat dasselbe angewendet, um den Weingeistgehalt von Wein und Bier zu bestimmen. Gesetzt, man habe einen Wein abdestillirt, dass sein ganzer Weingeistgehalt im Destillate enthalten sei; man bringe nun ein Glaskügelchen hinein, welches das specifische Gewicht eines 1procentigen Weingeistes hat, und verdünne so lange mit destilliertem Wasser, bis das anfange unten liegende Glaskügelchen zu schwaben anfängt, so enthält die Flüssigkeit 1 Procent Alkohol, und man hat nur ihr Volum abzulesen, um den ganzen Weingeist zu haben. Die Darstellung des Glaskügelchens ist allerdings sehr mühsam, es würde jedoch diese Mühe wohl verwendet sein, wenn das Verfahren nicht an einem anderen principiellen Fehler litt, dass man den Fehler multiplicirt. Denn gesetzt man habe einen 12procentigen Wein abdestillirt, so macht man den Fehler des Kügelchens zwölfmal. Da nun doch die Destillation nicht vermieden werden kann, so erscheint das Verfahren viel weniger sicher, als das Mindergewicht von 100 cbcm Destillat in einer genannten 100 Cubiecentimeterflasche auf der Wage zu bestimmen. Außerdem dauert das Stellen der Flüssigkeit durch Vermischen ungleich länger, als eine genaue Abwägung, die jedenfalls dieselbe Schärfe gibt, wie die nach demselben Verfahren bearbeiteten Tabellen.

Ebenso hat ein anderes Prinzip, das specifische Gewicht der Flüssigkeiten mit der Uhr zu bestimmen, keine Anwendung gestattet. Die Ausflussgeschwindigkeit von Flüssigkeiten ist nach der Theorie nur von der Druekhöhe, aber nicht von der Dichtigkeit der Flüssigkeit abhängig. Es müssen deshalb unter gleichen Verhältnissen in derselben Zeit von allen Flüssigkeiten gleiche Volumina ausfließen. Es verhalten sich dann die specifischen Gewichte wie die absoluten Gewichte in gleicher Zeit ausgeflossener Mengen, und umgekehrt müssen sich die Auslaufzeiten für gleiche Gewichte umgekehrt wie die specifischen verhalten. Man hätte demnach nur die Auslaufzeiten für ein gleiches Gewicht Wasser und das einer anderen Flüssigkeit zu bestimmen, und durch Division der Auslaufzeit des Wassers in die Auslaufzeit der anderen Flüssigkeit das specifische Gewicht der anderen Flüssigkeit zu bestimmen. Beim Versuche zeigte sich jedoch, das die Kohäsion der verschiedenen Flüssigkeiten
Ueber die Erfindung neuer maassanalytischer Methoden.

das Gesetz in sehr merkbarer Weise verdeckt, sowie denn auch die Aufs- laufszeiten für gleiche Volumina durchaus nicht gleich waren.

Ueber die
Erfindung neuer maassanalytischer Methoden.

Wenn man für einen noch nicht unter die Bürette gebrachten Körper eine neue Bestimmungsmethode sucht, so muss man dabei nach einem gewissen System verfahren, wenn man sich nicht vergebliche Arbeit machen will. Bei Bearbeitung des Lehrbuches der Titrimethode habe ich häufig Gelegenheit gehabt, die dabei zu befolgenden Grundsatze kennen zu lernen, nachdem ich öfter durch planloses Verfahren auf weiten Umwegen zu keinem Resultate gekommen bin.

1. Zuerst betrachtet man den Körper, ob er sich unter eine der grossen Gruppen der analytischen Methoden, der Alkalimetrie, Oxydationsanalyse oder Fallungsanalyse unterbringen lasse. Für Alkalimetrie wird nicht viel mehr übrig sein, nachdem die meisten Stoffe auf diesen Gesichtspunkt bereits ins Auge genommen sind.

Sodann betrachtet man sein Verhalten zu Sauerstoff und Chlor und es legt sich dann die Frage vor, ob er zwei Oxydationsstufen oder Chloride habe, die leicht in einander übergehen. Die nächste Frage ist, ob seine niedrigste Oxydationsstufe Jodstärke entfärbt oder nicht, und man prüft dieselbe mit Jodlösung und Stärke. Spricht diese Probe nicht an, so prüft man sie in saurer Lösung mit Chamäleon, welches noch viele Körper oxydirt, auf welche Jod nicht mehr wirkt(Oxalsäure, Eisenoxydul).

3. Hat man eine anscheinend passende Verbindung ins Auge gefasst, so prüft man zuerst, ob die Enderscheinung deutlich ist. Dazu kann man sich untitrirter Flüssigkeiten bedienen. Bei einer wirklichem

Mohr’s Titrirbuch.
Fällung ist zu beachten, ob sich der Niederschlag leicht absetzt, ob man das Aufhören der Fällung deutlich sehen kann, oder ob ein Ueberschuss des Fällungsmittels sich durch eine deutliche Erscheinung erkennen lasse und ob der Niederschlag in einem Ueberschuss des Fällungsmittels merkbar löslich ist, wie phosphorsaures Eisenoxyd in essigsäurem Eisenoxyd. Am günstigsten ist es, wenn man den Indicator in die Flüssigkeit selbst bringen kann. Die an der Einfallsstelle auftretende Reaction mit dem Indicator muss durch Umschütteln wieder verschwinden (chromsaures Silberoxyd in Chlormetallen, Jodstärke in unterschweiflgsäurem Natron etc.).

Ist dies nicht zulässig, so muss man prüfen, ob sich der Ueberschuss des Fällungsmittels in sehr kleinen Mengen durch eine Reaction, Tüpfeloperation, entdecken lasse.

Ferner hat man zu prüfen, ob Erwärmung oder Schütteln zur Abscheidung günstig wirken.

4. Wenn diese Bedingungen günstig ausfallen, so hat man zuerst zu prüfen, ob die Resultate constant sind. Man fasst mit einer Pipette 10 ccbm des gelösten zu bestimmenden Körpers ab, und bestimmt die Menge des zu verbrauchenden Körpers, indem man diesen in eine Bürette bringt und die Enderscheinung hervorruft. Man wiederholt diesen Versuch mit denselben Flüssigkeiten und Röhren einige Male, um zu sehen, ob man immer dieselbe Zahl erhalte. Die Differenzen mehrerer Versuche dürfen höchstens um 1 bis 2 Proc. schwanken. Sind die Zahlen sehr verschieden, so ist die Methode unbrauchbar.

5. Man hat nun ferner zu prüfen, ob die Resultate proportional sind. Man misst 10, 20, 30, 40 ccbm der Flüssigkeit ab und bestimmt die Substanz aus derselben Bürette. Stehen die verbrauchten Cubikcentimeter in demselben Verhältnisse wie die angewandten Stoffe, so ist auch dieser Punkt günstig erledigt.

6. Man hat dann zu prüfen, ob die Resultate bei Verdünnungen constant bleiben. Die Ausführung ergibt sich von selbst. (Chamäleon gibt mit Eisen bei jeder Verdünnung gleiche Zahlen; Jodlösung gegen Zinnochlorür, Jodwasserstoff gegen Eisenoxydsalze nicht.)

7. Man hat zu prüfen, ob die Resultate im System richtig sind, d. h. ob die angewandten Mengen der sich fallenden Körperein Atomverhältnisse stehen. (Silber gegen Chlor, arsenige Säure gegen Jod sind systematisch richtig; BleiOXysalze gegen chromsaure Salze nicht.) Im ersten Falle eignet sich die Methode zu einer systematischen, worin die titirten Flüssigkeiten nach dem Atomgewicht hergestellt werden können.

Sind die Fällungen nicht systematisch richtig, so ist noch die Möglichkeit vorhanden, eine empirische titirte Flüssigkeit darzustellen. Um dies zu ermitteln, stellt man sich 1/2 Liter titrirter Zehntelflässigkeit dar, indem man 1/20 Atom des zu bestimmenden Körpers zu 500 ccbm löst. Nun wagt man den zu bestimmenden Körper chemisch rein, ebenfalls im Atomgewicht, ab, z. B. 1/100 Atom, löst ihn und bestimmt mit der titirten Flüssigkeit. 1/100 Atom des Körpers würde 100 ccbm der titirten
Über die Erfindung neuer maassanalytischer Methoden. 723

Flüssigkeit verbrauchen. Hat man mehr verbraucht, so berechnet man
die Menge des Fällungsmittels aus der Zusammensetzung, und erfährt
dadurch das Verhältniss beider Körper zu einander. In diesem Falle
hat es keinen Zweck, das System beizubehalten, und man berechnet nun
die Menge des fallenden Körpers, welche für 1 g des zu bestimmenden
genügt. Löst man die zehnfache Menge des fallenden Körpers zu 1 Liter,
so wird der zu bestimmende zu 1 g abgewogen, und die Cubikcentimeter
sind nun Procente.

8. Es ist immer vorzuziehen, wenn der zu bestimmende Körper
selbst gefällt wird. Bietet dieses aber keine deutliche Enderscheinung
dar, so ist es oft möglich, den Körper mit einem zweiten zu fällen, der
sich bestimmen lässt. So wird Kalk durch die mitgefällte Oxalsäure mittelst Chamäleon, Phosphorsäure durch das mitgefällte Eisenoxyd bestimmt.
Dabei ist vor Allem zu beachten, ob der Niederschlag eine constante Zu-
sammensetzung hat, ob er sich im Fällungsmittel nicht löst, ob Verdün-
nung oder Erwärmung auf die Zusammensetzung keinen Einfluss haben.
Zuweilen liegt die Handhabe zur Bestimmung noch entfernter. Der
gefällte Körper kann mit einem dritten Körper behandelt eine Erschei-
nung geben, die zur Bestimmung geeignet ist.

Die Sammlung und Mittheilung dieser Grundsätze bei Aufsuchung
neuer maassanalytischer Methoden schien dadurch gerechtfertigt, weil
sehr häufig Methoden auf einen oder zwei Versuche gestützt publicirt
werden, die bei näherer Prüfung nicht stichhaltig sind, indem die Erfin-
der alle die Verhältnisse, welche durch Verdünnung, Erwärmung bedingt
werden, gar nicht zum Gegenstand ihrer Untersuchung gemacht haben.
NACHTRÄGE.

Zu Seite 78:

Lackmus.

Nach V. Wartha 1) enthält der Lackmus Indig als diejenige Substanz, die den einfachen wässerigen Auszug weniger empfindlich macht. Der säureempfindliche Farbstoff soll in möglichster Reinheit in der Art erhalten werden, dass man den wässerigen Lackmusauszug zur Trockne eindampft und den gepulverten Rest mit absolutem Alkohol, der etwas mit Eisessig versezt ist, mehrmals Male auszieht. Der jetzt zurückbleibende Farbstoff soll so empfindlich sein, dass er kohlensaure Erden ebenso deutlich wie Kochenille anzeigt. Es hängt jedoch diese Qualität nicht von der Empfindlichkeit des Farbstoffs ab, sondern von dem Umstande, dass der Farbstoff eine stärkere Säure als Kohlensäure ist.

Zu Seite 80:

Pflanzenpigmente und Farbenwechsel.

Man löst zur Anwendung 1 Theil Phenolphptalein in 30 Theile Weingeist und setzt der Probe von etwa 100 ccm nur wenige Tropfen zu.

Zu Seite 120:

Salpetersäure als Ammoniak bestimmt.

Von den verschiedenen zur Ueberführung der Salpetersäure in Ammoniak vorgeschlagenen Methoden ist die mit Zink und Eisenfeil in Alkali entschieden vorzuziehen, im Vergleich zu platinirtem Zink und Aluminium. Das Zink muss aber eine ziemliche Vertheilung haben, wenn die Arbeit rasch und sicher verlaufen soll. Das pulverige Zink, welches in Zinkhütten gewonnen wird, eignet sich nicht dazu, weil es immer viel Zinkoxyd enthält und eine zum Blasenwerfen und Uebersteigen geneigte Flüssigkeit gibt. Man kann das Zink in der folgenden Weise leicht richtig vorbereiten. Man schmilzt Zink in einem hessischen Tiegel, giesst eine kleine Menge in einen eisernen Mörser und fährt sogleich mit heftigen Keulenschlägen in dasselbe hinein. Man erhält dadurch viel pulveriges Zink von glänzender Oberfläche. Man entleiht den Mörser und giesst eine neue, aber immer kleine Menge Zink hinein, welches man ebenso vertheilt. Dies Pulver gibt eine schnelle und sichere Wirkung.

Um das Ammoniak nicht als Rest zu bestimmen, fängt man es in zwei hinter einander stehenden Gefässen auf, von denen das erste reines

1) Fresenius' Zeitschrift f. analyt. Chem. 16, 332.
Nachträge.

Zu Seite 260:

Jod in unlöschlichen Jodiden.

Zu Seite 288:

Kupferoxyd.

Statt des unterschwefligsauren Natrons kann man sich vortheilhaft einer verdünnten Zinncnchlorürlösung bedienen, die man gegen empirische Kupferlösung (19.675 g krystallisiertes Kupfervitriol zu ½ Liter) feststellt. Die Kupferprobe darf kein Eisenoxyd enthalten. Jodkalium setzt man in nicht grossem Ueberschuss oder erst allmählich zu, dann Stärkelösung mit Salmiak und aus der Blasebürette das Zinncchlorür, bis die Bläueung nicht wiederkehrt.

1) Fresenius' Zeitschr. f. analyt. Chem. 12, 137.
Zu Seite 295:

Eisenbestimmung.

Am schönsten sieht man den Übergang in einer Porzellan schale bei gutem Tageslicht, dagegen nicht bei künstlichem Licht, weil dabei Gelb zu sehr ausgelöst wird.

Die Einwirkung des Zinnchlorurs ist nicht so rasch wie die des Chamäleons und man muss gegen Ende zwischen jedem Zusatz etwas warten, ob keine fernere Entfärbung stattfindet, und auch damit die durch das Zinnchlorur abgekühlte Flüssigkeit wieder warm werde. Man kann es so treffen, dass nach dem Abkühlen und nach Zusatz von Stärkelösung der erste Tropfen Jodlösung blau färbt. Es empfiehlt sich jedenfalls, diese Probe zu machen, um sicher zu sein, dass man nicht zu viel Zinn chlorur verbraucht habe. Das Reagens wird am besten in einer Blaubürette (S. 22) angewendet, weil man mit dieser am leichtesten über die auf der Lampe stehende Kochflasche kommen kann.

Was man der Methode mit einigem Rechte entgegenstellt, ist, dass der Übergang aus einem sehr schwachen Gelb ins Farblose nicht scharf genug sei. Bei verdünnten Flüssigkeiten ist das richtig, dagegen bei konzentrierten sieht man sehr genau. Es soll deshalb auch die Zinnlösung nicht zu verdünnt sein; am besten hat sie die Stärke, dass sie der empirischen Eisenchloridlösung annähernd gleich ist. Aus dem Grunde hat

1) Fresenius' Zeitschrift für analyt. Chem. 16, 50.
auch Fresenius das Rückmessen mit Jodlösung empfohlen, und auf die Anwendung zweier Flüssigkeiten, von denen die eine nicht stabil ist, bezieht sich meine Aeusserung, dass die Methode für Hüttenleute nicht passend wäre. Um die Anwendung von nur einer Flüssigkeit mit der Schärfe der Jodstärkereaktion zu vereinigen, empfiehle ich die folgende Modification der Methode.

Zu Seite 308:

Salpetersäure.

Für 2 cbcm einer Flüssigkeit, die je 1 mg Salpetersäure in Gestalt von Kalisalpeter enthielt (1·872 g zu 1 Liter), wurden dicht hinter einander die Zahlen 2·2, 3·4 und 4·5 cbcm Indigolösung erhalten; für 5 cbcm 5·4 cbcm Indigolösung, für 10 cbcm 14·2. Diese Zahlen sind nicht proportional.

Wenn man zu einer blau titrirten Flüssigkeit wiederum Salpetermischung hinzufügt, so verschwindet die blaue Farbe nicht mehr, auch wenn man längere Zeit erwärmt. Betupft man aber diese Flüssigkeit mit einem Glasstab, der ganz wenig in salpetrige saures Kali getaucht ist, so geht die Entfärbung wieder weiter. Es findet also die Zersetzung gar nicht zwischen Salpetersäure und Indigo, sondern zwischen einem Zersetzungsprodukt der Salpetersäure und Indigo statt; daher denn auch die Vorschrift, rasch zu arbeiten, damit die Bedingungen der Fortsetzung des Angriffs nicht verfliessen, wie sie das nach Vollendung der Arbeit sind, und dann auch nicht durch neuen Salpeterzusatz wieder hervorgerufen
Nachträge. 729

werden. Es ist nun an der Methode von Goppelsroeder, Trommsdorff u. A. geschickt geltend worden, und jeder, der sich derselben bediente, hat sich zuerst darauf einzuben, dass gleichbleibende Zahlen erhielt man durch genaue Einhaltung aller Verhältnisse, dass dieselben aber richtig seien, ist nicht gewährleistet. Es ist nicht einzusehen, was die so grosse Menge Schwefelsäure nützen solle. Um schnell zu arbeiten, wird das frische Wasser in kleinen Mengen verwendet. Nimmt man 25 ccm, so wird der Fehler auf das Liter mit 40 multipliziert; bei 50 ccm mit 20 und bei 100 ccm mit 10.

Anläufe zur Bestimmung der Salpetersäure auf alkalimetrischem Wege. Wenn es gelingt, die NO₃ so zu zerstören, dass an ihre Stelle keine neue oder nur eine schwache Säure (CO₂) tritt, so müsste es auch gelingen, diese Säure alkalimetrisch zu bestimmen. In diesem Sinne wurden folgende Wege, sämmtlich ohne entsprechenden Erfolg, versucht.

1) 0,5 g Natronsalpeteter wurde mit 2,5 g Kupferoxydul geschmolzen. Das Filtrat war = 4 ccm Normal-Salzsäure = 0,340 g Natronsalpeteter (zu wenig). 2) Mit Spatheisenstein: gab zu wenig. 3) Mit gefälltem metallischen Kupfer: gab zu wenig. 4) Mit weinsaurem Kalk: verpuffte und gab Verluste. 5) Mit oxalsaurem Kalk: zu wenig. 6) Mit oxalsaurem Eisenoxydul: nicht brauchbare Zahlen. 7) Mit oxalsaurem Manganoxydul: nichts.

Zu Seite 352:

Dagegen wird das Salz leicht zersetzet, wenn man es mit der doppelten Menge oxalsauren Natrons im Platintiegel bis zum Schmelzen erhitzt. Nach dem Auslaugen lässt sich das Chlor leicht durch 1/10 Silberlösung bestimmen.

Zur Prüfung des Verhaltens wurde 0,5 g reines Chlorplatinkalium

1) Fresenius' Zeitschr. f. analyt. Chem. 9, 208.
Nachträge.

mit 1 g oxalsäurem Natron innig zerrieben, in einen Platintiegel gebracht und der Achtmörser mit oxalsäurem Natron rein gespült. Die Zersetzung geht bei dunkler Rohglühhitze vor sich und die Masse schmilzt leicht, weil ein Gemenge von Chlorkalium und Chlornatrium entsteht. Der Rest im Tiegel wird mit reinem destillierten Wasser ausgewaschen, bis das Filtrat auf rothes Lackmuspapier nicht mehr reagirt. Das Filtrat wird mit Essigsäure annähernd neutralisirt, neutrales chromsaures Kali zugesetzt, und dann mit $\frac{1}{10}$ Silberlösung austitrirt. In zwei Operationen wurden

1) 61 cbcm
2) 61.2 n $\frac{1}{10}$ Silberlösung verbraucht.

Da das Platinsalz 3 Atome Chlor enthält, so ist jedes Atom der Silberlösung $= \frac{1}{3}$ von $\frac{1}{10000}$ Atom Kali $= \frac{0.004711}{3} = 0.00157$ g Kali.

Die erste Analyse ergibt 0.09577 g Kali
Die zweite " 0.096084 " "
Berechnet 0.09635 " "

Das Filtrum mit dem Platin eingeschert gab

1) 0.2035 g Platin
2) 0.2010 " "
3) 0.2030 " "
berechnet 0.2024 " "

Sind die Mengen des Chlorplatinkaliums sehr klein, so befeuchtet man dasselbe und das Filtrum mit einer concentrirten Lösung von neutralem oxalsäurem Kali, lässt austrocknen und äschtet dann im bedeckten Tiegel ein.

Zu Seite 399:

Zeile 7 v. o.: Schärfer ausgerechnet ist die Formel für Chloralium

$x = 4.63489 S - 7.647047 C$

und bequemer

$x = 4.635 S - 7.647 C.$

Zu Seite 487:

Phosphorsäure in Phosphoriten.

Schumann 1) verwirft die einfachste Bestimmung der Phosphorsäure in Phosphoriten durch vorläufige Fällung des Kalks mit Oxalsäure

1) Zeitschrift f. analyt. Chem. 11, 394.
Nachträge. 731

Zu Seite 496:

Zurückgegangene Phosphorsäure.

Ohne gerade soweit zu gehen, schlagen die Fabrikanten Albert und Siegfried 1) vor, die freie und zurückgegangene Phosphorsäure in einer Operation zu bestimmen, und bedienen sich dazu einer Flüssigkeit, die aus 240 g Weinsäure, mit Ammoniak zu sättigen, dann 16 cbcm Ammoniak von 0'96 zuzusetzen und auf 1 Liter mit Wasser aufzufüllen, bereitet wird. Zur Lösung der Superphosphate wird auf 1 g 40 cbcm der alkalisch weinsauren Ammoniakflüssigkeit genommen, nach und nach im Mörser mit Ausguss fein abgerieben und in ein 100-cbcm-Kölbchen gebracht, nach einer Stunde auf 100 cbcm aufgefüllt und von diesem Filtrat 50 cbcm = 0'5 g Superphosphat mit Magnesiumamintur gefällt und das ausgewaschene Doppelsalz schliesslich mit Uran titriert.

Bekanntlich hat Fresenius 2) das neutrale zitronensäure Ammoniak zur Ausziehung der zurückgegangenen Phosphorsäure empfohlen, dagegen die gemeinsame Ausziehung der löslichen und zurückgegangenen durch dasselbe Mittel verworfen, weil sich saures zitronensaures Ammoniak bildet, welches auch den reinen Phosphorit angreift. Dieser Uebelstand soll nun durch die Anwendung der alkalischen weinsauren Ammoniaklösung vermieden werden. Fernere Versuche müssen nachweisen, dass die von Albert und Siegfried vorgeschlagene Methode diesen Zweck erfüllt.

1) Fresenius' Zeitschrift f. analyt. Chem. 16, 184.
2) Fresenius' Zeitschrift f. analyt. Chem. 10, 154.
Eisenoxyd in Mineralwässern.

5 bis 6 Liter Wasser werden mit Salzsäure zur Trockne verdampft, nach Zusatz von etwas Salzsäure wieder gelöst und filtrirt. Man gewinnt die zu bestimmende Kieselerde.

Man fällt im Filtrat das Eisenoxyd warm mit Ammoniak und wäscht aus. Diese erste Fällung geschieht nur um etwaige Salpetersäure nicht als Eisen zu bestimmen. Man löst das Eisenoxyd vom Filtrum mit warmer Salzsäure, filtrirt in eine Stöpselflasche, und wäscht aus. Man setzt nun eine überschüssige Menge Jodkalium zu, fällt den leeren Raum der Flasche mit Kohlensäure, verschliesst sogleich und lässt 24 Stunden stehen. Dann bestimmt man das frei gewordene Jod mit $\frac{1}{100}$, oder bei geringen Mengen mit $\frac{1}{100}$ unterschüssigem Natron.

Ist das Eisen mit grossen Mengen fremder, nicht metallischer Substanzen vermischt, so fällt man es einmal mit Schwefelammonium und verfährt dann wie oben.

Zu S. 622:

Phosphor im Gusseisen.

Bei Auflösung des Eisens in Königswasser verflüchtigt ein Theil Phosphor mit dem Gasen, wie Stöckmann 1) ermittelt hat. Es soll deshalb nur reine Salpetersäure angewendet werden. 5 g gepulvertes Spiegeleisen werden in 60 cbcm reiner Salpetersäure von 1:200 spezifischem

1) Fresenius' Zeitschrift f. analyt. Chem. 16, 179.

Zu Seite 647:

Typenmetall.

2,675 g Typenmetall mit NO₃ zur Trockne, dann heiss gelöst, hinteriessen gegluht 0,448 g SbO₄ = 0,3508 g = 13,107 Proc. Antimon. Die salpetersaure Lösung, mit viel SO₃ H₂O im Wasser gefällt, gaben gegluhtes 3,382 g schwefelsaures Bleioxyd = 2,310 g = 86,351 Proc. Blei

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewicht (Proc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimon</td>
<td>13,107</td>
</tr>
<tr>
<td>Blei</td>
<td>86,351</td>
</tr>
<tr>
<td>Summe</td>
<td>99,458</td>
</tr>
</tbody>
</table>

statt 100 wegen des schwefelsauren Bleioxyds.

1) Fresenius' Zeitschrift f. analyt. Chem. 16, 192.
Alkalimetrische Phosphorsäurebestimmung.

Zum Verständniss dieses Vorganges wurden folgende Versuche gemacht.

Das bekannte Doppelsalz phosphorsaures Natron-Ammoniak (Sal microcosmicum) zur Abtönzung mit S. M. bezeichnet, besteht aus PO_5, NaO, NH_4O, $\text{H}_2\text{O} + 9\text{H}_2\text{O}$, reagirt ebenfalls alkalisch und kann alkalimetrisch gemessen werden. 1 g erforderte 4,8 cbcm Normal-Salzsäure und enthält nach der Formel $\frac{71,36}{209,36} = 0,3408$ g PO_5, also 1 cbcm Normalsäure $= 0,071$ g PO_5, d. h. ganz nahe das Atomgewicht. Wurde nun 1 g S. M. mit Bittererdeemixtur gefällt, ausgewaschen und das Doppelsalz mit derseelen Salzsäure gemessen, so wurden 9,6 cbcm verbraucht, also die doppelte Menge des obigen. Dies erklärt sich sehr einfach. In dem S. M. sind 2 Atom Basis und 1 Atom basisches Wasser, welches alkalimetrisch nicht wirkt; es braucht also nur 1 Atom Basis gesättigt zu werden, und die saure Reaction tritt bei dem kleinsten Säureüberschuss ein. In dem Bittererdedoppelsalz sind 3 Atome wirklicher Basis und kein basisches Wasser; es muss also für dieselbe Menge S. M., mit Bittererde gefällt, doppelt so viel Säure als für das Salz vor der Fällung verbraucht werden, wie auch der Versuch zeigte.

Wird das S. M. in der Platinschale bis zum Schmelzen in einem Glase erhitzt, so bleibt PO_5, NaO übrig, die bekannte Phosphorsalsperle aus der Lötrohrzeit. Diese in Wasser gelöst ist ganz neutral, färbt weder rothes noch blanes Lackmuspapier, noch Kochenilletinctur und durch einen Tropfen Ammoniak zeigte Koehenille die violette Färbung.

1) Fresenius' Zeitschrift f. analyt. Chem. 16, 100.
Dagegen phosphorsaures Natron mit 2 Atom Natron und 1 Atom basischen Wassers zeigt vor dem Glühen und nach dem Glühen dieselbe Alkalität, weil eben im ersten Falle das Wasser nicht mitreagirte, und im zweiten Falle die 2 Atome Natron noch vorhanden sind. Der Schluß von der Alkalität auf die Phosphorsäure setzt also immer die Kenntniss von der Anzahl der Atome Basis voraus. Die drei basischen Verbindungen, d. h. solche, welche 3 Atome wirklicher Basen und nicht basisches Wasser enthalten, erfordern 2 Atome Säure bis zur sauren Reaction, und diejenigen, welche 1 Atom basisches Wasser enthalten, nur 1 Atom Säure, und die sogenannten metaphosphorsauren Salze mit 1 Atom wirklicher Basis sind neutral. Unter der Voraussetzung, dass man aus allen Verbindungen die Phosphorsäure in der Bittererdeverbindung abscheiden könne, hat man den Vorteil, eine ganz gleiche Bestimmung für alle phosphorsauren Salze zu haben. Es kam nun darauf an, bequeme Formen für die Titerflüssigkeiten und die messende Säure zu finden.

Die empirische Phosphorsäureflüssigkeit mit 10 g PO₅ im Liter wird am besten aus dem oben erwähnten S. M. dargestellt, indem man 29·324 g zu 1 Liter löst. Jeder Cubikcentimeter enthält dann 0,010 g PO₅. Um eine gleich starke Salzsäure darzustellen, misst man 20 cbcm reine Salzsäure von der gewöhnlichen Starke in den Mischcyliner, ergänzt bis zu 1000 cbcm und macht eine Probe.

Man lässt 10 cbcm Phosphorsäureflüssigkeit in eine Porzellananschale laufen, setzt Kochenilletinctur hinzu, welche sogleich tief violett gefärbt wird und lässt die Salzsäure aus einer in 1/10 cbcm geteilten Bürette auslaufen, bis der letzte Tropfen keine sichtbare Veränderung mehr hervorbringt. War die Säure richtig, so musste man auch 10 cbcm verbrauchen. Braucht man aber weniger, z. B. nur 9 cbcm, so hat man den Rest so zu verdünnen, dass aus 9 Volum 10 werden. Sind also noch 990 cbcm Säure übrig, so hat man 9 : 10 = 990 : 1100; es wird also auf 1100 cbcm aufgefüllt, umgeschüttelt und noch einmal probirt. Diese Säure, welche dem S. M. gegenüber 0,010 g PO₅ anzeigt, bedeutet dem Bittererdoppelsalz gegenüber nur 0,005 g PO₅ und wird damit bezeichnet.

Zugleich liegt auch darin eine Bittererdebestimmung. Da wir 2 Atome Bittererde haben und 2 Atome Säure verbrauchen, so ist die Bittererde proportional der Säure im Atomverhältniss, dagegen die Phosphorsäure nur zur Hälfte. Wir haben also, wenn wir dieselbe Säure wie für PO₅ gebrauchen wollen:

\[
\frac{1}{2} \text{ Atom PO}_5 : 1 \text{ Atom MgO} \\
35,68 : 20 = 0,005 : 0,0028.
\]

Jeder Cubikcentimeter dieser Säure bedeutet also 0,0028 g MgO. Für Versuchsstationen chemischer Dünger würde sich die auf PO₅ titirte Salzsäure empfehlen, dagegen für einzelne Versuche könnte man
die gewöhnliche normale Salzsäure anwenden. Dieselbe entspricht für jeden Cubikcentimeter

0.020 g Bittererde
0.03568 g Phosphorsäure und
0.0575 g Arsensäure,

wenn man das entsprechende arsensaure Bittererde-Ammoniak in Händen hat. Freie PO₅ kann man nicht wohl alkalimetrisch messen, weil die verunreinigenden fremden Säuren (NO₃, SO₃) ebenfalls mitgemessen werden, und weil sich die messenden Basen ungleich zu PO₅ verhalten. Am besten fällt man sie ebenfalls als Bittererdedoppelsalz und bestimmt dies wie oben. Misst man freie PO₅ mit Barytwasser, so ist für jeden Cubikcentimeter auf Normal reducirtes Barytwasser nur ½ Tausendstel des Atomgewichts in Ansatz zu bringen, da der Baryt als zweibasisch gefällt wird. Beim Fällen durch Bittererdelösung schliesst man alle fremden Säuren aus.

Untersuchung von Mehl auf unorganische Beimengungen, nach C. Himly in Kiel.

Diese in Holland absichtlich zubereiteten und in den Handel gebrachten Beimengungen sind Gyps, Kreide, Schwerspath. Das specifische Gewicht dieser Stoffe ist für Kalkstein 2.57 bis 2.78; für Kreide 2.23; Schwerspath 4.48; ungebrauchten Gyps 2.32, gebrannten Gyps 1.81; Marmor 2.72; Knochenmehl 1.65. Dagegen ist das specifische Gewicht des Chloroforms 1.50, also bedeutend geringer als bei den erwähnten Stoffen. Da nun das Chloroform keinen der in Betracht kommenden Stoffe auflöst, so ergibt sich der anzustellende Versuch von selbst. Es ist erforderlich, einen Fingerhut voll des zu untersuchenden Mehles in einen Reagirzylinder zu schütten und darauf denselben bis zu 3/4 mit Chloroform zu füllen, stark umzuschütteln und in verticaler Richtung eine Zeit lang hinzustellen. Das Mehl sammelt sich unter der Oberfläche des Chloroforms, in dem oberen Theil des Zylinders, d. h. es schwimmt im Chloroform, während sich die mineralischen Stoffe auf dem Boden des Gefässes ablagern. Bei ganz unverfälschtem Mehl zeigt sich auch eine kleine Menge eines grauen, braunen oder schwarzen Absatzes, wahrscheinlich Pulver von den Mühlsteinen.
Anleitung

zum

Gebrauch der folgenden Tafel.

Die Tafel erleichtert die Berechnung, indem sie Multiplicationen in Additionen verwandelt.

Gesetzt, man habe zur Sättigung einer gewogenen Menge Pottasche 156,5 cbcm Normalsäure verbraucht und wolle das dieser Menge entsprechende reine kohlensaure Kali berechnen. Wir finden kohlensaures Kali unter Nr. 10 der Tafel.

Dannach entsprechen

<table>
<thead>
<tr>
<th>Normalprobeflüssigkeit</th>
<th>kohlens. Kali</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 cbcm</td>
<td>6,911 g</td>
</tr>
<tr>
<td>50 "</td>
<td>3,4555 "</td>
</tr>
<tr>
<td>6 "</td>
<td>0,41466 "</td>
</tr>
<tr>
<td>0,5 "</td>
<td>0,034555 "</td>
</tr>
</tbody>
</table>

156,5 cbcm = 10,815715 g kohlensaures Kali.

*) In Schrift gewöhnlich Komma, als bequemer.
<table>
<thead>
<tr>
<th>Laufende Nummer aus den Rubriken d. Paragr.</th>
<th>Namen der Substanz</th>
<th>Normal oder (\frac{1}{10}) Normal.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natrium</td>
<td>N</td>
<td>0.023</td>
<td>0.046</td>
<td>0.069</td>
</tr>
<tr>
<td>2</td>
<td>Natron, wasserleeres</td>
<td>N</td>
<td>0.031</td>
<td>0.062</td>
<td>0.093</td>
</tr>
<tr>
<td>3</td>
<td>Natronhydrat</td>
<td>N</td>
<td>0.040</td>
<td>0.080</td>
<td>0.120</td>
</tr>
<tr>
<td>4</td>
<td>Trockn. kohlens. Natron</td>
<td>N</td>
<td>0.053</td>
<td>0.106</td>
<td>0.159</td>
</tr>
<tr>
<td>5</td>
<td>Kryst. kohlens. Natr. (10Aq)</td>
<td>N</td>
<td>0.143</td>
<td>0.286</td>
<td>0.429</td>
</tr>
<tr>
<td>6</td>
<td>Dopp. kohlens. Natr. (1 Aq.)</td>
<td>N</td>
<td>0.084</td>
<td>0.168</td>
<td>0.252</td>
</tr>
<tr>
<td>7</td>
<td>Kalium</td>
<td>N</td>
<td>0.3911</td>
<td>0.7822</td>
<td>1.1733</td>
</tr>
<tr>
<td>8</td>
<td>Kali</td>
<td>N</td>
<td>0.04711</td>
<td>0.09422</td>
<td>0.14133</td>
</tr>
<tr>
<td>9</td>
<td>Kalihydrat (1 Aq.)</td>
<td>N</td>
<td>0.05611</td>
<td>0.11222</td>
<td>0.16833</td>
</tr>
<tr>
<td>10</td>
<td>Kohlens. Kali, wasserleer</td>
<td>N</td>
<td>0.06911</td>
<td>0.13822</td>
<td>0.20735</td>
</tr>
<tr>
<td>11</td>
<td>Dopp. kohlens. Kali (1 Aq.)</td>
<td>N</td>
<td>0.10011</td>
<td>0.20022</td>
<td>0.30033</td>
</tr>
<tr>
<td>12</td>
<td>Ammoniak</td>
<td>N</td>
<td>0.017</td>
<td>0.034</td>
<td>0.051</td>
</tr>
<tr>
<td>13</td>
<td>Salmiak</td>
<td>N</td>
<td>0.05346</td>
<td>0.10692</td>
<td>0.16033</td>
</tr>
<tr>
<td>14</td>
<td>Kalk</td>
<td>N</td>
<td>0.020</td>
<td>0.040</td>
<td>0.060</td>
</tr>
<tr>
<td>15</td>
<td>Kohlensaurer Kalk</td>
<td>N</td>
<td>0.050</td>
<td>0.100</td>
<td>0.150</td>
</tr>
<tr>
<td>16</td>
<td>Chlorkalcium</td>
<td>N</td>
<td>0.05546</td>
<td>0.11092</td>
<td>0.16653</td>
</tr>
<tr>
<td>17</td>
<td>Kryst. Chlorkalcium (6 Aq.)</td>
<td>N</td>
<td>0.10946</td>
<td>0.21892</td>
<td>0.32833</td>
</tr>
<tr>
<td>18</td>
<td>Schwefelsaurer Kalk</td>
<td>N</td>
<td>0.068</td>
<td>0.136</td>
<td>0.204</td>
</tr>
<tr>
<td>19</td>
<td>Gyps (2 Aq.)</td>
<td>N</td>
<td>0.086</td>
<td>0.172</td>
<td>0.258</td>
</tr>
<tr>
<td>20</td>
<td>Salpetersaurer Kalk</td>
<td>N</td>
<td>0.082</td>
<td>0.164</td>
<td>0.246</td>
</tr>
<tr>
<td>21</td>
<td>Baryum</td>
<td>N</td>
<td>0.0685</td>
<td>0.1370</td>
<td>0.2053</td>
</tr>
<tr>
<td>22</td>
<td>Baryt</td>
<td>N</td>
<td>0.0765</td>
<td>0.1530</td>
<td>0.2293</td>
</tr>
<tr>
<td>23</td>
<td>Barythylhydrat (1 Aq.)</td>
<td>N</td>
<td>0.0855</td>
<td>0.1710</td>
<td>0.2585</td>
</tr>
<tr>
<td>24</td>
<td>Barytkrystalle (9 Aq.)</td>
<td>N</td>
<td>0.1575</td>
<td>0.3150</td>
<td>0.4725</td>
</tr>
<tr>
<td>25</td>
<td>Kohlensaurer Baryt</td>
<td>N</td>
<td>0.0985</td>
<td>0.1970</td>
<td>0.2955</td>
</tr>
<tr>
<td>26</td>
<td>Chlorbaryum (wasserleer)</td>
<td>N</td>
<td>0.1040</td>
<td>0.2080</td>
<td>0.3120</td>
</tr>
<tr>
<td>27</td>
<td>Salpetersaurer Baryt</td>
<td>N</td>
<td>0.1305</td>
<td>0.2610</td>
<td>0.3915</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.092</td>
<td>0.115</td>
<td>0.138</td>
<td>0.161</td>
<td>0.184</td>
<td>0.207</td>
</tr>
<tr>
<td>0.124</td>
<td>0.155</td>
<td>0.186</td>
<td>0.217</td>
<td>0.248</td>
<td>0.279</td>
</tr>
<tr>
<td>0.160</td>
<td>0.200</td>
<td>0.240</td>
<td>0.280</td>
<td>0.320</td>
<td>0.360</td>
</tr>
<tr>
<td>0.212</td>
<td>0.265</td>
<td>0.318</td>
<td>0.371</td>
<td>0.424</td>
<td>0.477</td>
</tr>
<tr>
<td>0.572</td>
<td>0.715</td>
<td>0.858</td>
<td>1.001</td>
<td>1.144</td>
<td>1.287</td>
</tr>
<tr>
<td>0.336</td>
<td>0.420</td>
<td>0.504</td>
<td>0.588</td>
<td>0.672</td>
<td>0.756</td>
</tr>
<tr>
<td>0.15644</td>
<td>0.19555</td>
<td>0.23466</td>
<td>0.27377</td>
<td>0.31288</td>
<td>0.35199</td>
</tr>
<tr>
<td>0.18844</td>
<td>0.23555</td>
<td>0.28266</td>
<td>0.32977</td>
<td>0.37688</td>
<td>0.42399</td>
</tr>
<tr>
<td>0.22444</td>
<td>0.28055</td>
<td>0.33666</td>
<td>0.39277</td>
<td>0.44888</td>
<td>0.50499</td>
</tr>
<tr>
<td>0.27644</td>
<td>0.34555</td>
<td>0.41466</td>
<td>0.48377</td>
<td>0.55288</td>
<td>0.62199</td>
</tr>
<tr>
<td>0.40044</td>
<td>0.50055</td>
<td>0.60066</td>
<td>0.70077</td>
<td>0.80088</td>
<td>0.90099</td>
</tr>
<tr>
<td>0.068</td>
<td>0.085</td>
<td>0.102</td>
<td>0.119</td>
<td>0.136</td>
<td>0.153</td>
</tr>
<tr>
<td>0.21384</td>
<td>0.26730</td>
<td>0.32076</td>
<td>0.37422</td>
<td>0.42768</td>
<td>0.48114</td>
</tr>
<tr>
<td>0.080</td>
<td>0.100</td>
<td>0.120</td>
<td>0.140</td>
<td>0.160</td>
<td>0.180</td>
</tr>
<tr>
<td>0.112</td>
<td>0.140</td>
<td>0.168</td>
<td>0.196</td>
<td>0.224</td>
<td>0.252</td>
</tr>
<tr>
<td>0.200</td>
<td>0.250</td>
<td>0.300</td>
<td>0.350</td>
<td>0.400</td>
<td>0.450</td>
</tr>
<tr>
<td>0.22184</td>
<td>0.27730</td>
<td>0.33276</td>
<td>0.38822</td>
<td>0.44368</td>
<td>0.49914</td>
</tr>
<tr>
<td>0.43784</td>
<td>0.54730</td>
<td>0.65676</td>
<td>0.76622</td>
<td>0.87568</td>
<td>0.98514</td>
</tr>
<tr>
<td>0.272</td>
<td>0.340</td>
<td>0.408</td>
<td>0.476</td>
<td>0.544</td>
<td>0.612</td>
</tr>
<tr>
<td>0.344</td>
<td>0.430</td>
<td>0.516</td>
<td>0.602</td>
<td>0.688</td>
<td>0.774</td>
</tr>
<tr>
<td>0.328</td>
<td>0.410</td>
<td>0.492</td>
<td>0.574</td>
<td>0.656</td>
<td>0.738</td>
</tr>
<tr>
<td>0.2740</td>
<td>0.3426</td>
<td>0.4110</td>
<td>0.4795</td>
<td>0.5480</td>
<td>0.6165</td>
</tr>
<tr>
<td>0.3060</td>
<td>0.3825</td>
<td>0.4590</td>
<td>0.5355</td>
<td>0.6120</td>
<td>0.6885</td>
</tr>
<tr>
<td>0.3420</td>
<td>0.4275</td>
<td>0.5130</td>
<td>0.5985</td>
<td>0.6840</td>
<td>0.7695</td>
</tr>
<tr>
<td>0.6300</td>
<td>0.7875</td>
<td>0.9430</td>
<td>1.1025</td>
<td>1.2600</td>
<td>1.4175</td>
</tr>
<tr>
<td>0.3940</td>
<td>0.4925</td>
<td>0.5910</td>
<td>0.6895</td>
<td>0.7880</td>
<td>0.8865</td>
</tr>
<tr>
<td>0.4160</td>
<td>0.5200</td>
<td>0.6240</td>
<td>0.7280</td>
<td>0.8320</td>
<td>0.9360</td>
</tr>
<tr>
<td>0.5220</td>
<td>0.6525</td>
<td>0.7830</td>
<td>0.9135</td>
<td>1.0440</td>
<td>1.1745</td>
</tr>
<tr>
<td>Laufende Nummer aus den Rubriken d. Paragr.</td>
<td>Namen der Substanz</td>
<td>Normal oder 1/10 Normal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>29</td>
<td>Strontium</td>
<td>N</td>
<td>0.04367</td>
<td>0.08734</td>
<td>0.13101</td>
</tr>
<tr>
<td>30</td>
<td>Strontian</td>
<td>N</td>
<td>0.05167</td>
<td>0.10334</td>
<td>0.15501</td>
</tr>
<tr>
<td>31</td>
<td>Kohlensaurer Strontian</td>
<td>N</td>
<td>0.07367</td>
<td>0.14734</td>
<td>0.22101</td>
</tr>
<tr>
<td>32</td>
<td>Chlorstrontium, wasserleer</td>
<td>N</td>
<td>0.07913</td>
<td>0.15826</td>
<td>0.23739</td>
</tr>
<tr>
<td>33</td>
<td>Salpetersaurer Strontian</td>
<td>N</td>
<td>0.10567</td>
<td>0.21134</td>
<td>0.31701</td>
</tr>
<tr>
<td>34</td>
<td>Kohlenstoff</td>
<td>N</td>
<td>0.006</td>
<td>0.012</td>
<td>0.018</td>
</tr>
<tr>
<td>35</td>
<td>Kohlensäure</td>
<td>N</td>
<td>0.022</td>
<td>0.044</td>
<td>0.066</td>
</tr>
<tr>
<td>36</td>
<td>Zink</td>
<td>N</td>
<td>0.03253</td>
<td>0.06506</td>
<td>0.09759</td>
</tr>
<tr>
<td>37</td>
<td>Zinkoxyd</td>
<td>N</td>
<td>0.04053</td>
<td>0.08106</td>
<td>0.12159</td>
</tr>
<tr>
<td>38</td>
<td>Bittererde</td>
<td>N</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>39</td>
<td>Schwefelsaures Natron</td>
<td>N</td>
<td>0.071</td>
<td>0.142</td>
<td>0.213</td>
</tr>
<tr>
<td>40</td>
<td>Glaubersalz (10 Aq.)</td>
<td>N</td>
<td>0.161</td>
<td>0.322</td>
<td>0.483</td>
</tr>
<tr>
<td>41</td>
<td>Schwefelsaures Kali</td>
<td>N</td>
<td>0.08711</td>
<td>0.17422</td>
<td>0.26133</td>
</tr>
<tr>
<td>42</td>
<td>Schwefelsäure (wasserleer)</td>
<td>N</td>
<td>0.040</td>
<td>0.080</td>
<td>0.120</td>
</tr>
<tr>
<td>43</td>
<td>Salzsäure</td>
<td>N</td>
<td>0.03646</td>
<td>0.07292</td>
<td>0.10938</td>
</tr>
<tr>
<td>44</td>
<td>Salpetersäure (wasserleer)</td>
<td>N</td>
<td>0.054</td>
<td>0.108</td>
<td>0.162</td>
</tr>
<tr>
<td>45</td>
<td>Schwefelsäure, wasserleer</td>
<td>N</td>
<td>0.040</td>
<td>0.080</td>
<td>0.120</td>
</tr>
<tr>
<td>46</td>
<td>Schwefelsäurehydrat</td>
<td>N</td>
<td>0.049</td>
<td>0.098</td>
<td>0.147</td>
</tr>
<tr>
<td>47</td>
<td>Saur.schweifle.Kali (1 Aq.)</td>
<td>N</td>
<td>0.13611</td>
<td>0.27222</td>
<td>0.40833</td>
</tr>
<tr>
<td>48</td>
<td>Saur.schweifle.Natr. (1 Aq.)</td>
<td>N</td>
<td>0.120</td>
<td>0.240</td>
<td>0.360</td>
</tr>
<tr>
<td>49</td>
<td>1/3 At. Thonerde</td>
<td>N</td>
<td>0.0196</td>
<td>0.0392</td>
<td>0.0588</td>
</tr>
<tr>
<td>50</td>
<td>1/3 At. Kalialaun (24 Aq.)</td>
<td>N</td>
<td>0.1818</td>
<td>0.3636</td>
<td>0.5454</td>
</tr>
<tr>
<td>51</td>
<td>Essigsäure</td>
<td>N</td>
<td>0.051</td>
<td>0.102</td>
<td>0.153</td>
</tr>
<tr>
<td>52</td>
<td>Eissessig</td>
<td>N</td>
<td>0.060</td>
<td>0.120</td>
<td>0.180</td>
</tr>
<tr>
<td>53</td>
<td>Weinsäure (wasserleer)</td>
<td>N</td>
<td>0.066</td>
<td>0.132</td>
<td>0.198</td>
</tr>
<tr>
<td>54</td>
<td>Kryst. Weinsäure</td>
<td>N</td>
<td>0.075</td>
<td>0.150</td>
<td>0.225</td>
</tr>
<tr>
<td>55</td>
<td>Weinstein (1 Aq.)</td>
<td>N</td>
<td>0.18811</td>
<td>0.37622</td>
<td>0.56433</td>
</tr>
<tr>
<td>56</td>
<td>Doppelt weinsaures Natron</td>
<td>N</td>
<td>0.19</td>
<td>0.38</td>
<td>0.57</td>
</tr>
<tr>
<td>57</td>
<td>Zitronensäure (wasserleer)</td>
<td>N</td>
<td>0.060</td>
<td>0.120</td>
<td>0.180</td>
</tr>
<tr>
<td>58</td>
<td>Kryst.Zitronensäure (1 Aq.)</td>
<td>N</td>
<td>0.07</td>
<td>0.14</td>
<td>0.21</td>
</tr>
</tbody>
</table>
den Rubriken der Paragraphen enthaltenen Zahlen.

1. bedeutet Atom Wasser. Die neben der Substanz stehenden Zahlen bedeuten die Gramme der bikcentimetern Probenflüssigkeit in derselben Verticalcolumnne entsprechen.

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17468</td>
<td>0.21835</td>
<td>0.26202</td>
<td>0.30569</td>
<td>0.34936</td>
<td>0.39303</td>
</tr>
<tr>
<td>0.20668</td>
<td>0.25835</td>
<td>0.31002</td>
<td>0.36169</td>
<td>0.41336</td>
<td>0.46503</td>
</tr>
<tr>
<td>0.29468</td>
<td>0.36835</td>
<td>0.44202</td>
<td>0.51569</td>
<td>0.58936</td>
<td>0.66303</td>
</tr>
<tr>
<td>0.31652</td>
<td>0.39565</td>
<td>0.47478</td>
<td>0.55391</td>
<td>0.63304</td>
<td>0.71217</td>
</tr>
<tr>
<td>0.42268</td>
<td>0.52835</td>
<td>0.63402</td>
<td>0.73969</td>
<td>0.84536</td>
<td>0.95103</td>
</tr>
<tr>
<td>0.024</td>
<td>0.030</td>
<td>0.036</td>
<td>0.042</td>
<td>0.048</td>
<td>0.054</td>
</tr>
<tr>
<td>0.088</td>
<td>0.110</td>
<td>0.132</td>
<td>0.154</td>
<td>0.176</td>
<td>0.198</td>
</tr>
<tr>
<td>0.13012</td>
<td>0.16265</td>
<td>0.19518</td>
<td>0.22771</td>
<td>0.26024</td>
<td>0.29277</td>
</tr>
<tr>
<td>0.16212</td>
<td>0.20265</td>
<td>0.24318</td>
<td>0.28371</td>
<td>0.32424</td>
<td>0.36477</td>
</tr>
<tr>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>0.284</td>
<td>0.355</td>
<td>0.426</td>
<td>0.497</td>
<td>0.563</td>
<td>0.639</td>
</tr>
<tr>
<td>0.644</td>
<td>0.805</td>
<td>0.966</td>
<td>1.127</td>
<td>1.288</td>
<td>0.449</td>
</tr>
<tr>
<td>0.34844</td>
<td>0.43555</td>
<td>0.52266</td>
<td>0.60977</td>
<td>0.69688</td>
<td>0.78399</td>
</tr>
<tr>
<td>0.160</td>
<td>0.200</td>
<td>0.240</td>
<td>0.280</td>
<td>0.320</td>
<td>0.360</td>
</tr>
<tr>
<td>0.14584</td>
<td>0.18230</td>
<td>0.21876</td>
<td>0.25522</td>
<td>0.29168</td>
<td>0.32814</td>
</tr>
<tr>
<td>0.216</td>
<td>0.270</td>
<td>0.324</td>
<td>0.378</td>
<td>0.432</td>
<td>0.486</td>
</tr>
<tr>
<td>0.160</td>
<td>0.200</td>
<td>0.240</td>
<td>0.280</td>
<td>0.320</td>
<td>0.360</td>
</tr>
<tr>
<td>0.196</td>
<td>0.245</td>
<td>0.294</td>
<td>0.343</td>
<td>0.392</td>
<td>0.441</td>
</tr>
<tr>
<td>0.54444</td>
<td>0.68055</td>
<td>0.81666</td>
<td>0.95277</td>
<td>1.08888</td>
<td>1.22499</td>
</tr>
<tr>
<td>0.480</td>
<td>0.600</td>
<td>0.720</td>
<td>0.840</td>
<td>0.960</td>
<td>1.080</td>
</tr>
<tr>
<td>0.0784</td>
<td>0.0980</td>
<td>0.1176</td>
<td>0.1372</td>
<td>0.1568</td>
<td>0.1764</td>
</tr>
<tr>
<td>0.7272</td>
<td>0.9090</td>
<td>1.0908</td>
<td>1.2726</td>
<td>1.4544</td>
<td>1.6362</td>
</tr>
<tr>
<td>0.204</td>
<td>0.255</td>
<td>0.306</td>
<td>0.357</td>
<td>0.408</td>
<td>0.459</td>
</tr>
<tr>
<td>0.240</td>
<td>0.300</td>
<td>0.360</td>
<td>0.420</td>
<td>0.480</td>
<td>0.540</td>
</tr>
<tr>
<td>0.264</td>
<td>0.330</td>
<td>0.396</td>
<td>0.462</td>
<td>0.528</td>
<td>0.594</td>
</tr>
<tr>
<td>0.300</td>
<td>0.375</td>
<td>0.450</td>
<td>0.525</td>
<td>0.600</td>
<td>0.675</td>
</tr>
<tr>
<td>0.75244</td>
<td>0.94055</td>
<td>1.12866</td>
<td>1.31677</td>
<td>1.50488</td>
<td>1.69299</td>
</tr>
<tr>
<td>0.76</td>
<td>0.95</td>
<td>1.14</td>
<td>1.33</td>
<td>1.52</td>
<td>1.71</td>
</tr>
<tr>
<td>0.240</td>
<td>0.300</td>
<td>0.360</td>
<td>0.420</td>
<td>0.480</td>
<td>0.540</td>
</tr>
<tr>
<td>0.28</td>
<td>0.35</td>
<td>0.42</td>
<td>0.49</td>
<td>0.56</td>
<td>0.63</td>
</tr>
<tr>
<td>Laufende Nummer aus den Rubriken d. Paragr.</td>
<td>Namen der Substanz</td>
<td>Normal oder 1/10 Normal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>59</td>
<td>Bernsteinsäure (wasserleer)</td>
<td>N 0.050</td>
<td>0.100</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Kryst. Bernsteinsäure .</td>
<td>N 0.059</td>
<td>0.118</td>
<td>0.177</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Salicylsäure, wasserleer</td>
<td>N 0.129</td>
<td>0.258</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Kryst. Salicylsäure (1 Aq.)</td>
<td>N 0.138</td>
<td>0.276</td>
<td>0.414</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Oxalsäure (wasserleer) .</td>
<td>N 0.036</td>
<td>0.072</td>
<td>0.108</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Kryst. Oxalsäure (3 Aq.) .</td>
<td>N 0.063</td>
<td>0.126</td>
<td>0.189</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Oxalsalz (3 Aq.) . . .</td>
<td>N 0.14611</td>
<td>0.29222</td>
<td>0.43833</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Vierf. oxalsaure. Kali (3 Aq.)</td>
<td>N 0.21811</td>
<td>0.43622</td>
<td>0.65433</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Essigäther</td>
<td>N 0.088</td>
<td>0.176</td>
<td>0.264</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>2 At. Eisen</td>
<td>1/10N 0.0056</td>
<td>0.0112</td>
<td>0.0168</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1 At. Eisenoxyd</td>
<td>1/10N 0.008</td>
<td>0.016</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2 At. kryst.Eisenvitr.(7 Aq.)</td>
<td>1/10N 0.0278</td>
<td>0.0556</td>
<td>0.0834</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2 At. kr. schwefels. Eisenoxyd (6 Aq.)</td>
<td>1/10N 0.0392</td>
<td>0.0784</td>
<td>0.1176</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Jod</td>
<td>1/10N 0.0127</td>
<td>0.0254</td>
<td>0.0381</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Jodkalium</td>
<td>1/10N 0.016611</td>
<td>0.03222</td>
<td>0.049833</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1/6 At. Jod</td>
<td>1/10N 0.0021167</td>
<td>0.0042333</td>
<td>0.0063500</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2 At. unterschweißl. Säure</td>
<td>1/10N 0.0096</td>
<td>0.0192</td>
<td>0.0288</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>2 At. unterschweißlsgsaur. . .</td>
<td>1/10N 0.0248</td>
<td>0.0496</td>
<td>0.0744</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Natron (5 Aq.)</td>
<td>1/10N 0.003546</td>
<td>0.007092</td>
<td>0.010638</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Chlor</td>
<td>1/10N 0.008</td>
<td>0.016</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Brom</td>
<td>1/10N 0.0013</td>
<td>0.0026</td>
<td>0.0039</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1/2 At. Cyan</td>
<td>1/10N 0.0032555</td>
<td>0.0065110</td>
<td>0.0097665</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1/2 At. Cyankalium . .</td>
<td>1/10N 0.0032</td>
<td>0.0064</td>
<td>0.0096</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Schweflige Säure</td>
<td>1/10N 0.0061</td>
<td>0.0122</td>
<td>0.0183</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>1/2 At. Antimon. . . .</td>
<td>1/10N 0.0073</td>
<td>0.0146</td>
<td>0.0219</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1/2 At. Antimonoxyd . . .</td>
<td>1/10N 0.0085</td>
<td>0.0170</td>
<td>0.0255</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Schwefelantimon</td>
<td>1/10N 0.032933</td>
<td>0.065866</td>
<td>0.098799</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>2 At. Kupfer.</td>
<td>1/10N 0.006336</td>
<td>0.012672</td>
<td>0.019008</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.200</td>
<td>0.250</td>
<td>0.300</td>
<td>0.350</td>
<td>0.400</td>
<td>0.450</td>
</tr>
<tr>
<td>0.236</td>
<td>0.295</td>
<td>0.354</td>
<td>0.413</td>
<td>0.472</td>
<td>1.531</td>
</tr>
<tr>
<td>0.516</td>
<td>0.645</td>
<td>0.774</td>
<td>0.903</td>
<td>1.032</td>
<td>1.161</td>
</tr>
<tr>
<td>0.552</td>
<td>0.690</td>
<td>0.828</td>
<td>0.966</td>
<td>1.104</td>
<td>1.242</td>
</tr>
<tr>
<td>0.144</td>
<td>0.180</td>
<td>0.216</td>
<td>0.252</td>
<td>0.288</td>
<td>0.324</td>
</tr>
<tr>
<td>0.252</td>
<td>0.315</td>
<td>0.378</td>
<td>0.441</td>
<td>0.504</td>
<td>0.567</td>
</tr>
<tr>
<td>0.58444</td>
<td>0.73055</td>
<td>0.87666</td>
<td>1.02277</td>
<td>1.16888</td>
<td>1.31499</td>
</tr>
<tr>
<td>0.87244</td>
<td>1.09055</td>
<td>1.30866</td>
<td>1.52677</td>
<td>1.74488</td>
<td>1.96299</td>
</tr>
<tr>
<td>0.352</td>
<td>0.440</td>
<td>0.528</td>
<td>0.616</td>
<td>0.704</td>
<td>0.792</td>
</tr>
<tr>
<td>0.0224</td>
<td>0.0280</td>
<td>0.0336</td>
<td>0.0392</td>
<td>0.0448</td>
<td>0.0504</td>
</tr>
<tr>
<td>0.032</td>
<td>0.040</td>
<td>0.048</td>
<td>0.056</td>
<td>0.064</td>
<td>0.072</td>
</tr>
<tr>
<td>0.1112</td>
<td>0.1390</td>
<td>0.1668</td>
<td>0.1946</td>
<td>0.2224</td>
<td>0.2502</td>
</tr>
<tr>
<td>0.1568</td>
<td>0.1960</td>
<td>0.2352</td>
<td>0.2744</td>
<td>0.3136</td>
<td>0.3528</td>
</tr>
<tr>
<td>0.0508</td>
<td>0.0635</td>
<td>0.0762</td>
<td>0.0889</td>
<td>0.1016</td>
<td>0.1143</td>
</tr>
<tr>
<td>0.066444</td>
<td>0.080355</td>
<td>0.099667</td>
<td>0.116277</td>
<td>0.132888</td>
<td>0.149499</td>
</tr>
<tr>
<td>0.008466</td>
<td>0.0105833</td>
<td>0.0127000</td>
<td>0.0148167</td>
<td>0.016933</td>
<td>0.0190500</td>
</tr>
<tr>
<td>0.0384</td>
<td>0.0480</td>
<td>0.0576</td>
<td>0.0672</td>
<td>0.0768</td>
<td>0.0864</td>
</tr>
<tr>
<td>0.0992</td>
<td>0.1240</td>
<td>0.1488</td>
<td>0.1736</td>
<td>0.1984</td>
<td>0.2232</td>
</tr>
<tr>
<td>0.014184</td>
<td>0.017730</td>
<td>0.021276</td>
<td>0.024822</td>
<td>0.028368</td>
<td>0.031914</td>
</tr>
<tr>
<td>0.032</td>
<td>0.040</td>
<td>0.048</td>
<td>0.056</td>
<td>0.064</td>
<td>0.072</td>
</tr>
<tr>
<td>0.0052</td>
<td>0.0065</td>
<td>0.0078</td>
<td>0.0091</td>
<td>0.0104</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.0130220</td>
<td>0.0162775</td>
<td>0.0195330</td>
<td>0.0227885</td>
<td>0.0260440</td>
<td>0.0292995</td>
</tr>
<tr>
<td>0.0128</td>
<td>0.0160</td>
<td>0.0192</td>
<td>0.0224</td>
<td>0.0256</td>
<td>0.0288</td>
</tr>
<tr>
<td>0.0244</td>
<td>0.0305</td>
<td>0.0366</td>
<td>0.0427</td>
<td>0.0488</td>
<td>0.0549</td>
</tr>
<tr>
<td>0.0292</td>
<td>0.0365</td>
<td>0.0438</td>
<td>0.0511</td>
<td>0.0584</td>
<td>0.0657</td>
</tr>
<tr>
<td>0.0340</td>
<td>0.0425</td>
<td>0.0510</td>
<td>0.0595</td>
<td>0.0680</td>
<td>0.0765</td>
</tr>
<tr>
<td>0.131732</td>
<td>0.164665</td>
<td>0.197598</td>
<td>0.230531</td>
<td>0.263464</td>
<td>0.296397</td>
</tr>
<tr>
<td>0.025344</td>
<td>0.031680</td>
<td>0.038016</td>
<td>0.043352</td>
<td>0.050688</td>
<td>0.057024</td>
</tr>
<tr>
<td>Laufende Nummer aus den Rubriken d. Paragr.</td>
<td>Namen der Substanz</td>
<td>Normal oder (\frac{1}{10}) Normal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>87</td>
<td>2 At. Kuperoxid</td>
<td>(\frac{1}{10}) N</td>
<td>0.007936</td>
<td>0.015872</td>
<td>0.023808</td>
</tr>
<tr>
<td>88</td>
<td>(\frac{1}{6}) At. Chlorsäure</td>
<td>(\frac{1}{10}) N</td>
<td>0.0012577</td>
<td>0.0025154</td>
<td>0.003773</td>
</tr>
<tr>
<td>89</td>
<td>(\frac{1}{6}) At. chloraur. Kali</td>
<td>(\frac{1}{10}) N</td>
<td>0.0020428</td>
<td>0.0040856</td>
<td>0.0061324</td>
</tr>
<tr>
<td>90</td>
<td>(\frac{1}{6}) At. Jodäsäre</td>
<td>(\frac{1}{10}) N</td>
<td>0.002783</td>
<td>0.005566</td>
<td>0.008349</td>
</tr>
<tr>
<td>91</td>
<td>(\frac{1}{6}) At. jodsaures Kali</td>
<td>(\frac{1}{10}) N</td>
<td>0.003568</td>
<td>0.007136</td>
<td>0.010704</td>
</tr>
<tr>
<td>92</td>
<td>(\frac{1}{6}) At. Bromsäure</td>
<td>(\frac{1}{10}) N</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>93</td>
<td>(\frac{1}{6}) At. bromsaures Kali</td>
<td>(\frac{1}{10}) N</td>
<td>0.002785</td>
<td>0.005570</td>
<td>0.008355</td>
</tr>
<tr>
<td>94</td>
<td>(\frac{2}{3}) At. Chrom</td>
<td>(\frac{1}{10}) N</td>
<td>0.0016746</td>
<td>0.0033492</td>
<td>0.0050228</td>
</tr>
<tr>
<td>95</td>
<td>(\frac{1}{3}) At. Chromoxyd</td>
<td>(\frac{1}{10}) N</td>
<td>0.002549</td>
<td>0.005098</td>
<td>0.007647</td>
</tr>
<tr>
<td>96</td>
<td>(\frac{2}{3}) At. einf. chroms. Kali</td>
<td>(\frac{1}{10}) N</td>
<td>0.00649</td>
<td>0.01298</td>
<td>0.01947</td>
</tr>
<tr>
<td>97</td>
<td>(\frac{1}{3}) At. dopp. chroms. Kali</td>
<td>(\frac{1}{10}) N</td>
<td>0.004919</td>
<td>0.009838</td>
<td>0.014757</td>
</tr>
<tr>
<td>98</td>
<td>2 At. Kobalt</td>
<td>(\frac{1}{10}) N</td>
<td>0.005898</td>
<td>0.011796</td>
<td>0.017689</td>
</tr>
<tr>
<td>99</td>
<td>2 At. Kobaltoxydul</td>
<td>(\frac{1}{10}) N</td>
<td>0.007498</td>
<td>0.014996</td>
<td>0.022494</td>
</tr>
<tr>
<td>100</td>
<td>1 At. Kobaltoxydul</td>
<td>(\frac{1}{10}) N</td>
<td>0.008298</td>
<td>0.016596</td>
<td>0.024894</td>
</tr>
<tr>
<td>101</td>
<td>2 At. Nickel</td>
<td>(\frac{1}{10}) N</td>
<td>0.0059</td>
<td>0.0118</td>
<td>0.0177</td>
</tr>
<tr>
<td>102</td>
<td>2 At. Nickeloxydul</td>
<td>(\frac{1}{10}) N</td>
<td>0.0075</td>
<td>0.0150</td>
<td>0.0225</td>
</tr>
<tr>
<td>103</td>
<td>1 At. Nickeloxyd</td>
<td>(\frac{1}{10}) N</td>
<td>0.0083</td>
<td>0.0166</td>
<td>0.0249</td>
</tr>
<tr>
<td>104</td>
<td>3 At. Cer</td>
<td>(\frac{1}{10}) N</td>
<td>0.0138</td>
<td>0.0276</td>
<td>0.0414</td>
</tr>
<tr>
<td>105</td>
<td>3 At. Ceroxydul</td>
<td>(\frac{1}{10}) N</td>
<td>0.0162</td>
<td>0.0324</td>
<td>0.0486</td>
</tr>
<tr>
<td>106</td>
<td>1 At. Ceroxydoxydul</td>
<td>(\frac{1}{10}) N</td>
<td>0.0170</td>
<td>0.0340</td>
<td>0.0510</td>
</tr>
<tr>
<td>107</td>
<td>Chlor</td>
<td>(\frac{1}{10}) N</td>
<td>0.003546</td>
<td>0.007092</td>
<td>0.010638</td>
</tr>
<tr>
<td>108</td>
<td>Bleichsalze als freies Chlor</td>
<td>(\frac{1}{10}) N</td>
<td>0.003546</td>
<td>0.007092</td>
<td>0.010638</td>
</tr>
<tr>
<td>109</td>
<td>2 At. Cyan</td>
<td>(\frac{1}{10}) N</td>
<td>0.0052</td>
<td>0.0104</td>
<td>0.0156</td>
</tr>
<tr>
<td>110</td>
<td>2 At. Cyanwasserstoff</td>
<td>(\frac{1}{10}) N</td>
<td>0.0054</td>
<td>0.0108</td>
<td>0.0162</td>
</tr>
<tr>
<td>111</td>
<td>2 At. Cyankalium</td>
<td>(\frac{1}{10}) N</td>
<td>0.013022</td>
<td>0.026044</td>
<td>0.039066</td>
</tr>
<tr>
<td>112</td>
<td>Chlor</td>
<td>(\frac{1}{10}) N</td>
<td>0.003546</td>
<td>0.007092</td>
<td>0.010638</td>
</tr>
<tr>
<td>113</td>
<td>Chloralkalium</td>
<td>(\frac{1}{10}) N</td>
<td>0.007457</td>
<td>0.014914</td>
<td>0.022371</td>
</tr>
<tr>
<td>114</td>
<td>Chlornatrium</td>
<td>(\frac{1}{10}) N</td>
<td>0.005846</td>
<td>0.011692</td>
<td>0.017535</td>
</tr>
<tr>
<td>115</td>
<td>Chlorammonium</td>
<td>(\frac{1}{10}) N</td>
<td>0.005346</td>
<td>0.010692</td>
<td>0.016038</td>
</tr>
<tr>
<td>116</td>
<td>Silber</td>
<td>(\frac{1}{10}) N</td>
<td>0.010797</td>
<td>0.021594</td>
<td>0.032391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.031744</td>
<td>0.030680</td>
<td>0.047616</td>
<td>0.055552</td>
<td>0.063488</td>
<td>0.071424</td>
</tr>
<tr>
<td>0.0040308</td>
<td>0.0062885</td>
<td>0.0075462</td>
<td>0.0088039</td>
<td>0.0100616</td>
<td>0.0113193</td>
</tr>
<tr>
<td>0.0081712</td>
<td>0.0102140</td>
<td>0.0122568</td>
<td>0.0142996</td>
<td>0.0163424</td>
<td>0.0183852</td>
</tr>
<tr>
<td>0.011132</td>
<td>0.013915</td>
<td>0.016698</td>
<td>0.019481</td>
<td>0.022264</td>
<td>0.025047</td>
</tr>
<tr>
<td>0.014272</td>
<td>0.017840</td>
<td>0.021408</td>
<td>0.024976</td>
<td>0.028444</td>
<td>0.032112</td>
</tr>
<tr>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
<td>0.014</td>
<td>0.016</td>
<td>0.018</td>
</tr>
<tr>
<td>0.011140</td>
<td>0.013925</td>
<td>0.016710</td>
<td>0.019495</td>
<td>0.022280</td>
<td>0.025065</td>
</tr>
<tr>
<td>0.0066984</td>
<td>0.0083730</td>
<td>0.0100476</td>
<td>0.0118232</td>
<td>0.0133968</td>
<td>0.0250714</td>
</tr>
<tr>
<td>0.010196</td>
<td>0.012745</td>
<td>0.015294</td>
<td>0.017843</td>
<td>0.020392</td>
<td>0.022941</td>
</tr>
<tr>
<td>0.02596</td>
<td>0.03245</td>
<td>0.03894</td>
<td>0.04543</td>
<td>0.05192</td>
<td>0.04841</td>
</tr>
<tr>
<td>0.019676</td>
<td>0.024595</td>
<td>0.029514</td>
<td>0.034433</td>
<td>0.039352</td>
<td>0.044271</td>
</tr>
<tr>
<td>0.023592</td>
<td>0.029490</td>
<td>0.035388</td>
<td>0.041286</td>
<td>0.047184</td>
<td>0.053082</td>
</tr>
<tr>
<td>0.029992</td>
<td>0.037490</td>
<td>0.044988</td>
<td>0.052486</td>
<td>0.059984</td>
<td>0.067482</td>
</tr>
<tr>
<td>0.033192</td>
<td>0.041490</td>
<td>0.049788</td>
<td>0.058086</td>
<td>0.066384</td>
<td>0.074682</td>
</tr>
<tr>
<td>0.0236</td>
<td>0.0295</td>
<td>0.0354</td>
<td>0.0413</td>
<td>0.0472</td>
<td>0.0531</td>
</tr>
<tr>
<td>0.0300</td>
<td>0.0375</td>
<td>0.0450</td>
<td>0.0525</td>
<td>0.0600</td>
<td>0.0675</td>
</tr>
<tr>
<td>0.0332</td>
<td>0.0415</td>
<td>0.0498</td>
<td>0.0581</td>
<td>0.0664</td>
<td>0.0747</td>
</tr>
<tr>
<td>0.0552</td>
<td>0.0690</td>
<td>0.0828</td>
<td>0.0966</td>
<td>0.1104</td>
<td>0.1242</td>
</tr>
<tr>
<td>0.0648</td>
<td>0.0810</td>
<td>0.0972</td>
<td>0.1134</td>
<td>0.1297</td>
<td>0.1458</td>
</tr>
<tr>
<td>0.0680</td>
<td>0.0850</td>
<td>0.1020</td>
<td>0.1190</td>
<td>0.1360</td>
<td>0.1530</td>
</tr>
<tr>
<td>0.014184</td>
<td>0.017730</td>
<td>0.021276</td>
<td>0.024822</td>
<td>0.028368</td>
<td>0.031914</td>
</tr>
<tr>
<td>0.014184</td>
<td>0.017730</td>
<td>0.021276</td>
<td>0.024822</td>
<td>0.028368</td>
<td>0.031914</td>
</tr>
<tr>
<td>0.0208</td>
<td>0.0260</td>
<td>0.0312</td>
<td>0.0364</td>
<td>0.0416</td>
<td>0.0468</td>
</tr>
<tr>
<td>0.0216</td>
<td>0.0270</td>
<td>0.0324</td>
<td>0.0378</td>
<td>0.0432</td>
<td>0.0486</td>
</tr>
<tr>
<td>0.052088</td>
<td>0.065110</td>
<td>0.078132</td>
<td>0.091154</td>
<td>0.104176</td>
<td>0.117198</td>
</tr>
<tr>
<td>0.014184</td>
<td>0.017730</td>
<td>0.021276</td>
<td>0.024822</td>
<td>0.028368</td>
<td>0.031914</td>
</tr>
<tr>
<td>0.029828</td>
<td>0.037285</td>
<td>0.044742</td>
<td>0.052199</td>
<td>0.059656</td>
<td>0.067113</td>
</tr>
<tr>
<td>0.023384</td>
<td>0.029230</td>
<td>0.035076</td>
<td>0.040922</td>
<td>0.046768</td>
<td>0.052614</td>
</tr>
<tr>
<td>0.021384</td>
<td>0.026730</td>
<td>0.032076</td>
<td>0.037422</td>
<td>0.042768</td>
<td>0.048114</td>
</tr>
<tr>
<td>0.043188</td>
<td>0.053985</td>
<td>0.064782</td>
<td>0.075579</td>
<td>0.086376</td>
<td>0.097173</td>
</tr>
<tr>
<td>Laufende Nummer aus den Rubriken d. Paragr.</td>
<td>Namen der Substanz</td>
<td>Normal oder 1/10 Normal</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>117</td>
<td>Quecksilberoxydul</td>
<td>1/10 N</td>
<td>0.0208</td>
<td>0.0416</td>
<td>0.0624</td>
</tr>
<tr>
<td>118</td>
<td>Wasserleere Schwefelsäure</td>
<td>1/10 N</td>
<td>0.004</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>119</td>
<td>Schwefelsäurehydrat</td>
<td>1/10 N</td>
<td>0.0049</td>
<td>0.0098</td>
<td>0.0147</td>
</tr>
<tr>
<td>120</td>
<td>Schwefelsaures Kali</td>
<td>1/10 N</td>
<td>0.008711</td>
<td>0.017422</td>
<td>0.026133</td>
</tr>
<tr>
<td>121</td>
<td>Schwefelsaures Natron</td>
<td>1/10 N</td>
<td>0.0071</td>
<td>0.0142</td>
<td>0.0213</td>
</tr>
<tr>
<td>122</td>
<td>Blei</td>
<td>1/10 N</td>
<td>0.010357</td>
<td>0.020714</td>
<td>0.031071</td>
</tr>
<tr>
<td>123</td>
<td>Bleioxyd</td>
<td>1/10 N</td>
<td>0.011157</td>
<td>0.022314</td>
<td>0.033471</td>
</tr>
<tr>
<td>124</td>
<td>2 At. Jod</td>
<td>1/10 N</td>
<td>0.0254</td>
<td>0.0508</td>
<td>0.0762</td>
</tr>
<tr>
<td>125</td>
<td>2 At. Jodkalium</td>
<td>1/10 N</td>
<td>0.033222</td>
<td>0.066444</td>
<td>0.099666</td>
</tr>
<tr>
<td>126</td>
<td>Schwefelwasserstoff</td>
<td>1/10 N</td>
<td>0.0017</td>
<td>0.0034</td>
<td>0.0051</td>
</tr>
</tbody>
</table>
q. bedeutet Atom Wasser. Die neben der Substanz stehenden Zahlen bedeuten die Gramme der abkentimetern Probeflüssigkeit in derselben Verticalcolumnne entsprechen.

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0832</td>
<td>0.1040</td>
<td>0.1248</td>
<td>0.1456</td>
<td>0.1664</td>
<td>0.1872</td>
</tr>
<tr>
<td>0.016</td>
<td>0.020</td>
<td>0.024</td>
<td>0.028</td>
<td>0.032</td>
<td>0.036</td>
</tr>
<tr>
<td>0.0196</td>
<td>0.0245</td>
<td>0.0294</td>
<td>0.0343</td>
<td>0.0392</td>
<td>0.0541</td>
</tr>
<tr>
<td>0.034844</td>
<td>0.043555</td>
<td>0.052266</td>
<td>0.060977</td>
<td>0.069688</td>
<td>0.088399</td>
</tr>
<tr>
<td>0.0284</td>
<td>0.0355</td>
<td>0.0426</td>
<td>0.0497</td>
<td>0.0568</td>
<td>0.0639</td>
</tr>
<tr>
<td>0.041428</td>
<td>0.051765</td>
<td>0.052141</td>
<td>0.072409</td>
<td>0.082856</td>
<td>0.093213</td>
</tr>
<tr>
<td>0.044629</td>
<td>0.055785</td>
<td>0.066942</td>
<td>0.078099</td>
<td>0.079256</td>
<td>0.100413</td>
</tr>
<tr>
<td>0.1015</td>
<td>0.1270</td>
<td>0.1524</td>
<td>0.1778</td>
<td>0.2032</td>
<td>0.2286</td>
</tr>
<tr>
<td>0.132888</td>
<td>0.166110</td>
<td>0.199332</td>
<td>0.232554</td>
<td>0.265776</td>
<td>0.298998</td>
</tr>
<tr>
<td>0.0068</td>
<td>0.0085</td>
<td>0.0102</td>
<td>0.0119</td>
<td>0.0136</td>
<td>0.0153</td>
</tr>
</tbody>
</table>
Vollständige Apparate zur Maassanalyse.

Die Pipetten sind auf Abstrich oder Antupfen gradirt (S. 32).

Titirte Flüssigkeiten und Substanzen werden von mir nicht mehr abgegeben.

Dr. Mohr.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Quetschhahnbüretten, mit Ausflussspitze und elastischer Klemme montirt, bis 59 cbcm</td>
<td>cbcm</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 60 bis 69 cbcm</td>
<td>cbcm</td>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 70 bis 79 cbcm</td>
<td>cbcm</td>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 80 bis 89 cbcm</td>
<td>cbcm</td>
<td>4</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 90 bis 99 cbcm</td>
<td>cbcm</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 100 bis 109 cbcm</td>
<td>cbcm</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 110 bis 129 cbcm</td>
<td>cbcm</td>
<td>6</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 130 bis 150 cbcm</td>
<td>cbcm</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben bis 35 cbcm</td>
<td>in 10tel</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieselben von 36 bis 50 cbcm</td>
<td>in 10tel</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>Quetschhahnbüretten zum Ab- und Zufluss (Seite 17) mit 2 Quetschhähnen mit Kautschukrohr bis 60 cbcm</td>
<td>cbcm</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bis 80 cbcm</td>
<td>cbcm</td>
<td>8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>Chamäleonbüretten mit Holzfuss, innerem Ausflusstrohr und Blaserohr (S. 22, Fig. 30) in 5tel cbem getheilt, bis 35 cbem</td>
<td>cbcm</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Vollständige Apparate zur Maassanalyse. 751

36 bis 59 cbcm .. 6 —
60 bis 79 cbcm .. 7 —
80 bis 100 cbcm 7 50

Mit Blasekugel (Seite 25, Fig. 32) in 5tel cbcm getheilt,
60 bis 79 cbcm .. 7 50
80 bis 100 cbcm 8 50

4) Handpipetten zu 10 bis 12 cbcm in 10tel cbcm .. 1 50
Dieselben von 13 bis 20 cbcm 2 —
Dieselben unter 10 cbcm — 75
Dieselben zu 1 cbcm in 100tel cbcm 1 50

5) Vollpipetten zu Abstrich graduirt mit Strich im Halse,
zu 100 cbcm .. 2 —
zu 50 cbcm ... 1 50
zu 10 cbcm .. 1 —

6) Maassflaschen mit Kreistrich im Halse,
zu 1000 cbcm ... 3 —
zu 500 cbcm .. 2 —
zu 300 cbcm .. 1 50
zu 250 cbcm .. 1 50
zu 200 cbcm .. 1 50
zu 100 cbcm .. 1 —

7) Mischzyllinder mit Glasstopfen (S. 44, Fig. 64) von 10 zu
10 cbcm .. 6 —

8) Etagère zu 6 Büretten 7 50

9) Quetschhähne von Messing — 40

10) Vollständige Tittrirapparate:
1) Etagère mit Porsellanfuss 7 50
2) 4 Büretten zu 5tel, 2 zu 10tel cbcm 26 —
3) 1 Chamäleonbürette mit Blaserohr 6 —
4) 1 Mischzyllinder 6 —
5) 1 Flasche zu 1000, 500, 300, 2 zu 100 cbcm .. 8 50
6) 1 Pipette zu 100, 50, 2 zu 10 cbcm 5 50
7) 1 Pipette zu 10 bis 12 cbcm in 10tel 1 50

61 —

Verpackung besonders, für vollständige Tittrirapparate Nr. 10 3 —
ALPHABETISCHES REGISTER.

A.

Ablesen 14, 15.
Ablesung in der Literflasche 42.
Ablesepapier 14, 15.
Ablesung der Büretten 14, 15.
Abscheidung von Niederschlägen ohne Papierfilter 69.
Absoluter Fehler der Bürette 89.
Absorptions-Sauerstoff im Wasser 220.
Absorption von Ammoniak 114.
— von Jod in Jodkalium 261.
Ab- und Zuflussbürette 16, 17, 18.
Ab- und Zuflussbürette für Kalilösung 97.
Ab- und Zuflussbürette für 100 cbm Kochsalzlösung 383.
Acidimetrie 132.
— Kieser's 134.
— Pettenkofer's 138.
Ackererde 587.

darin Bestimmung von:
1. Kohlensäure 571.
2. Chlor, Eisenoxyd, Kalk, Bittererde 572.
5. Schwefelsäure 577.
6. Alkalien 577.
7. Phosphorsäure 578.

Aether organischer Säuren, acidimetrische Bestimmung 163.
Aetzkaliflüssigkeit, Aufbewahrung 133.
Aetznatron 100.
Aetznatron und -Kali 103, 104.
Alaune 483.

Alaunerde, Analyse 657.
1. Schwefel 657.
2. Eisen 658.
3. Thonerde 658.

Alkalien und Erden in organischsauren Salzen 105.
Alkaligehalt in Mineralien als Chlormetalle durch Silber 398.
Alkalimetrie 72.
Alkalimetrische Operation 85, 99.
Alkalische Erden 115.
Alkalische Erden als Chlormetalle durch Silber 397.
Alkaloiden mit Jodlösung 317.
Alkoholbestimmung in Bier u. Wein 722.
Ammoniak, gebundenes 110.
1. mit normalen Flüssigkeiten 111.
2. nach Pettenkofer's Methode 111.
3. direkte Bestimmung 112.
— alkalimetrische Bestimmung 106.
— als Chlorammonium durch Silber 396.
— gebundenes, durch bromirtes unterchlorigsäures Natron 338.

Ammoniakbestimmungsapparat 113, 114.
Analyse ohne Bürette 57.
— ohne Gewichte 58.
— volumetrische 1.
Analytische Wage 62, 64.
Angewandter Theil 451.
Ankerit 608.
Annäherungsprobe in der Silberanalyse 379.

Antimon und Blei 647.
Antimonoxyd gegen Chromsalze und Uebermangansäure 241.
— mit Jod 279.
Apparate zur Massanalyse 750 u. f. Aqua amyg. amar. 347.
Argentan 650.
Arsenige Säure mit Jod 324.
— gegen Chromsäure und Uebermangansäure 241.
Arsenigsäures Natron oder Kali gegen Chlor, Brom und Jod 319.
Asbestfilter 69, 697.
Atomgewichte zum Abwägen 52.
Atomgewichtsbestimmungen durch Titration 170.
Alphabetisches Register.

753

Aufbewahrung von Natron 96.
— der schwefligen Säure 258.
— von Massenflüssigkeiten 37.
— von Zinnchlorür 296.
Aufstellung der Ab- und Zuflussbürette
16, 17.
Augit 507.
Ausblasen der Pipetten 32.
Aussiessen der Pipetten 32.
Ausgelaugte Holzsauche 454.
Austrocknung von Bier und Wein 695.
Azotometer 709.
Azometrie 708.

B.

Baryt, alkalimetrische Bestimmung 118.
— als chromsäuerer Baryt durch unter-
 schwefigsäures Natron 303.
— als Chlorbarium durch Silber 397.
— mit chromsaurem Kali 420.
— technische Analyse 475.
Barytwasser, Aufbewahrung 568.
Berechnungen 70.
Berechnung der Chamäleonanalyse 185.
Bereitung des Chamäleons 178.
— der Massenflüssigkeiten 198.
Berlinerblau durch Chamäleon bestimmt
205.
Bernsteinsäure 152.
Bier 692.
Bittererde, alkalimet. Bestimmung 128.
— kohlensaure 118.
— durch phosphorsaures Natron-Ammoniak 435.
— Trennung von Alkalien 663.
A. Aus der schwefelsauren Verbindung:
1. Mit essigsäurem Baryt 663.
2. Mit Barytwasser 663.
3. Bittererde und Alkali in je einer
 Hälfte 664.
4. Mit Chlorplatin und phosphor-
 saurem Natron 664.
B. Aus der Chlorverbindung:
5. Durch Glühen mit kohlensaurem
 Ammon 664.
6. Durch Glühen mit Quecksilber-
 oxyzid 664.
8. Durch mehrmaliges Erhitzen mit
 KiesDrühe 664.
9. Durch Fällen der Bittererde mit
 phosphors. Ammon, Entfernen
 der Phosphorsäure mit Bleizucker
 664.
10. Mit kohlensaurem Silberoxyd 664.
11. Mit konzentriertem kohlensauren
 und reinem Ammoniak 664.

Bitterspath 608.
Blasebürette 23.
Blaseflasche 25.
Mohr's Titriibuch.

Blausäure, Destillation 350.
— mit Silber bestimmt 845.
Bleichsalze mit Jodkalium 271.
— nach Penot 323.
Blei durch Chamäleon bestimmt 198.
Blei erze 640.
— und Antimon 647.
Blei und Zinn 648.
Bleiglanz, Bleierz 640.
Blei hyperoxyd 314.
Blei, metallisches, Prüfung auf fremde
Beimengungen 648.
Bleioxyd, alkalimetr. Bestimmung 125.
— mit Schwefelnatrium 424.
— mit schwefelsaurem Kali gefällt 423.
— mit neutralem chromsauren Kali 424.
Bleizucker 645.
Blutlaugensalz, durch Chamäleon be-
 stimmt 203.
— rothes, durch Chamäleon bestimmt
 206.
Borsäure, nach Marignac 161.
Braunkohle 682.
Braunstein, durch arsenigsäures Natron
340.
— durch Eisensalz bestimmt 195.
— auf Manganoxyd und Mangansuper-
 oxyzid analysirt 599.
— Handelsanalyse 586.
1. Mit Salzsäure in Jodkalium 594.
2. Durch Eisenoxydul 596.
 a. Mit Chamäleon 596.
 b. Mit chromsaurem Kali 596.
3. Durch Oxalsaure 597.
Brom, freies, durch arsenigsäures Kali
333.
— durch Jodkalium und unter-
 schwefigsäures Natron 270.
Bromsäure mit Salzsäure u. Jodkalium
301.
Bronze 639.
Brunnenwasser, Analyse 557.
 a. allgemeine Analyse 557.
 b. spezielle Analyse 561.
 c. Härte 562.
 d. organische Stoffe 563.
Büretten 2 bis 28.
— Ablesung 14, 15.
— englische 27.
— Füllung 12.
— Geissler's 22.
— hängende 9.
— Korsting's 28.
Bürettenetage 11.
Bürettenklemme 10.

C.

Centrifugalmaschine 158.
Ceroxyl als Oxydul mit Salzsäure
in Jodkalium destilliirt 307.
Chamaeleon minerale 174.
Chamäleon, Aufbewahrung 187.
— Gebrauch 186.
— Titerstellung
 1. Mit Eisen 180.
 2. Mit schwefelsaurem Eisenoxydul-
 Ammoniak 182.
 4. Mit Blutlaugensalz 185.
Chilisalpeter 482.
Chlor durch Quecksilberoxydldösung 358.
— durch Silberlösung 352.
— mit neutralem chromsauren
 Kali, als Indicator 354.
— freies, durch Jodkalium und unter-
 schwefligsaures Natron 269.
— Brom und Jod in salzartigen Ver-
 bindungen 360.
— gegen arsenigsaures Natron 327.
— gegen Eisenoxydsalze, Rest gegen
 Chamäleon 224.
— und Brom, indirekte Bestimmung
 durch Silber 361.
— und Jod, Trennung durch Destilla-
 tion mit Eisenchlorid 384.
Chloralhydrat 165.
Chlorcalciumtopf 68.
Chlordestination in Jodkalium 251, 324.
— nach Bunsen 252.
— nach Fresenius 253.
Chlorkalium und Chlornatrum durch
 Silberlösung 397.
Chlorkalk gegen arsenigsaures Natron
 359.
Chlorometrie 319.
Chlorometrische Operation 323.
Chlorsäure mit Salzsäure u. Jodkalium
 299.
— durch Chamäleon bestimmt 222.
— eine Salzsäure, als Chloroforme durch
 Silber 397.
— Chrom, Atomgewichtbestimmung gegen
 Eisen 230.
— Chrom als Chromsäure durch Eisen
 bestimmt 238.
— Chromsäure aus Chromsaure, Löslichkeit in
 Wasser 559.
— Chromsäure als bestimmungssubstanz
 230 u. f.
— als Rest gegen Eisenoxydulsalze mit
 Chamäleon 223.
— mit Salzsäure in Jodkalium destillirt
 302.
— mit Salzsäure und unterschweflig-
 saurem Natron 341.
— mit Chlorbarium 422.
— acidimetriche Bestimmung 151.
— Clemens Winkler's Gasometer 702.
— Coleus Verschaffeltii 80.
— Orell's Rechentafeln 90.
Cubikcentimeter 39.
Cyan durch ammoniakalische Kupfer-
 lösung 351.
— durch Kupferlösung 350.
— durch Silberlösung 345.
— in Verbindungen mit Jodlösung be-
 stimmt 273.
Cyankalium durch Silber 345.

D.

Decigrammhäckchen 66.
Decimeter 38.
Despertz's Tabelle 83.
Destillation der Blausäure zur Bestim-
 mung 350.
Digeriflasche für Jodentwicklung 253, 291.
Dolomit 475.
Doppelt schwefels. Kali und Natron
 142.
Doppelt weinsaures Natron 151.
Dreihbare Etagère 11, 36.
Dreifweghahn 728.

E.

Eau de Javelle gegen arsenigsaures
 Natron 328.
Einbohrhahn 536.
Einfüllen von Zinnchlorür in die Burette
 296.
Eisen durch Chamäleon bestimmt 190.
— als Oxydul durch Chromsäure be-
 stimmt 236.
— als Chlorid mit Jodkalium und un-
 terschwefligsaurem Natron 290.
— durch Zinnchlorür und Jod 295, 727.
Eisenoxydleyanid durch Chamäleon
 bestimmt 206.
Eisendoppelsäz 182, 184.
Eisendrahtlösung 181, 182.
Eisernere, Lösung 191.
Eisenerze 621.
— Schwefel, Phosphor, Kupfer in den-
 selben 614.
— Eisenoxyd in Mineralwasser 733.
— Reduktion zu Oxydul 192.
— phosphorsaures 211.
Eisenstufe 314.
Eisenpath 621.
Eisenvitriol mit Kupfervitriol 614.
Eisenvitriol, Kupfervitriol und Zink-
 vitriol 616.
Empirische Flüssigkeit 56.
Englische Bürette 27.
Erden, alkalische 114.
Erdmann's Schwimmer 15, 16.
Erfindung neuer massanalytischer Methoden 721.
Erhebung der Silberprobe auf 1000; 380.
Essig, acidimetrische Bestimmung 148.
Essigäther, acidimetrische Bestimmung 148.
Essigsäure, acidimetrische Bestimmung 148.

F.
Fällungsanalysen 343.
Farbenwechsel 73.
Fassen der Mineralwasser 542, 543, 544.
Feldspat 508.
Ferricyankalium als Blutlaugensalz bestimmt 269.
Feste Bestandtheile der Mineralwasser 547.
Flaschenbürette 58.
Flasche mit Kaustichventil 181, 182, 309.
Flusswasser, Analyse 557.
Form der Gewichte 65.
— Decigramme 66.
Fremde Metalle im Silber 383.
Fresenius, Chlordestillation 253.
Fruchtsäuer 443.

G.
Galvanische Flüssigkeit 652.
Gasanalyse, technisch-chemische 702.
Gasbürette nach Winkler 702.
Gasbürette 706.
Gasometer für Meereisen 606.
Gasometrische Arbeiten 702.
Gaswasser 472.
Gay-Lussac’s Alkalimetrie 72.
Gebundenes Kali und Natron in neutralen und sauren Salzen 105.
Gebundene Säuren, allgemeine Bestimmung 187.
Geissler’s Bürette 22.
Gerbsäure 689.
Gewichte 62.
Glashahnbürette 7.
Glasstabklemme 9.
Gmelin’s Salz durch Chamäleon bestimmt 206.
Glockenmetall 639.
Gold als Restanalyse gegen Kieselsäure 219.
Gramme in Grane 541.
Grane in Gramme 541.
Graphit, Kohlenstoffgehalt 585.
Guano 497.
Gypsf 502.

H.
Hämatoxylinpapier 79.
Hämatoxylösung 79.
Hängende Bürette 4.
Härte des Brunnenwassers 562.
Halten der Pipetten 34.
Handbürette mit Blaserohr 189.
Harn, Säurebestimmung 162.
Harn 663.
Bestimmung von:
1. Kochsalz 668.
2. Harnstoff
 a. ohne Correction 670.
 b. mit Correction 670.
3. Phosphorsäure 671.
4. Kalk 672.
5. Eisen 672.
6. Harnsäure 672.
7. Freie Säure 673.
8. Ammoniak 674.
10. Kali und Natron 676.
13. Summe der festen Bestandtheile 678.
15. Harnsedimenta.
 a. Freie Harnsäure 679.
 c. Oxalsaurer Kalk 679.
 e. Harnsaures Ammoniak 680.
Harnsäure mit Chamäleon 227.
Harnstoff mit salpeters. Quecksilberoxyd 440.
Harnzucker 443.
Honigzucker 443.
Holzsche 452.
Holzessig, acidimetrische Bestimmung 185.
Hornblende 507.
Hyperoxyde 195.
— gegen arseniagens Kali 341.

I.
Indicator 55.
Indigo 880.
Jod durch Palladium gefällt 366.
— durch Eisenchlorid ausgeschieden und mit unterschwelligsaurem Natron bestimmt 260, 726.
— durch Kupferchlorür oder - Vitriol 262.
— durch Oxydation bestimmt 264.
— durch Untersalpetersäure ausgeschie-
Alphabetisches Register.

den mit Schwefelkohlenstoff u. unter-

schweflsgaurem Natron 263.
Jod gegen arsenigsaueres Kali 334.
— gegen unterschwefigsaueres Natron
243.
— freies und gebundenes, durch unter-

schwefigsaueres Natron 259, 280.
— gebundenes, mit Eisenchlorid, dieses
in Chlorür umgesetzt und mit Chama-

léon gemessen 225.
Jod und Brom gebunden, durch unter-

schwefigsaueres Natron bestimmt 270.
Jodbestimmung nach Bunsen 258.
Jodkalium mit Quecksilberchlorid ge-
fällig 425.
Jodkaliumstärkepapier 322.
Jodometrische Säuremessung 315.
Jodösüre mit Salzsäure und Jodkalium
300.

K.

Kadmium durch Chamäleon bestimmt
216.
Kali als Kieselfluorkalium bestimmt 159.
— Messung 101.
Kalibarytröhre 584.
Kalibestimmung 729.
Kalibürette mit Kalkröhre 133.
Kali als Weinstein bestimmt 153.
Kali, doppelt chromsaures, gegen Eisen-

oxydul 230.
Kali, kohlenesaures 101.
Kalislapeter 480.
Kali u. Natron indirekt aus den Chlor-
metallen durch Silber 397.
Kali und Natron als Kieselfluorkalium-
Natrium bestimmt 159.
Kaliumeisencyanid mit Jodkalium und
unterschwefigsauarem Natron 284.
— durch Chamäleon bestimmt 208.
Kaliumeisencyanür, durch Chamäleon
bestimmt 203.
Kalk, alkalimetrische Bestimmung 116.
— als Chlorocalcium durch Silber be-

stimm 397.
— als oxalsaurer Kalk durch Chamä-

leon bestimmt 197.
— kohlensauren in natürlichen Wässern
117.
— technische Analyse 475.
Kalkstein 474.
Kanongeut 659.
Karbolsäure 816.
Kersting's Bürette 27.
Kesselstein 479.
Kieffer's Acidimetrie 134.
Kleesalz, acidimetrische Bestimmung
153.
Kleesäure, acidimetrische Bestimmung
158.

Kleesäure durch Chamäleon bestimmt
196.
— als Grundlage der Alkalimetrie
90.
— Reinigung 90.
Klicker, zum Schliessen der Büretten 6.
Kochenmehl 484.
Kohalt und Nickel 654.
Kobaltoxyd als Hyperoxyd mit Jod-

kalium und Salzsäure bestimmt 305.
— rein 391.
— technische Analyse 477.
Kochsalzlösung, konzentrierte 357.
Kohlenäsüre. Gewichtsbestimmung:
1. Fresenius-Will 510.
2. Vom Verfasser 515.
— von Rose und Anderen 514.
— Bestimmung der gesammten, freien
und gebundenen 541.
— Tabelle für Gewicht und Volum 570.
— nach Pinkus nach Volum 521.
— nach Volum 517, 518, 575.
— ausgethmete 529.
— als Chlorbarium durch Silber 397.
— gebundene 517.
— freie, in Luft 523.
— gespannte in Mineralwässern und
Getränken 536.
— alkalimetrische Bestimmung 122.
— mit Lackmus nach Kersting 143.
Kohlenäsüreabsorptionsapparate 126,
574.
Kohlenäsüreapparat 574.
Kohlenäsürebestimmungsapparate nach
Fresenius-Will 512, 513.
— nach Rose 514.
— nach Mohr 515.
Kohlenäures Ammon, Ammoniakbe-

stimmung durch Silber 396.
— Kohlenäsürebestimmung 396.
Kohlena. Kalk, Baryt, Strontian, als
Chormetalle durch Silber 397.
Kohlenäures Kali und Natron als
Chormetalle durch Silber 397.
— Natron als Grundlage der Alkali-
metrie 72.
Kohlenstoff im Graphit 585.
Koprolith 496.
Korrigirung des absoluten Fehlers 89.
Korrigirung überstürzter Analysen 190.
König's Ventil 181.
Krümelzucker 443.
Kupfer, Handelsanalyse:
1. titrimetrisch 630.
2. gemischte Methode 631.
1. Mit metallischem Eisen das Kup-

fer gefällt, FeO mit Chromsäure
bestimmt 240.
2. Als Kuperoxidul mit Eisen-

chlorid, Eisenrest mit Chrom-

säure 240.
Kupfer,

Handelsanalyse:
3. Als metallisches Kupfer mit
Eisenchlorid gefällt u. FeO mit
Chromsäure bestimmt 240.
Kupfer mit Cyankalium bestimmt 438.
— mit Jodkalium und unterschwei-
ßigsaurem Natron 288, 720.
— mit Blutlaugensalz gefällt 478.
— als Halbchwefelkupfer geglüht 627.
— als Oxydul durch Chamäleon be-
stimmt 201, 202.
— durch Eisen gefällt 201.
— metallisches, durch schwefel-
saures Eisenoxyd und Chamäleon 201.
— und Zink 638.
— und Zinn 639.
— mit Schwefelnatrium gefällt 435.
— in Eisenerzen 614.
— Sammlung im Platintiegel 625.
Kupfererze 623.
a. oxydische 623.
b. geschwefelte 624.
Kupferhüttenprodukte 623.
Kupferkies 623.
Kupferoxyd, phosphorsaures 623.
Kupferoxyd, phosphorsaures 623.
Kupferoxyd und Zinkoxyd 616.
Kurcupmapapier 81.

Manganhyperoxyd durch arsenigsaures
Natron 340.
— durch Chamäleon bestimmt 195.
Manganoxydul als Hyperoxyd bestimmt
195.
— durch phosphorsaures Natron-Am-
moniak 435.
Mangansäure 314.
Manometer 526.
Marguerite's Methode 174.
Mehl, auf unorganische Beimengung
737.
Messing 638.
Messpapetten 34.
Meteoreismenmassen, Untersuchung 604.
Meteoreisen, frei von Kohlenstoff 607.
Meteorite 603.
Metrisches System 37.
Milch 695.
Mineralwasser, Analyse 532.
Mischcylinder 44.
Mischflasche 44.
Molybdän218.
Morphium 685.
Most, acidimetrische Bestimmung 166.
Mutterlauge der Salinen 477.

N.

Nachfüllbürette 19.
Nachfüllflasche 557.
Natron, Messung 100.
— als Kieselguermarium 159.
— als Chlornerarium durch Silber 397.
— doppelt weinsaures, acidimetrische
Bestimmung 151.
— rohes schwefelsaures 502.
Natronlauge, normale kohlensaure 83.
Natronsalpeter 482.
Neigung der Büretten 22.
Neusilber 650.
Nickel in seinen Erzen 648.
— und Kobalt 654.
Nickelxyd als Hyperoxyd mit Jod-
kaliurn und Salzsäure 306.
Normale Lösung 51.
Normalkilogramm 40.
Normalkiesensäure 93.
Normaloxalsäure 93.
Normalsäure 85.

O.

Operation der Jodbestimmung 254.
Opium 685.
Organische Säure, Alkalien oder Erden
als Chlimetalle durch Silber 397.
Organische Stoffe im Trinkwasser 563.
Alphabetisches Register.

Oxalium, alkalimetrische Bestimmung 153.
Oxalsäure 198.
— als Grundlage der Alkalimetrie 90.
Oxydationsanalyse 172.
Ozon mit unterschweifigsäurem Natron 298.

P.

Palladium durch Jod bestimmt 369.
Pariser Blau durch Chamäleon bestimmt 205.
Pettenkofer's Acidimetrie 138.
— Methode für Kohlensäure 535.
Pfannenstein 478.
Pflanzenpigmente 73, 725.
Pharmacie, Anwendung der Titrimethode 710.
Phosphor in Eisenerzen 622, 733.
Phosphorit 488.
Phosphorsäure durch Bittererdesalze bestimmt 487.
— mit Bleisalzen, Best mit chromsaurer Kalis 430, 433.
— mit Chamäleon bestimmt 211.
— mit Molybdän säure bestimmt 490.
— mit Weingeist geschieden 492.
— mit Uranoxydsalzen gefällt 427.
— als phosphorsäures Eisenoxyd mit Chamäleon 211.
— alkalimetrische 735.
— zurückgegangene 731.
Phosphorsäures Eisenoxyd 613.
— Kuperoxid 623.
Pipetten 28 bis 37.
— mit Saugrohr für Chlorwasser 269.
— zu Barytwasser 139.
— zu Blausäure 347.
— im Reisefutterale 545.
Pipettenköpfe 36.
Platinkugel 40.
Pottasche 455.
Praktische Bemerkungen über den Gebrauch des Chamäleons 186.
Preismethode 58, 61.
Probennahmen bei der Silberanalyse 381.
Probierzüge der Ackererde 569.
Probierzüge für Dammerde 571.
Probeerhebung auf 1000 bei der Silberanalyse 380.

Q.

Quadratcentimeter 38.
Quetschhahn 3.
— einfacher 8.
— Gintel's 6.

Quetschhahn von Horn 5.
Quetschhahnbürette 2.
Quecksilber als Chlorid gegen Eisenoxydsalzen und Chamäleon 217.
— als Chlorür mit Jodlösung in Chlorid 287.
Quecksilbererze 656.
Quecksilberoxyd durch Kaliumeisen cyanid 408.
— durch Chlornatrium nach Liebig 403.
Quecksilberoxydul als Rest von Chlornatrium durch Silber 401.
Quellwasser, Analyse 557.

R.

Raseneisenstein 618.
Reaction durch Betupfung 407.
Rechentafeln 70.
Reduktionsanalysen 172.
Reduction des Eisenoxys zu Oxydul 192.
Respiration kleiner Thiere 535.
Respirometer 530.
Restanalyse 53.
Rohe Soda 451.
Roheisen 579, darin Bestimmung:
1. von Eisen 580.
2. von Kohlenstoff 581.
3. von Schwefel 583.
4. von Mangan 583.
5. von Silicium 584.
6. von Kupfer 584.
Röhrenkübel 473.
Rosolsäure 80.
Rothkupfererz 659.
Richtstellung der Normallösung 87.
Rübensäure 458.

S.

Salinische Mineralwasser 553.
Salicylsäure als Indicator 82.
— acidimetrische Bestimmung 152.
Salpeter, Prüfung der Reinheit 481.
Salpletsäure mit Eisenoxydul und dessen Best mit Chromsäure 240.
— alkalimetrische Bestimmung 120, 141, 142, 725.
— Umsetzung in Ammoniak, dann in Stickstoff 339.
— durch Chamäleon bestimmt 207.
— durch Eisensalze nach Pelouze 207.
— mit Eisenoxydulsalzen, das Eisenoxyd mit unterschweifigsäurem Natron bestimmt 308, 728.
Alphabetisches Register.

Salpetersäure, reine 391.
— Scheidewasser 767.
Salpetersaure Salze, als Chlormetalle durch Silber 398.
Salpetersäure als Rest von Chromsäure 240.
Salpetrigaeure durch Chamäleon bestimmt 209.
Salpetrigsaure Verbindungen in natürlichen Wässern 311.
Salzsäure, alkalmétrisch Bestimmung 141.
— rohe 665.
Sauerstoff, absorbirt in Wasser 220.
Saugröhre 29.
Säuremessung, jodometrische 315.
Säurebestimmung in gefärbten Flüssigkeiten 186.
— in Erd- und Metalloxydsalzen 187.
Säuremessung im Harn 162.
Schalenarretirung 418.
Schleifpulver 504.
Schlempekohe 458.
Schmelze 465.
Schumachers Kilogramm 48.
Schutz gegen Dämpfe 66, 67.
Schwefel 618.
— in Kiesen, Blenden, alkalmétrisch bestimmt 619.
— — als Schwefelsäure mit Baryt und chromsaurem Kali 420.
— Phosphor, Kupfer in Eisenherzen 614.
— in Schwefelmetallen 616.
— aus Sodaresten 469.
Schwefelalkalien mit ammoniakalischer Zinklösung 418.
Schwefeleisen 617.
Schwefelsäure, acidimétrische Bestimmung 142.
— oxydometrische Bestimmung 222.
— gebundene, alkalmétrische Bestimmung 128.
— mit Bleisalzen und Jodkalium 415.
— durch kohlensaures Alkali 129.
— durch Baryt 129.
— durch Bleioxyd 130.
— durch Strontian 130.
— mit Barytsalzen gefällt, Rest mit chromsaurem Kali 418.
— rohe 666.
Schwefelsäureflasche mit Kautschukkugel 187.
Schwefelsaures Eisenoxydul-Ammoniak 182.
Schwefelige Säure 278.
Schwefelwasser 552.
Schwefelwasserstoff durch Chamäleon 211.
— durch Jodlösung 277.
— gegen arsenigsäures Natron 334.
— im Leuchtgas 337.
Schwefelwasserstoff mit Eisenchlorid als Eisenoxydul bestimmt 230.
— mit Silberlösung gefällt 439.
— mit ammoniakalischer Zinklösung 413.
— -Apparate 627, 628, 629.
Schwefelige Säure durch Jodlösung bestimmt 278.
Schwimmer, Erdmann's 15.
— Bestimmung des specif. Gewichtes durch 719.
Seifen 687.
1. Fettsäuren 687.
2. Alkali 687.
3. Wasser 687.
Selensäure 314.
Silber durch Chlorantrieum 370.
— durch Jodkalium 371.
— durch Rhodanammonium 372.
— reines 389.
Silberhyperoxyd 314.
Silberlegierungen, ungleiche Erstarrung 394.
Silberoxyd, chromsaures, Löslichkeit in Wasser 359.
Silberprobe, empirisch-technische 372.
— Auflösung 382.
Similor 638.
Soda, technische Analyse 461.
Sodamutterlange 468.
Sombreroganno 486.
Soole, natürliche und gradirte 477.
Spatheisenstein 621.
Spezifisches Gewicht mit der Pipette bestimmt 714.
— von Flüssigkeiten mit maassanalytischen Apparaten 717.
— der festen Körper als Schwimmer, der flüssigen durch Schwimmer 719.
stärkung 248.
Stärkeprüfapparat 322.
Stärkezucker 443.
Stehbürette 55, 189.
Steinkohle 660.
1. Feuchtigkeit 660.
2. Koksausbeute 660.
3. Asche 661.
4. Schwefel 661.
Stickstoffbestimmung als Ammoniak durch Silber 397.
Streng's und Kessler's Methoden 240.
Strontian, alkalmétrische Bestimmung 119.
— als Chlorstrontium durch Silber 397.
— technische Analyse 475.
Substanzwage 62.
Sulfat, rohes schwefelsaures Natron 502.
Sulhydrometrie 277.
Superphosphat 493.
Süsses Früchte 701.
Systematische Flüssigkeit 56.
Alphabetisches Register.

T.

Tafeln 740 u. f.
Tannin 689.
Thon 659.
Thonerde, acidimetriche Bestimmung 146.
— durch Phosphorsalz und Uran 434.
Titansäure durch Chamäleon 219.
Titer 1.
— nehmen 57.
— stellen 57.
Titirrmethode 1.
— bei Wasseranalyse 538.
— Anwendung in der Pharmacie 710.
Titrimetrisches System 50.
Titrieren 1.
Tombach 638.
Torf 662.
Traubenzucker durch:
1. Chamäleon in alkalischer Lösung 266, 312.
2. Chromsaures Kali in alkalischer Lösung 312.
3. weinsaure alkalische Eisenlösung 312.
4. Kaliumeisencyanid 312.
Traubenzucker mit alkalischer Kupferlösung 443.
Trocknen 67.
Tropfapparat von Mulder 387.
Tüpfelanalyse 55.
Typenmetall 734.

U.

Ueberjodsaure 314.
Uebermangansaure durch Eisen bestimmt 198.
Uebermangansaures Kali 174.
— gegen Eisenoxydul oder Klesäure 174.
Unbestimmte Flüssigkeiten 57.
Unlösliche Bestandtheile in Mineralwässern 551.
Unterchlorigsaure Salze mit Jodkali um 271.
— mit arseniger Säure 328.
— mit Chamäleon 224.
Unterschweflige Säure durch Jod bestimmt 268.
Unterschwefligsaures Natron aus Soda rückständen 472.
Uranoxyd durch phosphorsaures Natron bestimmt 434.
Urprüfung 56, 87.

V.

Vanadinsäure 314.
Vitriolöl, acidimetr. Bestimmung 142.

Vollpipetten 29.
Volumetrische Analyse 1.
Volumveränderungen des Wassers 40.

W.

Wage 62.
Wasserglas 667.
Wasserstoffhyperoxyd, durch übergangs saures Kali 221.
Wägeschiffchen 590.
Wein 692.
— acidimetriche Bestimmung 166.
Weinsäure, acidimetriche Bestimmung 149.
— technische Analyse 700.
Weinstein, acidimetriche Bestimmung 150.
— technische Analyse 698.
Wiedergewinnung des Schwefels aus Soda resten 469.
Wismuth, durch Chamäleon bestimmt 200.

Z.

Zehnteljodlösung 245.
Zehntel normale Lösung 51.
Zehntel unterschwefligsaures Natron 245.
Zeolith 506.
Zink, durch Chamäleon 214.
— durch Kaliumeisencyanid 408.
— durch Schwefelnatrium:
— mit Schwefelnatrium 410.
1. mit Betupfung 410.
2. mit alkalischer Bleilösung 411.
3. mit Nickelchlorür 411.
4. durch Kaliumeisencyanid 408.
Zink, metallisches, Prüfung 637.
— durch Kaliumeisencyanid gefällt 409.
— als Schwefelzink mit Eisenchlorid 214.
— als Zinkeisencyanid mit Jodkali um 286.
Zinkerze 634.
Zinkoxyd, acidimetriche Bestimmung 127.
Zinnerze 655.
Zinnalz 647.
Zinn und Blei 646.
Zinnchlorür aufzubewahren 296.
— durch Chamäleon bestimmt 216.
Zinnoxydul gegen Eisenchlorid 217.
Zinn als Oxydul in weinsaurer Lösung mit Jod 281.
Zitronensäure 700.
— acidimetriche Bestimmung 151.
Zweiliterflasche 43.