University of Maryland Theses

Early Doctor of Medicine and Doctor of Physic Dissertations with Corrected Tables of Contents

These manuscripts described as either an Inaugural Dissertation or an Inaugural Essay were presented to the University of Maryland for the Degree of Doctor of Medicine and/or Doctor of Physic during the years 1813-1887. The individual dissertations were bound together during the 1940’s. The original tables of contents for the bound volumes contained multiple errors in authors’ names, titles, and/or years. To address these errors, an additional “Corrected Table of Contents” has been inserted at the beginning of each volume.

The project team who investigated and corrected the tables of contents were Richard J. Behles, Historical Librarian/Preservation Officer; María Milagros Pinkas, Metadata Management Librarian; Angela Cochrane and Carol Harling-Henry, Resources Division; Sarah Hovde, Abra Schnur and Megan Wolff, Services Division.

These dissertations were digitized in 2011-2012 and are available at the UM Digital Archive (archive.hshsl.umd.edu) and the Internet Archive (www.archive.org).
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren, Edward P.</td>
<td>Abortion</td>
<td>1868</td>
</tr>
<tr>
<td>Hoge, G. Dickson</td>
<td>Pneumonia</td>
<td>1868</td>
</tr>
<tr>
<td>Hudson, Herbert S.</td>
<td>Cellular Physiology and Cellular Pathology</td>
<td>1868</td>
</tr>
<tr>
<td>Banks, James M.</td>
<td>Typhoid Fever</td>
<td>1868</td>
</tr>
<tr>
<td>Shields, J. W.</td>
<td>Intermittent Fever</td>
<td>1868</td>
</tr>
<tr>
<td>Yost, Peter K.</td>
<td>Respiration</td>
<td>1868</td>
</tr>
<tr>
<td>Newbill, William J.</td>
<td>Improvements in Medicine and Surgery</td>
<td>1868</td>
</tr>
<tr>
<td>Sweeting, James K. P.</td>
<td>Intermittent Fever</td>
<td>1868</td>
</tr>
<tr>
<td>Eckenrode, D. Myers</td>
<td>Typhoid Fever</td>
<td>1868</td>
</tr>
<tr>
<td>Thomas, C. Byron</td>
<td>Pneumonia</td>
<td>1869</td>
</tr>
<tr>
<td>Juves, James</td>
<td>Fractures</td>
<td>1868</td>
</tr>
<tr>
<td>Alston, Bennet P.</td>
<td>Cod Liver Oil</td>
<td>1868</td>
</tr>
<tr>
<td>Bayne, John W.</td>
<td>Intermittent Fever</td>
<td>1868</td>
</tr>
<tr>
<td>Thompson, Samuel G.</td>
<td>The Circulation</td>
<td>1868</td>
</tr>
<tr>
<td>Slingluff, Frank</td>
<td>Progressive Medicine</td>
<td>1868</td>
</tr>
<tr>
<td>Waring, John L.</td>
<td>The Physiology of Food</td>
<td>1868</td>
</tr>
</tbody>
</table>

HSHSL 2012 for the UM Digital Archive. Sources consulted for corrections: Original Dissertation; University of Maryland Medical Faculty, Matriculation List, 1851-1892; Cordell, Eugene F. “University of Maryland, 1807-1907” (New York : The Lewis Publishing Company, 1907), Volume 2.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiffany, Louis McLane</td>
<td>The Pathology and Treatment of Cataract</td>
<td>1868</td>
</tr>
<tr>
<td>Barron, Charles H.</td>
<td>Pneumonia</td>
<td>1868</td>
</tr>
</tbody>
</table>

HSHSL 2012 for the UM Digital Archive. Sources consulted for corrections: Original Dissertation; University of Maryland Medical Faculty, Matriculation List, 1851-1892; Cordell, Eugene F. "University of Maryland, 1807-1907" (New York: The Lewis Publishing Company, 1907), Volume 2.
UNIVERSITY OF MARYLAND

THESSES

1868-1869

Dickson

Hoge, G. D. Pneumonia 22p.
Herbert

Hudson, B. S. Cellular Physiology and Cellular Pathology 22p.
James

Peter

Yost, E. K. Respiration 28p.
William

James

Sweeting, J. K. P. Intermittent Fever 30p.

Myers

Thomas, C. R. Pneumonia 20p.
Byron

Juves, James Fractures 16p.
Benet

Alston, B. P. Cod Liver Oil 17p.

Samuel

Thompson, S. G. The Circulation 28p.

Slingluff, Frank Progressive Medicine 16p.

Waring, J. L. The Physiology of Food 31p.
Louis McN.

Tiffany, L. McL. The Pathology and Treatment of Cataract 25p.
Charles

AN
Inaugural Dissertation

on

Abortion

Submitted to the Examination

of the

Provoost, Regents and Faculty

of PHYSIC,

OF THE
UNIVERSITY OF MARYLAND,

FOR THE DEGREE OF

Doctor of Medicine,

By

Edward P. Warren

of

Goldston, York Co., Penna.

Session of 1857-58

Tb
by this term we understand to signify the expulsion of a fetus from the womb when it occurs at a period of pregnancy when the product of conception is not properly formed to develop as to permit its continued existence, and this it is sanctioned may take place at any period from the commencement of pregnancy up to the end of the fifth month.
We have three varieties of abortion, founded on the period of its occurrence, thus:

1. Before the twentieth day; embryonic if before the third month; and fetal from the latter date up to the sixth month of gestation.

Abortions most frequently occur during the first two or three months of pregnancy.

Causes

The cause of abortion may be divided into spontaneous and accidental. The accidental cause,
are those which are produced by external violence or excitement.

The spontaneous, that which super-

ences without a sufficient cause, may

arise, first, from the constitution

and general health of the mother;

second, from disease of the ovary;

third, from the condition of the

uterus and its appendages.

First, those women of splanchnic

habit, who at their menstrual periods

have copious discharges, are exposed

to abortion during the first mon-

ths of pregnancy. Again, women of

a nervous or irritable disposition, and

those of a sedentary habit, as well
as those females whose occupation require more than common activity, will be more or less liable to abort.

Syphilis it is sanctioned has a great tendency to produce abortion, in such case the mercurial treatment should be instituted, and continued sufficiently long, the pregnancy may continue to full term.

Convulsive diseases very frequently urge abortion.

Second, disease of the ovum.

It is admitted that constitutional irritation, may cause the germ by a deleterious principle
which will sooner or later cause its destruction and excite abortion.

The placenta may be hypertrophied, or atrophied, or there may be inflammation excited in the placenta, or its insertion or the neck of the uterus, as well as to short a cord and disease of the umbilical vesicle may produce abortion.

Third, disease of the womb and its appendages.

Resistance to the expansion from rigidity of the uterine fibres, unnatural contractility as
well as sensibility, or too great laxity
and weakness of the neck of the
uterus, and uterine congestion
resulting from a splenetic condi-
tion of the stomach, may act as predis-
posing causes to abortion. Beside these
causes it is proper to take notice of
the numerous diseases to which the
uterus is subject, acute as well as
chronic; namely, such as tumors
growing in the uterine tissue,
ulceration of the neck of the uterus
whether fungid or otherwise;
these are considered predisposing
causes liable to favor abortion;
and to these causes it is essential
to mention the various displacements of the uterus, such as prolapse, lateral obliquity, anterocervical, and retroversion.

In regard to the appendages it is rational to conclude that all the diseases to which they are liable may favor abortion, such as adhesions, deformities, displacements, degenerations.

Abortion has been found to originate from inflammation of adjacent organs, such as the bladder, rectum. From this source the uterus has been excited into action, producing abortion.
Any unnatural compression impeding the development of the pregnant uterus, or contraction of the pelvis are causes of abortion.

We have now other causes which are termed accidental, such as external influences, and are usually more prompt in their action. These are various and of frequent occurrence; for instance falls, great fatigue, severe contusions, and rupture or puncture of the membranes by the introduction of some foreign object in the neck of the uterus, have
as a general rule been followed by abortion.

Halls and bruises may act two ways: either by contusion or irritating the mother's organs, by wounding the foetus, or all these may be combined resulting in abortion.

It may be proper to notice that although certain women are constitutionally predisposed to miscarriage may abort in consequence of fright or any emotion that may be a shock to the nervous system, yet there are others who will suffer
the most-acute moral impressions and
the most-violent physical shocks
without any accident—whatever
resulting.

Symptoms.
The signs indicating abortion
vary with the period of its occur-
rence, and also with its determi-
ning cause. When it happens
during the first few weeks of
pregnancy, the symptoms are fre-
quently so slight as to attract but
little attention, being attended
with very little more pain or
inconvenience than usually
accompanies a difficult-menstru-
nal period; the connection of the ovum to the uterus being to slight, when contractions of the uterus are induced, the separation is effected and the ovum expelled in mass or threads enveloped in coagula which is frequently mistaken for a purer clot of blood; and thus passes by for an aggravated menstrual period.

From the first-month up to the fifth month of uterofestation, the symptoms are more conspicuous, but still vary with the cause of abortion. For instance when this accident has been prod-
need by any spontaneous causes previously alluded to. The following are some of the most prominent symptoms generally taken notice of; namely, rigor, an increase of the temperature of the body, a failure of the appetite, a disposition to vomit, this is a condition of the body in which most of the animal functions are exerted with less promptitude and vigor than common, called lassitude—cold extremities, paleness, sadness, depression of spirit, swelling and lividity of the eyelids, a sense of sinking in the region of the stomach, of cold about the
Jubes, of weight about the pelvic viscera and external organs of generation, pain in the loins, a frequent desire to urinate which is generally not effectual, a soft flabby condition of the breasts.

These symptoms may be considered indicative of abortion; for when they have lasted for a certain time the pain in the loins become more energetic and extend to the front part of the abdomen, and are renewed at short intervals, finally developing uterine contractions which if the uterine be high above the pubis can be sensibly felt to
contract, whilst often a scanty disch-
gare takes place from the vagina after-
wards becoming bright and lastly
pure blood.

If the neck of the uterus be examined
it is very frequently found partly dil-
ated, flabby or dilatable, the membranes
begin to protrude from the os uteri;
and finally rupture; the waters escape,
and the fetus and afterbirth
are alternately or together expelled.
The fetus generally dies before or
during the first pains, in those
cases where the cause has operated
slowly. When abortion is the result
of some mechanical cause, it
usually has quite an other course; thus, the expulsion of the ovum immediately follows the accident, which generally takes place at the onset of incarceration. But at a later period the time will vary in many cases from the time of the reception of the injury, up to the time the contents of the uterus may be cast off: the symptoms will be found to differ if the cause has affected the mother's organs or directly influenced the foetus. In the former case, the mother complaint, either in the region of the loins, or is referred to some point in the
abdomen; the pain may intermittent for several days, and again become violently renewed, and followed soon after by uterine contractions, dilatation of the os with discharge from the vagina, at first reddish then tarry, indolent and lastly pure blood.

If labor continues the fetus is aborted, often living but more frequently dead.

This variety of labor is generally slow, owing to the resistance of the neck of the uterine, and even when the neck offers no resistance, the contractile powers of the uterus may be too feeble to expel the ovum, and it may become engagéd in the cervix uteri for a peri-
od previous to its expulsion.

When abortion is threatened, in consequence of the death of the fetus caused by violence, or any agent that may destroy it, a greater or less extent of the vital connection between the uterus and child, the symptoms assume a marked difference; they virtually announce the death of the fetus, there is seldom pain or inconvenience, all embarrassment of the digestive organs vanishes with which women are usually troubled in the first months of gestation; every thing is calm, and seems to resume its natural state; but after the lapse of several days, the pain still mov...
ments of the foetus, which had up to this time maintained their force and frequency, become weaker, and their recurrence is not so frequent and finally become entirely extinct. The expulsion of the ovum is then certain, because it has become an extraneous body, it irritates the walls of the uterus, producing contraction and the expulsion is effected sooner or later. In this case the process progresses in a more regular manner, because the uterus has had time to prepare itself for the requisite degree of contraction for the expulsion of the ovum: this is however not invariably the case for the foetus has been
known after its death to remain in the womb for two weeks or a month. Where a long time elapses between the death of the fetus and its expulsion, there is generally less hemorrhage than if the premature labor had taken place immediately after the accident.

The symptoms that are ushered in after the death of the fetus are very singular in these cases; thus, in the course of two or three days after its death, the breasts enlarge, the symptoms of milk fever are manifested, and the breasts are in a condition for suckling after which they subside and the usual
order is resumed. The dead foetus contain
within the womb does not produc
and disastrous results to the mother.
Women have been known to carry their
dead foetuses for several months without
men suspecting it, though abortion
dooms or labor ensued. Examination
the dead foetus it is not found putre-
sed: the solids undergo a peculiar
change, and the body is analogous
in appearance to one that has been
soaked in water for a long time;
but if the membranes are ruptured
and the expulsion of the foetus del
ated, the foetus rapidly putrefies.
Diagnosis

To diagnose with certainty that abortion will ensue after ascertaining that pregnancy is the condition, which is not very liable to be mistaken after the fourth month, though before this period it is often attended with embarrassment. In the early months of pregnancy symptoms of threatening abortion are liable to be confounded with embarrassed menstruation; but it is conceded that in abortion the os uteri is more or less dilated, the hemorrhage is preceded by pain and these persist.
notwithstanding the profuseness of
the discharge; whereas in difficult-
menstruation the os is closed the
flow of blood followed by pain and
these diminish when the discharge
is well established. If it be ascertained
that pregnancy is the condition
and there is severe pain with
hemorrhage rather profuse, soften-
ing and dilatation of the cervix
dilatation, projection of the membranes
during contraction, it is almost-
invariably certain that abortion
will ensue. After the fourth month
the diagnosis will not be so liable to
embarrass: the uterus is more dis-

loped, pain more energetic, heart-rate more profuse, dilatation of the os more manifest; and the death of the fetus renders abortion certain. The death of the fetus may be ascertained by auscultation after the fourth month, the motion of the child, if felt before, will now be absent, and if the mother's breasts have been tender or aching and then with some suddenness subside and shrink, with diminution of the abdomen, and a sensation of weight-and dragging in the loin and hypogastric region, we have then reliable symptoms of abortion.
Prognosis

The first trichina as regards the fetus is inevitable fatal. An abortion occurring during the first two or three months, is decidedly more dangerous to the mother than in the fifth month.

Delivery of the afterbirth.

If after the expulsion of the ovum the placenta be retained from some cause or other, art has to interfere; when its expulsion is impeded by insufficient uterine contractions or partial adhesion of the placenta with closure of
the neck of the uterus, effort may be given with the view of exciting the contractions, and the expulsion of the contents; when this fails all that can possibly be done is to wait at the same time watching the course of nature. Finally the placenta becomes a foreign body in the womb, irritating and exciting its walls into energetic contractions; these break up the interplacental adhesions and the afterbirth is almost free in the uterine cavity; the neck dilates, and permits its escape or it may be retained in the neck of the uterus.
the proper measure is then to seize it with the fingers and carefully extract it.

The crotchet has been used in case of necessity, and the introduction of the fingers on hand with a view of separating its adhesion which is generally effectual.

Lastly if these resource fail, the tampon must be resorted to at once, and the 1901 must be given immediately; for the mutual use of these measures rarely fail to arrest the hemorrhage and bring on a sufficient degree of uterine contractions to expel the afterbirth.
Treatment

The treatment of abortion should consist of measures which are of preventive character. In those which will favor the expulsion of the form when preventive measures evidently prove inefficient, and in arising and applying the proper remedial agents to the various contingencies which are liable to complicate the case.

As regards the preventive measures, it is the duty of the medical man to combat or destroy any constitutional derangement, or obstruc-
ious predisposition that is liable to cause abortion, especially in the intervals of gestation.

It is of great import to bear in mind the pernicious effects of syphilis on the foetus; if there are symptoms of syphilitic contamination in the mother during her pregnancy, she should be subjected to a mercurial course.

When several abortions have resulted as a consequence of some displacement of the uterus, it should be remedied in the commencement of pregnancy, by avoiding all fatigue and every effort that may have attended
to displace the organ. When abortion is caused by rigidity and excess of sensibility or contractility in the fibres of the uterus, or is caused by excessive weakness or relaxation in the fibres of the uterine; in the former ease fathoming and general bloodletting opiate injections, and a course of living or regulated diet—that will not shun a tendency to restore the vascular system, are the most appropriate measures; and to the latter a tonic treatment is called for, for which is wanted hydromelites.

Women of phlethoric habits who...
None (profuse menstrual discharges and who may have previously aborted at or about the period menstruation is want to take place should be suspected before fecundation to a restricted diet and during gestation avoid all excitement and should remain in the recumbent posture one or two weeks at every monthly period, for several months.

Bleeding during the early months of pregnancy where there is a congestive tendency of the pelvic viscera just before the menstrual term is one of the best preventive measures.
influence in producing periodical abortions, he be, remedial measures
should consist in the timely resource
to mild laxative injections.

Where abortion has as it were become
a constitutional habit—it is thought
that—rest to the organ a period of nine
or eighteen months would dispense
all other means.

Where a rupture of the membranes
has taken place abortion is inevitable.
If the hemorrhage is not of such a charac-
ter as to endanger the life of the mother
in the first or second months of pregnancy
nature should not be interfered with.

According to authority the membrane
Should not be neglected, for that would be likely to retard the delivery of the placenta and render the process more dangerous.

At a more advanced period, that is, during the fifth or sixth month, the course of the obstruction is and nearly the same as it would be at term.

Haemorrhage is one of the most common and consequent symptoms that accompany an abortion.

It has been suggested that a separation of the placenta may take place at any part of the cervix: if the separation happen at the body or fundus, the blood proceeding from the lesion must increase the mischief.
by separating other connecting mecha-
ism of the vomit and urine, before it can
issue from the ostiunae; it will therefore
follow that when this takes place the
chance of arresting the hemorrhage
and preserving the vomit in propor-
tion to the destruction of the connecting
medium. When the separation is near
the neck, the mischief will be propor-
tionately diminished.
The first resource in treating the hemor-
nage should be to place the patient in the
reclining posture on a mattress or on the
floor, in a cool room. The patient should
be thinly covered, her drink, iced water,
cold lemonade. All stimulating articles
Should be avoided, her diet should consist of tapioca and weak broth, should begin cold.

Refrigerants to the hypogastrum and thighs, for pain operates. If these measures fail abortion is sure, and the first effect of the obstruction should be to bring on contraction and evacuation of the uterine contents of nature. If slower than the day is eminent, the woman's strength if exhausted should be supported by stimulants at the same time, effort should be given. These measures often prove insufficient at an early stage of gestation, for it is then difficult to excite contractions, owing to insufficient development of the
contractile powers of the uterus, the tampon is then the only provision it acts in two ways: by opposing hemostasis externally and exciting uterine contraction. The use of the tampon in the early months of pregnancy is objected to as an irritant to the uterus. But in truth it is often advantageous because the cessation of bleeding is always a necessary consequence of uterine contractions and the child in most cases read before the application of the tampon, and yet its application experience a hastened labor not always followed by abortion. The tampon should not be used after the fifth month even during the fifth month there is danger of converting an open into a concealed hemorrhage and the complete expulsion of the fetus the patient must observe the same precautions as ordinary case.
An Inaugural Dissertation

On Pneumonia,

Submitted to the examination of the Board, Regents, and Bachelor of Physic,

of the University of Maryland,

for the degree of Doctor of Medicine.

By Dr. Dickson Kego.

A Virginia.

Session 1847-8
In conformity to one of the statutes of the University of Maryland, it being a requirement, in order to obtain the degree of Doctor of Medicine, I propose to consider in the following pages the subject of Pneumonia.

The term Pneumonia, or Pneumonitis, is used to signify an inflammation of the substance of the lungs, or the lung tissue. It has been divided, in its description, into several varieties according as the inflammation has attached some particular
part, or tissue, for instance there is lobar pneumonia in which the inflammation is confined to a single lobe of the lung at one time, and tubular where it is confined to particular lobules. Then we have interlobular and interresicular, also vesicular, which is simply inflammation of the minute air cells themselves.

As in it the whole parenchyma of the part is involved I will only speak of common lobar pneumonia. I will first consider the anatomical
characters of the disease as a considera-

tion of them is especially essential in order that we may appreciate properly the various symptoms which present themselves at its different stages. An examination of a lung of a man who has died of Pneumonia will show that progress of inflammation is marked by three distinct stages. The first is that of congestion, or engorgement, second the stage of red depurination as it is called be-

cause it resembles at this point the
appearance of the liver, third the stage of gray hepatization, or the suppurative stage. In the first stage there is hyperemia, or excess of blood. The lung is red, and when an incision is made through it, the blood flows freely, mixed with more or less serous liquid. It is clearer than when in health, crepitus very slightly, will still swim in notes. It is not easy to discriminate the appearance at this period from the mechanical congestion until in depending portions of the lung.
after death. The occurrence of the hyper-
emia however at a portion of the lung
which is not dependant is conclusiv-
ar to its character. This condition
is of short duration and if the parts
do not return to their normal con-
dition soon pass to the second stage
that of solidification. Lymph and
other matters are exuded from the
blood vessels and fill up the cavities
of the air cells. The lung is now still
more increased in weight. There le-
ing an entire absence of air it will
sink in water, it is friable, readily
giving way under pressure, cut sur-
faces present a granular appearance.
This now passes into the third stage
or the stage of purulent infiltration.
The lung now presents a granular
appearance, pus is formed in the
residues, the tissues of the lung are
very friable, will break down un-
der the slightest pressure, when
an incision is made the pus will
freely flow from its cut surfaces
occasionally there are collections of pus.
forming what is called pulmonary abscesses, still more rarely gangrene supervenes. This latter is an ex- tremely rare occurrence, death generally coming on before it. I have had an opportunity however of seeing two cases in which it exis- ted, during the present session, at the Baltimore Infirmary. They were the very interesting spec- imens exhibited to the class by the distinguished Professor of General Pathology, J. Donaldson.
By the inspection of them I have been enabled to give a description of every stage of the disease. Every stage may and generally does exist at the same time. Before giving the symptoms of the disease I will note some peculiarities connected with its invasion. It has been observed that in a large majority of cases it invades the right lung as if in preference and that the lower lobes are most generally invaded first. In afflu-
motion of this has been satisfactory
given, I will now proceed to enum-
rate the most prominent symptoms
and signs. The attack is usually
 ushered in by a chill coming on with
out any premonitory symptoms
with this, or very soon after there is
considerable pain, this is acute and
cramping, increased in respira-
tion, very severe sometimes, often con-
 fused to one spot. The last is
an important diagnostic symp-
tome. It depends often accompany
ing pleuritis which is very common.

Pleurisy sometimes does not exist which accounts for the absence of pain in a certain number of cases. Cough usually comes on with the emision, sometimes it is absent, there is more or less expec-
toration, it is at first scanty, clear, and viscid, finally it is intimately mixed with a little blood which gives it its characteristic rusty color. The expec-
toration is by no means uniform.
in its character, sometimes it contains a considerable quantity of blood, when this blood is of a dark color it is called the prune juice expectoration, in wounds a portion of cases expectoration is entirely absent. There is more or less febrile excitement with pain in the head, anaesthesia, thirst, jitters, etc. The pulse is increased in frequency often amounting to as many as one hundred pulsations in a minute, the temperature
of the body is raised several degrees. In the severest cases it goes as high as 105°F. The respiration are also increased in frequency owing probably both to the accompanying pleurisy, and the imperfect elevation of the blood in the affected lung. These symptoms which I have enumerated are the most important which occur during the commencement, or the first stage, in the second stage there is a slight modification of the
symptoms, there is left cough, expectoration is more abundant, loses its color somewhat, becomes lep wiscid, the pain is decreased in severity, fever, movement is also diminished, there is little or no change in the respirations. I have now accompanied the disease through two of its stages, the next is the third which may be either one of two results, resolution or suppuration more commonly the former in
which case all the symptoms rapidly decline and the patient goes on to recovery. The latter result that of suffocation is of far more serious import than it is not necessarily a fatal result. The frequent and feeble pulse, the frequent respirations, the purulent expectoration, the progressive debility of the patient denote the approach of death which is by asphonia. I must not omit to speak of certain
Physical signs which evince themselves upon percussion and auscultation and which are of considerable importance in aiding in the diagnosis. In the first place there is very slight dullness on percussion, and what is called the crepitant rale may be heard by the application of the ear to the chest. This latter exists but a short while. When consolidation takes place, it is decided dullness, you do not hear the crepitant rale nor unless...
there is a fresh portion of the lung
invaded at the same time, but
we have other sounds or phenomena
which are called the bronchovisceral
murmur, bronchial respiration,
bronchophony, whispering
bronchophony etc. In the subacute
stage there is still dulness on
percussion, the bronchial rales,
owing to the passage of air through
pus, and if there have been abscesses cavernous respirations.

Having considered the most im-
portant signs and symptoms.
I will now briefly consider
the causes which give rise to
them. It is almost universally
the result of continued exposure
to the vicissitudes of the weather.
A strong proof of this is the
greater frequency of its occurrence in the winter months, and
in cold climates, and its attacking those who are most exposed
to the inclemencies of the north.
Occasionally it is the result of injury.
Prognosis. Pneumonia of itself is not a dangerous disease unless it is rendered so by complications or by injudicious treatment. Of 750 cases reported by Dextel of Vienna there were 69 deaths but not one of them was devoid of complications. Other statistics show the same relation results. As the amount of danger I think is in direct proportion to the amount of complications and to the bad treatment which I am
Both to confefs has prevailed among the profession to a considerable degree. I will now proceed to lay down the plan of treatment which in my judgement seems to be the most rational and successful one which has been adopted. In the first place I would say that I consider the debilitating and all other depressing remedies to be decidedly injurious on the contrary the patient should be supported. The tendency which
the disease has to lower the powers of life should be counteracted by stimulants and good nourishing diet. When there are complications, of course the treatment will vary according to the nature of those complications. But uncomplicated pneumonia will require little else than nourishing diet and a little stimulation. Beef tea and chicken soup as much as the patient can take and assist
ilate well, and wine or brandy
as the case may require. After
the second stage blisters over
the affected part may be
of service. I have seen sev-
eral cases since cases recover
under this plan of treatment
under the care of Prof Don-
aldson. The recovered with a
remarkable degree of strength
considering the extent of the
disease. I believe this to be
the best plan of treatment.
that has been adopted by either ancient or modern physicians. Having concluded what I have to say upon the subject of Pneumonia, I now respectfully submit my remarks to the consideration of those whose duty it will be to examine them.
AN
Inaugural Dissertation
on
Cellular Physiology and Cellular Pathology
Submitted to the Examination
of the
Provost, Regents and Faculty
of
Physic,
of the
University of Maryland,
for the degree of
Doctor of Medicine,
By
Herbert Edwin Houston
of
Cahaba, Alabama
Session of 1869
Cellular Physiology

Cellular Pathology
In the diversity of forms which compose
the animal and vegetable kingdoms, a
constant and uniform expression of life in
its plastic or formative relation to matter is
alone to be found in the organic cell.
From the humble Protophyte of the marsh side
ditch, to the lordly Phanerozoon of the
forest; from the Protozoa to the Tetrakelid;
all alike are the offsprings of this Parent-
form—witness itself possessing vital endowments
of the most varied and wonderful nature.
The concern is not the less true in the
inorganic kingdom, in the same capacity.
Products of which nature seems unable to deviate from simple molecular aggregation as in amorphous and crystalline forms. To what cause we must attribute these constant manifestations of organic and inorganic types is indeed difficult to answer, were we to hazard an explanation we could say that the former stems due to the operation of a force within the cell while the latter is the result of passive impressions from forces outside to the atoms of which they are composed. But be this as it may, we the significant-
fact is that organic life is universally associated with the spherical form, and that the Cell is the visible unit of all primitive organization. Do also may we say that it is the primitive anatomical element containing within itself the essence of its organic activity, "beyond which we must not expect to find from whence life proceeds." The importance of the recognition that organic life has a definite and local origin in each cell cannot be overestimated, and is by the aggregation of cells in the various organs of the Animal and Vegetable forms.
together with those Vital Impressions
which determine the particular form, which
constitute life. In a consideration of
which from a physiological point of view.
The importance of a knowledge of the organic
as distinct from Animal life or the life
of relation will be apparent; for to it we
trace the plastic transformation from the
inorganic to the organic in the Vegetable,
and the Specific appropriation in the
Animal kingdom. It is in the Vegetable
kingdom that the greatest effort of this
plastic force is exemplified and when
The first any transformations of material for animal life begin, so that the chemical elements, the Carbon, Nitrogen, Hydrogen, Oxygen, are with hydrogen from the inorganic world and combined into the constituents of the tissues of living bodies. It is not necessary to enter into a minute description of the cell and its contents, but sufficient to state that its form is more or less globular except when modified by presence when it may be flattened as in Scaly Epithelium, elongated as in Cylindrical Epithelium, uniform as in Mercurial Lobe, or still...
As is the succuse and cancellate of bone, in life the cell varies from two to three of an inch in diameter, and consists of a limiting membrane, nucleus and contents (fluid or solid). From the uniformity of the composition and properties of the limiting membrane its principal function seems to be to protect and bound the contents, and by diffusion supply the necessary conditions for waste and repair. The primary force effecting which is generally regarded as being the peculiar office of the nucleus, while in the cell contents—
may be said to reside the functional properties of the cell in its relation to the organism at large. To Schwann is the credit of having first pointed out the cellular origin of the tissues, but to the eminent Prof. Virchow of Berlin we are indebted for the only complete and satisfactory account of Cell theory, upon which to base Histological Science. So long as cell formation was supposed to take place spontaneously, or out of a Molecular Chaotica (as Schwann asserted), or that the tissues were formed according to the fiber theory of
Haller it was difficult to assign organic force to the cell alone but rather to something beyond. Now we know according to Prof. Virchow that the tissues are true cell formations, the nuclei of which are persistent and maintain their functional activity during the life of the tissue. Each cell possessing a definite area of action beyond itself. This being true much of the importance which has hitherto been attached to the action of the vessels is removed, and their proper function as simple carriers of the blood better understood. Prof. Virchow proposes the following simple
Classification of the tissues. 1st. Those in which the cells lie close together as epithelial tissue. 2nd. Those in which there is more or less of intercellular substance as in fibrous tissue. Audlar tissue. To include under the name of Connective tissue 3rd. Those which are peculiar to the animal economy as in the Nervous and Muscular systems. Veins &c. The importance of Physiology and more particularly Histology, in their relation to Pathology is beginning to be understood.

And there is reason to hope that we will have a definite idea of what constitutes
Disease, when we know what is health as it is constituted by the normal activity of the tissues of which the various organs are composed.

It is not enough that we trace disease to organs or nerves, but we must go beyond, and inquire what is of the cell, as the expression of normal and abnormal condition. Can alone lead us to find the it from whence both proceed. The formula of Parry Thomas, that "Omnia cellulae e cellula," applies to pathological formations as well as physiological ones, and the happy theory, that every pathological structure
has its Physiological Prototype and that
there are no genuine neoplasms as the
conviction to every thinking mind
for it is against all known laws of origin
that anything can produce itself, be true.

It may be safely said that every disease
condition must be ultimately derived from
a departure from the normal nutrition or
function of the cells of the parts, and that
outside of the cell the division into functional
disorder and organic disease has one
foundation, in fact, for it is equally impossible
to conceive that a functional disorder can
strict without a cause, do that anything can
produce itself to move, for that can we
must look in the components of the tissue,
again in those phenomena which characterize
the disturbance of nerve force cause cause
that they form an establishment to this law.
for we are well aware of the intimate connection
of the nervous system with every vital change
in the body, and that the constant action
of this force is one of the conditions necessary
to their occurrence. Is that even in collapse,
or syncope, we may well conceive that
death to the result—only by its effect on
The components of the tissues, in the former
by exhaustion of more force and, in the
latter by want of the nutritive materials.
It may be more or doubt is in great part-
from chronic obstruction or inflammation, that
death takes place in those diseases of Typhus
origin, perhaps. No inquiry is of more importance
to us than the pathology of the Typhus disease,
that the fluids of the body are the seat of disease
despite the fluids need not create much pain,
and it is in these included under the
term Typhus. That must accord with what
the nature of the disease and any of the blood.
The sudden invasion of the system. The rapidity and severity of the attack. The self-limited duration, and the insufficiency of local lesion in fatal cases point strongly to the blood as the true seat of these diseases. And it prima facie would suppose that pressing feebled vitality, and a low degree of organization it is eminently fitted for change by catalytic influences. On the other hand it is difficult to conceive that a permanent dyscrasia can reside in the blood, and it seems probable that many of the disease at present suspected as of blood origin will be found
to have their localization in the tissues themselves.

Of this nature may be said to be those hereditaryv

tuberculosis, syphilis, cancer, perhaps this will not be determined until physiology shall be able to say whether the tendency of the blood is an inherent power, or is the result of processes from without; recent investigations, especially those of Virchow, tend to show that to much importance has heretofore been assigned to the blood, and that while it is the repository of life, which the tissues are formed, the organizing forces reside in the tissues only.
If it be contended, that the blood globules in uterine life have more or have been observed to multiply by division, it is not the less true that they are then formed by the cells of the germinal substance, and that a sufficient difference has been observed between them and the permanent globules to infer that they serve but a temporary purpose in the economy, and disappear when no longer necessary or by the expiration of the second month, it is probable then that the elaboration of the blood is the result of the combined functional activity of the organism only.
and that the changes which are being continually effected in it are due to the action of the organs through which it circulates. Any deviation therefore from a normal composition must proceed from those organs in the tissues of which the plastic forces reside. A marked difference in the nature of the diseases included under the term typhus and those occurring from hereditary causes, consists as before stated in the self-limited nature of the former and of the indefinitely progressive and destructive nature of the latter. Again, the eliminative plague in the former, when not destructive of
the functions of the part, is a relief to the system, while in the latter its much diminished takes place. Cells may be said to proceed in addition to the nutritive force expended in their own maintenance, a functional activity which characterizes their special office in the economy, as in the gastic follicles of the stomach, bile cells of the lobules of the liver, so that this functional action may be impaired without their nutrition being also interfered with it probable, but the imperfect exercise of each specific action must proceed from the cells. If it be true that these are must be traced
to its source of origin the Ccle, and that Pathology must be recognized in the Ccle. Alone, to also constitute Therapeutics. and the effect of remedies are looked for in their action on these components of the tissues. In the present state of our knowledge it cannot be said that we know the definite action of any one remedy. Perhaps if any claim to such knowledge be made the curative action of iron in America may be pointed to.

Before medicine can attain an exactness worthy the appellation of a science or of its beneficient purposes and results
Possession, it must be indubitably grounded in
An enlightened physiology. Much has been
achieved already in the manipulation of the
human mind from those organs of the past
generated by ignorance of the cause and
nature of disease, and with increased knowledge
anathemas formerly regarded as specific have
been assigned a more rational position in
therapeutics, indeed it is impossible to imagine
that any presents specific forms beyond
those which are the result of its Physical
or Chemical action and which determine
its effect upon the particular tissue.
To the supposed hidden and mysterious
action of certain remedial substances, as antagonistic
to the peculiar fluids or solids which were
the supposed cause of disease, must be
attributed the undue importance which
has ever been attached to Pharmacological
remedies, and also the cause of so much
abuse in their use. It will be well known
if at the present day we do not err in
the opposite direction, and have supplied
the conditions of health least to Nature's
efforts alone, instead of looking to every means
of assisting her in her work of restoration.
from disease. Much of the approach that is contained in the reminiscences of the late Dr. Peirce reveals that "Rationalism in medicine leads only to absurdities," may perhaps be said to be due to the fact that Rationalism in medicine can scarcely be said to exist.
AN
Inaugural Dissertation
on
Typhoid Fever.
Submitted to the Examination
of the
Provost, Regents and Faculty
of
PHYSIC,
of the
UNIVERSITY OF MARYLAND,
FOR THE DEGREE OF
Doctor of Medicine,
By
James M. Banks
of
North Carolina
Session of 1862-3.
The term Typhoid is derived from two Greek words, τυφώς and ἐπώς, signifying Typhus-like, and is applied to one of the febrile, pathic continued fevers from its resemblance to typhus fever. Typhoid fever is not confined to this country, but prevails more or less throughout the world, though known by different names in different countries, and although not a very fatal disease, yet from its wide field of prevalence, and the serious complications which are apt to be developed, it demands careful study and attention by the physician, in order that the resources of modern therapeutics may be judiciously employed in conducting it to a favorable termination. We will now proceed to the consideration of its characteristic lesion.

Anatomical Characters.—The seat of the lesions which are peculiar to this disease is in Peyers glands, in the region of the small intestines, denominated the ileum. At first the mucous membrane is injected, and soon after the glands become enlarged
from the presence of a deposit within called the lymphous material, this deposit first taking place in those glands nearest the caecum, and then successively in those above. This occurs early in the disease, and the patches are elevated one or two lines above the surrounding surface, and the mucous membranes covering them is of a finkish or sulphurish color. The next change that occurs is a process of softening and elevation of the deposit and glands, commencing about the second week, first in the glands nearest the caecum, and then traveling upwards. As a general rule the elevation extends entirely through the mucous membranes down to the muscular coat, but in some exceptional cases it extends through the muscular and peritoneal tenities, giving rise to perforation with the escape of the contents of the bowels into the peritoneal sac, producing peritonitis one of the most fatal complications. The ulcers present a shelving border, and an undermined floor-
once before the process of cicatrization commences. Cicatrization usually commences during the third week of the disease, first in the glands near the caecum, and is in progress during convalescence. There is formed a thin serous-like membrane at the bottom of the ulcers, which gradually thickens and fills up the excavation, but the glands are never reproduced. It should have been remarked that this cicatrizing process never interferes with the proper calibre of the canal. This same deposit occurs also in the mesentery glands, and although in some instances it softens and ulcerates producing peliunules by being discharged into the peritoneal cavity, yet in the great majority of cases it is reabsorbed. The lesions above described are familiar to, and characteristic of Typhoid fever, but it will now be proper to notice some accidental lesions. The spleen is very often found enlarged and softened, and also though less frequently the liver is found in the same condition. The
kidneys are sometimes found diseased on post mortem examination, and the heart is sometimes softened and flabby. The lungs and bronchial mucous membrane have been found congested. Inflammation of the brain or its meninges is very rare, yet effusions within the ventricles, and into the arachnoid cavity, and subarachnoid space are often found after death. Arachnoid clots have been found in the heart, especially when pneumonia exists as a complication. The blood is dark and fluid, and the fibrin is diminished, unless there be a local inflammation complicating the disease. There is scarcely an organ in the body that has not in some instances presented evidences of a diseased condition after death.

Clinical History.- Typhoid fever sometimes begins abruptly with a chill, which is soon followed by feverish movement, but in the majority of cases it comes on gradually and insidiously; the usual symptoms of this form being
lassitude, general uneasiness, irregular chilly sensations, frontal headache, mental irritability, anoxia, looseness of the bowels, and frequently epistaxis. After a period varying in duration in different cases the muscular debility becomes so great, that the patient is compelled to assume the recumbent posture, and the disease becomes fully developed. For convenience of description it will be proper to divide it into stages of definable periods; and also to speak of the symptoms under distinct heads, according to the system to which it is referable.

Countenance and General Aspect.— In the early part of the disease the face is generally flushed; the countenance dull, listless and stupid, and the surface more or less dusky or dingy, owing to defective capillary circulation; this discolouration is not so marked as in typhus fever.

Nervous System.— There is pain in the head and back
early in the disease, but it becomes less as the disease advances, and finally ceases. Delirium occurs in the majority of cases of this disease, usually making its appearance in the second week. It differs in degree in different cases, being sometimes noisy and active, and requiring restraint; whilst in the majority of cases it is of a low muttering character. It is more marked during the night than in the day, and its prominence is in proportion to the intensity of the disease; and when noisy and active it is an unfavorable symptom, but whether passive or active it affords no evidence of cerebral or meningial inflammation. The mental faculties are feebler, and the patient pays no attention to what is going on around him, and is indifferent as regards his own condition on account of diminished sensibility. General and special sensibility is impaired, and deafness is a common symptom. As a rule the patient is wake
full in the early period of the disease; afterwards he becomes drowsy and appears to sleep, but in reality does not; this condition being called pseudo-somnolence, or coma-vigil which signifies false sleep, and is apt to exhaust the patient's strength, and should be combated by appropriate remedies. This condition of coma-vigil is not one of true coma, but in some instances coma occurs and is an exceedingly unfavorable symptom, leading to death by anemia or the deprivation of the tissues of oxygen. Subcutis tendineum and carphologia or picking at the bedclothes are grave symptoms, which are sometimes observed during the progress of this disease. Convulsions sometimes occur, though very rarely, and when present, they are due to icterus.

Digestive System.—As a general rule there is anemia, but in a few exceptional cases the abdomen is not a truly bloated. There is great thirst, but very often in the progress of the dis-
ease, owing to blunted perceptive, the patient does not benefit of there, though the system may be suffering for the want of water. The tongue is coated with a yellowish or brownish fur, which very often only covers the central and posterior parts, while the tip and edges are red. It is said that when the fur gradually accedes from the tip and edges, and the tongue becomes clean, it denotes that convalescence will be speedy, whereas if the fur is thrown off in flakes commencing in the centre and the tongue becomes clean and smooth, it also denotes convalescence, but it will be tedious and protracted. Sometimes in the course of the disease the fur is thrown off and leaves the tongue smooth, dry and glazed; this condition, according to Prof. Wood, indicates an increase of the morbid conditions going on in the glands within the intestine, calling for spe.

ial therapeutic measures which will be mentioned under the head of treatment. A dark matter called sordes sometimes accumulates upon the teeth, especially in unfavorable cases.
In some instances the parotid glands become inflamed in the course of the disease; though this is rare, yet I have had an opportunity of observing this complication in a patient who passed successfully through a severe attack; suppuration took place, and the abscess was allowed to burst spontaneously, and it left an ugly cicatrix after it had healed. Vomiting is an occasional symptom, but is very much less prominent than in remittent fever. Diarrhoea is a prominent symptom, and it is so rarely absent as to be considered one of the most valuable diagnostic symptoms. It sometimes precedes the development of the disease, and is continued throughout its course; whilst in other cases it is developed with the disease. This is considered by some as a salutary effort of nature to eliminate the poison from the blood, and consequently should not be checked, unless it be so productive as to be sufficient of itself to exhaust the strength of the patient.
The evacuations are fluid, and of a yellow ochre color, and very thin; they are sometimes red colored, as in the case which I saw and alluded to above. Hemorrhage from the bowels occurs in some instances, but it is not such an unfavorable symptom as might be supposed. Tension of the abdomen is very often present, and is considered to be one of the diagnostic symptoms. There is usually tenderness on pressure and a gurgling sound heard in the right iliac region, which are due to the diseased condition in the lower part of the ileum. In some rare cases perforation of the small intestine occurs from the extension of the ulceration through the muscular and serous lining; the large intestine is sometimes perforated, though this is still more rare. When perforation takes place peritonitis becomes rapidly developed from the escape of the contents of the intestines into the peritoneal cavity.
it is distinguished by the sudden development of acute pain which radiates over the abdomen, the extreme tenderness on pressure, the increase of the tympanitic distension, frequent and thready pulse, the anxious expression of the countenance, obstinate vomiting, and great prostration of the vital powers, and is almost always fatal. Peritonitis may be the result of sloughing of the mesentric glands, and though not so unfavorable as when due to perforation of the intestines, nevertheless it is very often fatal.

Skin.—Under this head will be noticed a characteristic eruption consisting of isolated papulas of a rose color, of hearing on back, chest, and abdomen; they are distinguished from the eruption occurring in typhus fever by the fact that those occurring in the latter disease are papulas; whereas those appearing in typhus fever belong to the order of papulas. These little papulas are
about fifteen or twenty in number, of a rose color, disappearing
under pressure, of an oval form, and elevated two
lines above the level of the surrounding skin; they usually
appear about the seventh day, and when present, they are
of some value in a diagnostic point of view; it is very
frequently wanting. Sometimes in the progress of the disease
little clear vesicles called sudamina appear on the neck,
chest, and shoulders and sometimes on the abdomen.
As a general rule the skin is dry; though in some cases
perspiration occurs during the course of the disease; and
it is very apt to slough over prominent parts that are
exposed to pressure as the sacrum, and this condition
should be obviated by prophylactic measures.

Circulation and Temperature. — The pulse is frequent,
ranging from 80 to 120 or more per minute, and a fever
in proportion to its frequency, when it rises above 120.
Suddenness in the return is an unfavorable symptom. There is a diminution in the force of the heart's action, and the first sound is often notably assented. The temperature of the body is augmented, and by observation it has been found to increase progressively for the first half of the first week, rising two degrees in the evening, and falling one in the morning, until the thermometer stands at 103° when taken in the armpit; an increase of temperature above this point is unfavorable, and should it reach as high as 106° to 108° F. it indicates the approach of death. When there is going to be a favorable termination of the disease the thermometer falls, and is usually 4° or 5° lower in the morning than in the evening. The gradual increase of temperature for the first three days, being about one degree higher in the evening than in the morning, is said to be characteristic of this disease, and the thermometer is rendered useful in diagnosis as well as in progress.
Genito-urinary System. - During the progress of the disease the urine is scanty and highly colored, with an increase of its solid constituents in the form of urea and uric acid; there may be found albumin in some instances and it indicates gravity of the disease. In those cases complicated with disease of the kidneys, renal casts are sometimes found, and there is danger of uremia from deficient elimination of urea, which is in excess in the blood, owing to greater waste of tissue going on, and this condition will certainly lead to death, the fatal issue being generally preceded by convulsions and coma. Owing to the impaired susceptibility of the patient the urine often accumulates in the bladder and may cause paralysis from over distension, and ultimately give rise to uremia; the liability to this condition should be borne in mind, and the physician should employ the catheter from time to time to empty the bladder of the urine as not avoided by the efforts of nature.
Respiratory System.—Most of the symptoms which are referable to this system are due to complications, as for instance, the cough is generally due to subacute bronchitis, and if the respirations are very much increased in frequency it would lead us to suspect disease seated in the respiratory apparatus, pneumonia for example, which is a frequent complication of this disease, though the respirations are somewhat increased as in other fevers, without the existence of pneumonia.

Complications.—Subacute bronchitis is a frequent complication, recognized by cough with sputum and subacute conchi in the early stage, while in the latter stage they give way to the most mucous, and subexistent conchi. Pneumonia is known by the increased frequency of the respirations, and by the moderate dulness on percussion, and the subacute conchi in the early stages; while in the second stage of the complicating disease there is complete dulness, and entire
absence of the vesicular murmur, bronchial respiration and bronchophony. Disease of the lungs and enlargement of the spleen have been spoken of under the head of anatomical characters; laryngitis and edema of the glottis are sometimes observed. The duration of this disease is variable, reckoning from the period of full development, its average duration is about three weeks, though it frequently extends to the fourth week, and in some cases convulsions has taken place in the second week. The convalescence, as a general thing, is gradual, and is sometimes tedious, and relapses may occur. Typhoid fever may be associated with other diseases as scarlatina, malarial, typhus fever, diphtheria, and remittent fever; this last combination of diseases is very frequent in my own section of country, and is called typho-malarial fever.

Sequels.—The hair is apt to fall off, and sometimes there is
progressive emaciation finally resulting in death, and in other cases the nutritive function becomes more active, and the individual may attain to greater weight than before. The mental faculties are often left in an enfeebled condition, and it is generally some time before they completely recover their normal power.

Causation and Pathology.— Typhoid fever is endemic in all countries, though not known by the same name; in no warmer districts it is generally associated with the febrile fevers, most commonly with that form known as the bilious or wet and fever. It is said to be most rife in the autumnal season than any other, and especially so if the preceding summer was hot and dry. Young adults are more liable to the disease than any other class, because the glands of Peter disappear in advanced life. It is an undecided question whether it is contagious or not, some believing that it is, while others hold to the contrary opinion.
Dr. Flint believes that under certain circumstances it is contagious, while under ordinary circumstances it is not contagious.

Typhoid fever is a disease of the blood, and is classed among the Zymotic diseases, that is, a disease produced by a special cause, which entering the circulation, acts on the blood as a ferment, inducing such changes in its composition, as to render it unfit to carry on its part in the function of nutrition. Any thing which depresses the vital powers renders the system more susceptible to the action of this special cause.

Diagnosis.—The diseases with which this one may be confounded, and consequently requiring the consideration of the differential diagnosis, are typhus fever, remittent fever, meningitis, bronchitis, pneumonia, acute tuberculosis and enteritis. It may be distinguished from typhus fever by observing the presence of the abdominal symptoms such as diarrhea, tympanites, and tenderness in the right iliac region; and the rose colored eruption being papular; whereas
in typhus fever these abdominal symptoms are not present, the
eruption is macular, the surface more dusky, delirium is
developed earlier, and a peculiar odor emanates from the body.
From remittent fever it may be distinguished by the presence of
these abdominal symptoms mentioned above, and which are char-
acteristic of this disease, epistaxis, and the absence of remissions.
It may be mistaken for acute meningitis when occurring in children,
without proper caution being observed, it may be distinguished how-
ever by noting the fact that in the latter disease the pain is more
severe, there is great intolerance of light and sound, delirium is more
active, and comes on earlier, and is succeeded by coma, and vomiting
is a prominent symptom. When bronchitis exists as a complication
and the fever is mild it may be overlooked, but as a general
rule it is hardly ever mistaken for bronchitis. If pneumonia be
a complication, this may be distinguished as the primary disease
by ascertaining that it was insidious in its approach, and that
the development of the fever preceded that of the local inflammation. Typhoid fever is distinguished from acute tuberculosis by its characteristic abdominal symptoms, and by the absence of frequent respirations, subcutaneous oedema, cough and hemoptysis which are present in the latter disease. It may be difficult sometimes to distinguish this disease from enteritis in children, but we should settle the diagnosis by observing its gradual development, the epistaxis, rose-colored eruption, and the use of the thermometer, which, as before mentioned is useful as a means of diagnosis.

Prognosis.—This disease, though serious because even in mild cases circumstances are liable to occur to render it fatal, is not a very fatal one. It is said that the prognosis is more unfavorable in the middle aged than in young persons. When it terminates fatally the mode of dying is by ashenia, or ashenia and aphonia combined when death is preceded by coma. The following
are some of the unfavorable prognostic symptoms: great frequency of the pulse and prostration, notable weakness of the first sound of the heart, and such nervous symptoms as sucking at the bedclothes, subcutaneum, active delirium and coma; while on the other hand the absence of these symptoms makes the prognosis more favorable.

Treatment.—Typhoid fever cannot be cut short by any known therapeutic measure, and therefore the expectant mode of treatment should be adopted. At the onset of the disease the bowels should be moved by a mild laxative, as 3 fluid ounces of the sulphate of magnesia, or ol. ricini 3 fluid ounces, or an enema should be used for this purpose and is preferred by some; and then refrigerant draughts such as neutral mixture, or effervescent draught to abate the fever. Spreading the surface with cold water is very efficacious in a burning fever, and it contributes much to the relief of the patient; it should not be employed however unless the skin be hot and dry.
If the diarrhoæa be excessive it should be restrained by osiatic and astringents; osiatics are useful also to quiet the patient when restless and delirious, and to procure sleep; because continued wakefulness is apt to exhaust the patient. Hydrochloric acid is highly recommended in the dose of ten drops every four hours; it acts beneficially by correcting the superficial salinity of the blood due to an excessive amount of ammonia. Dr. Chambers says that it relieves the diarrhoæa, cleans the tongue and abates fever. Dr. Wood highly extolls the use of oil of turpentine when the tongue is smooth, glazed and dry; he supposes it to act both as a stimulant to the system and as an alternative to the diseased mucous membrane of the alimentary canal. There is one condition in which is peculiarly efficacious, namely, when the tongue throws off its fur in flakes beginning in the centre or back part, which indicates an increase of the disease in the intestines; it is given in doses of five to twenty drops in wine tisage every two hours.
Alimentation is of the utmost importance in this disease, and without it medication will be of no avail in the severer cases. The diet should be concentrated so that there may be as much nutriment in as small bulk as possible, such as beef tea, co-
chicken tea, and milk. Alcoholic stimulants are highly re-
commended and the system, as a general thing, is tolerant of their use. Alcohol supplies the place of a certain amount of food, and when given in connection with food it makes it go further in repairing the waste, and thus aids in sustaining the fail-
ing vital powers. Tonics are very useful both to aid the stom-
ach to digest the food, and to give tone to the system at large; and for this purpose quinua is probably the best. The patient should be surrounded with as favorable hygienic conditions as possible, and the physician should see that cleanliness and ventilation are strictly observed. The physician should examine the bladder from time to-
time, and should it be found disturbed, the catheter should be used.
Preventive measures against bed sores should be adopted and for this purpose a solution of bichloride of mercury in alcohol in the proportion of one to alcohol will be found useful; when bedsores do occur, great benefit will be derived by washing them in a solution of chloride of soda or Labarrague's solution in proportion of 1:31 to aqua 1:31. When complications arise of course measures must be adopted appropriate to the particular disease which complicates this disease. In writing this thesis I have endeavored to be as clear and concise as possible, without attempting to adduce any original or new ideas, which I think would be worthless, even if they could be given. It is for the teacher to advance ideas and theories, while it is the student's duty to receive them.
AN
Inaugural Dissertation
on
Intermittent Fever
Submitted to the Examination
of the
Provost, Regents and Faculty
of
Physic,
of the
University of Maryland,
for the degree of
Doctor of Medicine,

By
J. W. Shields

Session of 1857-1858
Simple Experiments.

These were designed to show
that the composition of such bodies as
which the following are known to
exist, and which are called phosporic
intervantages.

In one experiment a phosphorus
was heated to a red heat. The
result was that the phosphorus
was converted into phosphoric
acids, etc., etc.

The process was the occasion of the
exhibition of a certain set of symptoms
and was identical with that of a
burning substance. The result was
unmistakably the belief that such is the
nature of a new set of the inorganic
acids, though not content to rest in the
pure phosporic acid, and

and then moved an army from France
in continues war. The purpose was to

inflict such heavy losses on the allies
as to render them incapable of further resistance, while reducing their ability to

continue the war. This action was

performed in a short period, leading to

the fall of several states along the

Danube River. From this point, the

future events...
and the first to me that I had one such of my own. In the interim, the shadow of another, who was called the occasion, the finding in operation of the first coming, were surrounded by a more

and in the mean of generations, of death, and in the subject of experience. Now, when that coming and shadowing had been brought, the hands became a constricted shade of the tool for more day, and the finger placed the hand

slowing those fancied, in the adjusted mind. And designated

the subject of the impending circumstances; even the finger becoming so reduced in size that things familiarly

fitting close to shape off this presentation, speak;

and sometimes preparal, and fatly were remaining

too of form in the back then, and down his

tongue in gentle and dry, or hard to express.

and his intense face and every though he was to often called to said it, his sentences being staccato and unfinished.

This the cold stage. After a variable duration is succeeded by the hot stage. At this the first announcement is that the skin begins to dilate with the light flush of heat. Then generally commence about the face and neck and gain ground until the subcutaneous tissue and the skin acquire its usual color and smoothness. The sternum becomes the thermometer. The veins and the muscles their prominence shows. Further than this, the affected portion is surrounded by a moist but within the situation more firm. Like in the case of pustulose chronic, the stethoscope and diaphragm fully recognized and the briskness of the heart.
induce -ment of the upward and downward motion in oppressed and hastened -tions as more its restlessness, with also still drain and dry exhausture.

Some moisture stands not undetermined and once to be attained by a general or a pure
spirit, which this appointed action in the third.

These are the phenomena of the revolving star. The bottoms of the
ordinary letters and figures must hang in as none.

The formations learned and strange impossible
in this small description is a consequence of the
figures among the solidly agreed in direction.

The lord may "suppress" any discussion.
cold stage; in the later stages the temperature may go up, or differently marked out stages, or the onset is usually marked by the development of the feverish process. Such irregularities are most apt to those occasions as the remainder of an escaping attack of the disease. Sometimes no stage is particularly marked. The person experiencing such a condition is described sensation as that, or an pain or debility, or irregular daily sensations, or sometimes a feeling of intense heat which becomes a perpetual habit. These are commonly known as febrile attack.

If the person loses one sick bed, leaving also at an interval of three hours, or any other day, Tuesday, and so on, Friday after that. That is necessary for the body being about two days its called the feverish.
The paradox of the qualities is usually the
target and fate of all men. Then comes the
question: in what order does the
man in command of the quality, that is more apt to come on. The
order is: from right to left, and going up.
If facts about half as long as the four
years of the qualities, then of the innume-
able lines yes, but to six in the.

[Handwritten text continues, but is not fully legible due to the style and quality of the handwriting.]
day as the disease progresses towards going off, though sometimes they get earlier. The cure is indicated by the cessation of the paroxysms and indicates that the disease is breaking up. Odors in these cases in which the gum can be in the day it is apt to be getting worse.

An exceptional form yet deserving mention is when the paroxysms don't seem to follow any definite order or habit and is called male. The duration of this disease is variable, from a few paroxysms to many months or even years. Initial if seen a relapse may be suspected.

The system of a blood of habit and qualities for an almost insipid taste of after the removal of the patient from the cause of the cause, and as well difficult to broken up as to habitual existence depending on it.
In seasons of the year most common in this
Twin, are spring and fall. The seasons
of these. The ages of fall and most severe and
dangerous. The greater activity and abundance
of the purchasing time being in close relation
to the decay of the tissues which goes on at
that period. It is said that the phenomenon
is the most common from spring and
the hypodermic in cold. The ages of life
are susceptible to this disease, and not young,
senile, or very young. The source, if it,
then, can be understood, the
Twin, might remain.

The tissues, and that for which they
stand for life are so much more important in
its exciting causes.Tho' a deleterious fluid,
shall have a favorable postulatic expression.
several years ago, the disease in question was
thought to be contagious, as indicated by the fact that the
same symptoms were observed in individuals in contact with
the patient. It is probable that these symptoms were
produced by the same infection, but because of a condition
of the skin, making him liable to show a marked disturbance
after the usual latent period of a few weeks.

The question then is to determine if one
individual can transmit this affection to
another in some manner. There is no
information from the literature of the case
to the contrary, for it is widely acknowledged.
It is a specific poison producing specific qual-
ses in the human body. The epithelial are
primarily the intestines and stomach lining
the digestive tract, but any epithelial organs can
and their contents are only removed by digestion.
By recent discoveries it is supposed that the
various effects of certain food due to the sub-
stance of spores intestinal at the intestines
and that these in certain cases adheres
epithelial glands, which occurs in many
occur which is often inconspicuous.
A notable feature is the idea of
epithelial is that epithelial are much more
stronger and decided attack over the
substrate of material. The inner
surface engaging in continuous destruction
through the epithelial becomes detached from
suf} The symptom is rare to observe in all cases of the disease due to its inaccessibility in their situations.

A careful anatomic and pathologic study of the patient's case, with an examination of the spleen with or without indication of its substance. This organ is sometimes too enormously increased as to be felt and even its outlines to be seen under the abdominal walls.

Diagnosis: If the person has been infected with the agent of some contagious disease upon an acute fatal condition, the danger is almost always possible. Some may be infected without serious effects, and may recover completely. This may lead to another
violent conjunctive forces. They are prone also in
host climates to form into aridinal collections
here. This is explained by long productions
from years, and by the multiplication of the
process, since the lemons and produces
are even at one or at two times the difficulty
in amount. Again,

Destruction, as a very inconsiderate
destruction of complete monotonies and the
removal of the species. The need of complete
has its best representation in the progression
of the Cretaceous towards and of these. The effects
of quinine as an actual occurrence. Taking
the given in solutions with the aid of
broader, Sullivans's first change is some use
of quinine or semi-liquor. The latter provides
the direct method of most necessary in broader
method.
enough to get an effect upon the person. Thus this may be modified by snuffing up the fumes of the drug or the drugs. A common practise is to begin with the remedy and to have it in the bowels for eight hours before the second dose is given, and on these occasions two doses may be given, say one to five grains or to administer a full dose first to twenty grains (according to the urgency of the case and the circumstances of the patient), and then on the second day the second portion. The common objection being to have the viscera act on the stomach, the influence of the stomach at this time being not so great as it was in former times. This would come to occupy it, the ordinary case it is not necessary to have thepowers. It is the intent of practicing the constitutional improvements ever since the present.
the are also a little use of increase in the means by which it is no longer to sustained house of its application. Fractional be passed off. Before the heart of the attack. A more recent practice has had probably upon the supposition. That the blood supplies something to the blood which is wanting is to give it these improved long time the fine grain doses most applicable hence to the ordinary words phrase of the disease. Much testimony as known influence of putting the patient down the influence of the disease near to the poisonous which has just passed even in its second stage nothing much earlier in arriving the next generation. The disease is rare after administration of cocaine. In the latter's opinion most frequently...
The state of the bowed inSciencies in general to be looked to by physicians.

The Sulphate of Baryta and Strychnia are also good remedies.

Though these like the Salts of Phosphorus, Sanguinaria, and of Arsenic seem more applicable to certain cases of those disturbances more likely to occur in patients and if their hands also were to be kept out of their reach, it is better to prevent such access than to find means to prevent the same after it has occurred.
Perhaps the first stage is to wash the patient and the second stage is to give the patient a cold in the nose. A most efficacious means of producing this impression on the nervous system is by means of a cold in the nose. It is the means, in fact, of producing a decided impression on the nervous system.

Of importance also is the patient's reaction which is very vivid to this impression. The reaction is the relief such as are to the sense of pain in the head, nausea, vomiting, dizziness or excitement. All of these are due to the application of the cold to the nose. It is evident that in the cold stage to reduce the application of the cold to the nose is very efficacious.
in the upper arms and among the back teeth, is removed by surgical and other
suitable measures.

It is very well established that patients of all ages and similar complaining habit daily
on regular moderate loss under exposure to the same, will proceed against it.

Scars are frequently acquired after an attack of all sorts of pestilential, and other
hygienic means, among the latter, are the removal in an old confirmed ague with
another part of country.

Enlargement of the spleen will require possibly, continuation of the same or other
similar irritants and surgical local applications and as later record before ofanemia
AN

Inaugural Dissertation

on

Respiration

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

by

Peter K. West

Shrewsbury, Penna.

Session of

1867-8
The animal kingdom is subject to rust and repair from the time life begins to the time it ceases. Particles of matter, for a special purpose, that purpose fulfilled they shortly become contaminated and are then cast off through the medium of the circulation as unfit material for sustaining life.

The arterial blood becomes now freighted with poisonous and deleterious gases which increase in quantity as the blood
passes from the heart through the arteries and capillaries into the veins, back to the heart, thence to the lungs, where it undergoes a change of osmolarization and respiration by an exchange of gases, known as the process of Respiration.

It commences in the tissues and capillaries by giving off oxygen and taking up carbonic acid, coloring the blood dark; on its arrival into the veins, it is changed to a deep purple.
and in some parts of the body it is nearly black.

The anatomical arrangement of the respiratory apparatus differs in different species of animals. In the fish, inhale the gills or branchiae. In the insect we have no lungs but in their stead air tubes. The position and location of the respiratory apparatus differs in the fish, we find it on the external part of the body consisting of delicate filaments.
prolongations of some part of the integument or mucous membrane are numerous and supplied with blood vessels and hang out freely into the surrounding water.

In terrestrial and air breathing animals however the respiratory apparatus is situated internally. In these the air is made to penetrate the interior part of the body into certain cavities or sacs called the lungs, which are lined by a vascular mucous membrane.
but it matters not whether the respiratory organs be simple or complicated. The principle of respiration is the same, its essential conditions being that the circulating fluid be exposed to the influence of atmospheric air, or an aerated fluid, that is, one holding atmospheric air or oxygen in solution.

Organs Concerned in Respiration. And first we have the Larynx communicating with the
pharynx at the upper part of the neck. It performs three
functions, viz. respiration, formation of voice, and assists in deglutition.

It is narrow and cylindrical below, but broad above when it pre-
sents the form of a triangular box, being flattened behind and
at the sides, while in front it is bounded by a prominent ridge. In composition it is car-
tilaginous, and is formed of
nine cartilages. Three simple
and three pairs. Thyroid, cricoid, and epiglottic, two arytenoid, two corniculate, laryngeal and two cricoid; all connected together by ligaments, moved by numerous muscles, lined by mucous membrane, and supplied with vessels and nerves. The epiglottic plays the part of a valve; the larynx opens in inspiration and closes in expiration, its movement being active in the former and passive in the latter function.
That we have the trachea a membranous tube with cartilage rings, four and a half
1\frac{1}{4} in. in length and three fourths
\frac{1}{4} in. in diameter.

It branches off or divides into two primitive bronchi, the right and left. The right
being thicker, thicker and more horizontal than the left bronchi. These again
divide successively into secondary and tertiary bronchi. The rate
divisions continuing while the bronchi grow smaller and more numerous and separate constantly from each other. As they diminish in size, the tubes grow more delicate in structure and the cartilaginous rings disappear from their walls. Each ultimate bronchial tube terminates in a division or islet of a pulmonary lobule. A pulmonary lobule is about one-twelfth part of an inch in diameter, consisting of a var-
A thin membrane enclosing a cavity which is divided into a large number of cells or vesicles by thin septa or partitions which project from its internal surface.

Respiration consists of two actions. The inspiratory act and the expiratory act each accompanied by sounds different in degree and intensity.

The inspiratory sound is shorter than the inspiratory act, but the expiratory sound is
longer and higher in pitch than
the inspiratory, and we have the
highest pitch when we have the
greatest force. By apply-
ing the ear or using the stethe-
scope over the respiratory organs
while a person is speaking we
have the voice found in the
larynx which we call laryn-
gaphony, and in the trachea
which we call Tracheaaphony.

The air cells are separated
from the blood by a mem-

2\frac{1}{2} \text{ in.} \text{ of an inch in diameter.}

Sibley says there are 1870 lb.
5 ft. of air resiles. In respiration or during the exchange of gasses, as above mentioned, there are alternate movements of the chest, of expansion and collapse.

This is affected by the dia-
phragm, intercostals, assisted
by the pectoral, scalene and
abdominal muscles. The dia-
phragm descends and acts as
a suction in inspiration, and
in inspiration it ascends. The lungs acting as a suction to it.

He have three types in respiration, the abdominal, the inferior costal, and superior costal. In males we have the abdominal and inf. costal type and in females we have the superior costal type commencing at puberty.

Frequency of respirating acts.
In the adult they number from 16 to 24 - average 20, or 1 to 4.
Pulsations of the heart. Soon
after birth they number from 120
to 140 - are more frequent in wom-
en than men and during sleep
are diminished 20 per cent. Every
nineteenth respiratory act is a long
one. In auscultation we
have first, the vesicular mu-
mur of the lungs - a soft and
breathy sound. Caused by the
air passing through the vesicles.
In the trachea we have the tu-
bular sound, high in pitch, th
vesicular murmur being loudest at the right side or near the sternoclavicular articulation we have the broncho-vascular murmur. On the left side we have greater intensity of sound, but higher pitch on the right.

The capacity of the lungs

birds, after amount of air we,

From investigation it has been ascertained that the air used in the lungs for respiration will admit of four dives.
tions, first, or residual air, that which remains in the lungs and cannot be got rid of, which is about 100 cubic inches. Second reserved air or that which is in the lungs and can be expelled by forcible expiration, which amounts to 100 cubic inches. Third "tidal" air, is that volume which is alternately inspired and expired averaging about 20 cubic inches. Fourth or complimentary is the amount inhaled.
by forcible inspiration, above the tidal volume amounting to 110 cubic inches. A man five feet eight inches, breathing in health, 230 cubic inches and for every inch above that height, he will increase 5 cubic inches. From one-fiftieth to one-seventieth of part of the air in expired is lost in the lungs. The capacity of the lungs in man in creases up to thirty years, after that age it diminishes.

Composition of air...
Composed by weight of 23 parts oxygen, and 77 nitrogen, or 21 parts oxygen and 79 nitrogen by volume. It also contains one twentieth, 1/20th, of carbonic acid and some traces of ammonia.

A man may live in an atmosphere where the reduction of oxygen is found 25 to 30 parts. Having respiration there is 5 parts of oxygen lost or given off in the lungs, and about one cubic inch of oxygen is absorbed by the blood at each inspiration. The entire quantity of
air used daily in respiration is about 350 cubic feet, involving the consumption of 172 cubic feet of oxygen in 24 hours. The average quantity of water exhaled daily by the lungs is 1 1/5 lbs. of carbonic acid is given off at each expiration and the exhalations of carbonic acid are frozen by at low temperature. We are therefore that air which taken into the lungs, and exhaled has lost oxygen, gained carbonic acid, and has absorbed water.
The changes in the blood during respiration are inversely to those which we have found taking place in the air. The venous blood coming to the lungs holds carbonic acid in solution, in passing through the lungs its color is changed from venous to arterial, oxygen is absorbed and carbonic acid with water is exhaled. This interchange of gases is a simple phenomenon of absorption and exhalation.
The inspired oxygen does not immediately combine with the carbon in the lungs and exhaled as carbonic acid, but the carbonic acid exists ready formed in the venous blood before its entrance into the lungs, and the oxygen which is absorbed in the lungs during respiration passes off in a free state with the arterial blood, which has been arterialized by the passage of the venous blood through the pulmonary
capillaries, and is exposed to the influence of the air in the cavity of the pulmonary cells, a transudation of gases takes place through the thin animal membranes of the lungs. The plasma of the blood receives the oxygen and thence is transmitted to the red globules.

The constant activity and nutrition of the tissues depend upon their being steadily supplied with oxygen by the blood; but if this
Supply to cut off their functionable activity ceases, the Carbonic acid will increase in the body, and terminate life in a short time.

The effects of breathing impure air in a confined space is very deleterious and soon becomes apparent. The Black Hole of Calcutta gives us an striking illustration of the fearful effects produced by breathing unoxygenated air, but alas, in many kind we need not go to Calcutta.
To die by effects. How many are those who confine themselves to put up holes breathing not that which Nature has given them but what are thus slowly and surely committing suicide. But to the subject. It has been ascertained that the interchange of gases is not complete in the blood. The arterial blood contains from 5 to 6 parts of Carbonic acid during digestion, and cogito.
is also formed in the venous blood. The formation of carbonic acid takes place in the lungs, blood, and in the tissues. In the lungs there exists a peculiar acid substance soluble called "pneumic" or "pulmonary acid," which is found everywhere in the pulmonary tissue. Whenever blood is brought in contact with it, carbonic acid is formed. The greatest source of carbonic acid is in the tissues.
it is an established fact that every organized tissue and even every organ when in a recent condition has the power of absorbing oxygen and exalting carbonic acid, so it has been shown that tissue outside of the body deprived of blood continues to respire. It is in its tissue substance that oxygen is combined, united, and assimilated, and when the carbonic acid takes it again, and it is not a direct product of respiration but originates by a
decomposition of the organic ingredients of the tissues. The lungs are not the only organs that carry on respiration; we have the skin taking an active part, and excreting as much carbonic acid as the lungs.

The amount of this acid is greater in a person with a strong constitution and muscular system well developed than in one of opposite qualities; and thus we see how wonderfully Nature suits herself to the wants of her frail creatures.
By respiration the life of the animal and vegetable kingdoms is sustained. One supports the other. The former exhaling carbonic acid while the latter it up and gives off oxygen which in turn is inhaled by the former. A beautiful example of compensation in nature for the perpetuation of life. Certainly the main spring of existence is Respiration.
AN

Inaugural Dissertation

on

Improvements in Medical Study

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

by

Capt. L. A. McCollum

of

Essex County, Virginia

Session of

1875-76
The time has come to
explore the hidden secrets of the
universe. To unlock the
mysteries of the
past, to uncover the
truths of the
future. To
traverse the
dimensions
to find the
answers that
elude us.
supported with a view of free and independent, and justifying by his great examples, have brought to light, and more brilliantly obvious, fact, which have not only justified the world, an account of its inappetency to realize and appreciate the truth of Thoreau and unwillingness to believe that man could attain both a culmination of perfection and an essence of their religion.
and consequently on the development of misfortune and suffering humanity, afflicted with the plagues of science.

Formerly the Physician was no more than a juggler, who with his wise art and appliances with which he superstition in lifeinus did the harm, did a little more than to hasten his patient's, and a little help them to recover themselves.
At some dearest is in

a twin art, living

through the ineffable midst of
dark age, it claims endure-

ment there is, and strength

temperance and blessings to

the utmost limits of the globe.

The Saxon names repro-

duced the language of Rome

who says, "Dext or piety

and God line his hand."

Almost every phrase is truly

spiritual, whether Philostratus
Physicists. The age our
have to wait for. This is but
Do the right at once, as
made within the last half cen-
tury in both departments, to
which we wish to call partic-
ular attention, on the theme
of our subject's disease.

It should indeed be encour-
gaging to see how this fact
and mode have adopted the
profession as his calling can
be to save a dozen of lives.
At the station of lingering and honor which it bears in the scheme of the human idea, the church at all times proves to be a faithful meditation to mind and heart. It would be seen how to attempt a long journey upon the contemplations bestowed upon the art of medicine, and striving within the last fifty years, enhanced to consider in extent of consequences.

End of these lines, end the
from, and the writer for
many and others. He only par-
from giving a brief review of
these most important in-
their nature.

First of all the micro-
scope, which
has given new vision and
accommodation to the most min-
tant field in the whole scope
of science, and possessed self
that knowledge, of which we
are denied, we should be grate-
Devised to overcome of the great
one of the former.

By means of the former
the optical act, we are enable
led to examine with math-
ematical accuracy ultimate
elements of bodies, elements
which hitherto have been hid-
en, and obstrued from our
view by the mysteries of matter,
and of whose existence we had
no knowledge.

"Eadem globis, saltem..."
such demands of the human frame, and, while so active, nature is...
The pathological nature of "Bright's Disease" is thoroughly understood, and its maladies secret, viz., a Diarrhoea, forming by so purging to the Phlegmasia, in men of middle age, whose

Athen.

Ruler on impression with

Reference at top of
Meditation, which is rooted among the inquisitions of moderndiscourages. You are qualified when our patient suffers the more again it agonies of pain. But once perhaps even worse, believing that he patience his money, and this immense life. Other devices, if at it has also, among which may he claim the fact of one being able to administer him in the manner in which they would...
...be taken up by the sup-
ten importance of the in-
struction which would be indispensable to the well-
being of our patients.
Of all the laws of civilization
it were possible to invent
only thing or being with an
 paranormal power, it would
be the man who would be the
Dinamoie Syringa, which
...the best side of our suffer-
ing, with its death of bliss.
though it is almost as proper in its effectual action as the touch of the magician's wand, we understand the phenomenon perfectly.

A knowledge of physiology and physiological anatomy is plain, the whole process and little is there which Trans-

form in the water of human emotion that does not find
of these branches. Drops given in this way are found to
set little a change, and their
effects to be so permanent
as they are specially instan-
ted. So important has
this subject been consid-
ed, that a committee has
been appointed in London
to further investigation.

Much more could we
say of this blissful history,
And so it must the attention of those more capable of doing it justice, than a student where experience is limited, make them, it, and revert to another point.

Again, we have "Richard, done Upholsterer" (I think) for local anæsthesia, which has only been resorted to the profession within the last few years, and which is considered by many of our
man prominent profession
at business, to be of great
value. How many whose
sympathies would not induce the
administration of Chloroform
have been enabled by it to
achieve virtu, to escape the
agencies of the Surgeon's Bowl?

Notwithstanding the objec-
tions, not by any means de-
void of argument, raised by
law, or the profession, that
devised it, nor am I afraid
to refer our humble suppliance, in its various and abstracted views, that it may prove its own worth of patronage, in certain cases, and under certain circumstances.

In reviewing the "modern improvements," we cannot fail to notice certain valuable additions to the practice of surgery, which have been introduced into various institutions. The most important of these are the introduction of the forceps, and the development of the "knife," which is now regarded as an essential instrument of the surgeon.
The second edition of this

book is published in

two volumes. The

first volume is

devoted to the

technical and

theoretical aspects of

mathematics, while

the second volume

focuses on

applications and

practical problems.

This text aims to

provide a comprehensive

overview of the subject,

covering both

fundamental
topics and recent
developments.

In this volume,

readers will find

in-depth analyses,

illustrations,

and examples to

facilitate

understanding.

The contributors

are experts in the

field, bringing

their expertise
to bear on the

material presented.

This edition is

intended for

students,

researchers,

and professionals

in mathematics and

related disciplines.

The authors

hope that this

volume will

serve as a

valuable resource

in the ongoing

endeavor to advance

the field of

mathematics.
on the 1st of 3. From
the other side,
including the
other side, which
was to be

The Weather was very
favorable for the

number of

疫苗
AN INNUGURAL DISSERTATION
ON
INTERMITTENT FEVER
Submitted to the Examination
OF THE
Provost, Regents and Faculty
OF PHYSIC,
OF THE
UNIVERSITY OF MARYLAND,
FOR THE DEGREE OF
DOCTOR OF MEDICINE,
By
James Knox Polk Swidson
of
Baltimore, Maryland
Session of 1867-1868
Intermittent Fever.

An intermittent fever is one in which there occur paroxysms of fever at regular intervals, between which paroxysms there is a total absence of all febrile symptoms.

This disease is known by quite a variety of names, popularly; "fever and ague," "the shakes," "chills and fever," "swamp fever," &c.

Generally, authors have treated of this disease under two heads, simple and pernicious intermittent fever. I shall therefore speak first of the simple, and then of the distinctive features of the pernicious, some of intermittent fever.
Anatomical Characters. - There are no known constant pathological lesions found in a post mortem examination. The spleen has been frequently found enlarged and hardened; sometimes, notably softened, even to such an extent as to present the appearance of dark coagulated blood. The liver has also been often found congested. The other lesions are generally due to complications, rather than to any influence of the disease.

Clinical History. - This affection is prominently a paroxysmal disease. Firstly, there is a chill, then fever, then febrile irritation; these the
phenomena constituting what is known as the paroxysm. After this follows the intermission, being that period of the affection which lasts from the termination of the sweating stage to the commencement of the next paroxysm, and differing from the interval in the fact that, the latter extends from the beginning of a paroxysm to the end of the intermission or the beginning of the next paroxysm.

The cold stage. — Usually the first intimation the patient has of the existence of the disease is the occurrence of a distinct chill not preceded by
any predromic symptoms. But in other cases, he has the usual concomitant symptoms of fever, viz.: pain in the back, cephalalgia, loss of appetite, nausea, yawning, and general malaise. The chilly sensations begin usually in the back or limbs, and thence extend over the whole body. During this period the patient is violently shaken in spite of all his efforts to the contrary; his teeth chatter; his surface becomes pale and shrunken, frequently, however, presenting numerous small evolutions, due to an enlargement of the sebaceous and hair follicles, called goose flesh.
his lips and ends of his fingers
assume a jaundiced hue; the appetite
totally disappears, and although the
tongue is generally moist, thirst is often
present; gastric irritation sometimes
exists, and there may be vomiting; the
pulse is full and usually accelerated,
though sometimes slow; mental irri-
tability is a frequent symptom; the
urine is frequently increased in quan-
tity, though generally deficient in
organic constituents. The duration
of this stage is very variable, lasting
sometimes from two to four hours; in
other cases lasting after a few min-
utes. Indeed this stage is not unplea-
quently wanting, the hot stage ushering in the attack.

Hot stage.—Succeeding the symptoms just described, the febrile movement occurs, although the transition is not abrupt. From the sensation of coldness there are flashes of heat alternating with the chilly feelings. Soon, however, the skin becomes hot, the face flushed, and the pulse full and bounding.

The anorexia continues, and thirst, if it have not been already, increases, usually now occurs. The length of this stage is from two to eight hours.

Sweating stage.—Following the febrile excitement perspiration appears.
all the unpleasant symptoms of the pyrexial period cease; and the patient obtains a quiet and refreshing sleep, from which he awakes, free from the unpleasant symptoms with which he had been previously troubled; his urine, which had been scanty and highly colored during the second stage, is now passed in large quantities, and if allowed to stand for several hours, usually deposits a thick reddish sediment, known as the brick dust sediment. In young children, particularly, the cold stage is sometimes wanting or very slight. Blueness about the nails, coldness of
the nose, ears, hands, and feet; are
the only appreciable symptoms. When
this stage is entirely wanting, the term
dumb ague is applied to it, to distin-
quish it from its more common form,
the shaking ague.

During the intermission a feeling of
tangor and debility generally exists,
though the patient may be entirely
free from all unpleasant symptoms.
The appetite usually returns, and may
be even greater than normally. The va-
ciable duration of this stage has given
rise to a classification into types: quo-
tidian, tertian, quartan &c. A quotidian
fever is one in which an interval re-
curs every day. In the tetrican, the interval extends from the first to the third day. In a quadran, it extends from the first to the fourth day. There may be a double quotidian, two paroxysms occurring during the same day; a double tetrican, paroxysms occurring every day, but at different periods, those in alternate days being at the same hour; double quadran, paroxysms occurring on two days, and omitting the third. There are other varieties, but of very rare occurrence.

When speaking of the anatomical character, it was stated that the spine was often enlarged and indurated; this
is sometimes so very marked as to be distinctly felt through the walls of the abdomen. This manifestation is commonly known as the agua-agua.

The liver is sometimes affected in the same manner. Anemia is sometimes present, and is most likely to exist when the disease has been of long duration. Albumin may be present as an accompaniment or sequel. Albumin has been found in the urine. It may be doubted however that cardiac or renal disease is in any manner to be regarded as the effect of the disease. jaundice. The disease may be of variable duration. It may
end after a few furious spasms, spontaneously, or it may continue for weeks, months, or even years, unless cut short by judicious treatment. Another unpleasant circumstance connected with the affection is, unlike the continued fever, a liability to relapses. It has been stated that the occurrence of this disease has a beneficial influence on other diseases, but clinical experience seems to disprove this statement. Indeed, Prof. Flint, in speaking of its supposed prophylactic influence against tuberculosis, remarks that "there is reason to believe that it promotes the development of the affection just named.\"
in those predisposed to it."

causation. — The cause of this affection may be traced very generally to a mi-
asmatic influence denominated malaria. Though there are grave reasons for
doubting that all cases originate from
such influence. The introduction of a
catheter into the urethra, the ingestion
of irritating food into the stomach, or
the presence of worms in the intestines,
has sometimes been the only appar-
tible cause. There is a form which has
been called the chill of habit. It is of rare
occurrence, but nevertheless it sometimes
is met with. A very interesting case is re-
lated by Prof. Weed. "Mr. Beach. t for si-
in successive nights, at midnight, bathed in the river Sane, towards the close of October, when the water was cold. Lying to bed after each bath, and covering himself warmly, he was affected with considerable reaction, which terminated in perspiration. At the end of the seventh day, he omitted the practice, but was nevertheless nightly, about the same hour, attacked with a regular intermittent paroxysm, consisting of the cold, hot, and sweating stages, which returned for about a week, when it ceased spontaneously on the occurrence of an interlude kept him out of bed at the hour, and induced him to take a ride on horseback.
which excited and warmed him."

While the marsh-miasm is undoubtedly the usual cause, all persons in different circumstances are not equally affected by its influence. Overexertion, exposure to cold, or any influences which tend to weaken the resisting powers of the organism will act as an exciting cause. A remarkable circumstance connected with the disease is that, the poison in some cases seems to lie dormant for months or it has been stated, for years after its introduction into the system, and then the influence of some exciting cause sets the apparently latent poison into activity, and the usual phenomena of an in-
termitent paroxysms are suddenly manifested.

Diagnosis.—In a well-marked case the diagnosis is easily made out. But in some cases, the symptoms not being so well marked, there is apt to be experienced some difficulty. Hectic fever sometimes simulates an intermittent. The paroxysm in the former is more likely to occur at night, while in the latter it occurs more frequently in the forenoon. The known existence of the tubercular disease on the one hand, and the known exposure to some cause sufficient to produce an intermittent fever on the other hand, are to be taken into the account in determining the
mature of the affection. The paroxysms may continue for such a length of time as to render it difficult to distinguish it from intermittent fever. Unerring diagnosis will, fortunately, not affect the treatment.

Prognosis. — Intermittent fever unconnected with any other disease is rarely fatal unless of a malignant kind. Any simple intermittent may however become pernicious, and in that case a fatal termination may be reached in a few days or even in a few hours. It may also be connected with other affections, and in that case its termination will depend upon the character of
the intercurrent disease. It is to be noticed that enlargements of the spleen and liver, dropsy, jaundice, which result sometimes from this affection, are more easily controlled than the same affections resulting from different causes. When the period of the intermissions becomes longer, a cessation of this disease may be expected.

Treatment. - Quinine and its preparations have a remarkable controlling agency in the cure of this disease. If any medicinal substances can be properly called specifics, this remedy may be truthfully said to re-
occupy the first position among them. Nevertheless, there are some cases occa-
sionally met with over which this remedy does not seem to have the
desired controlling influence. The
sulphate of quinine is the preparative
employed usually, and is thought to
possess all the antiparalytic virtues
of the bark in a greater degree, per-
haps, than any other form in which
it is administered. Caffeine quinine
itself is sometimes used. Somewhat
recently the sulphate of cinchonide
has been experimented with, some-
what extensively, and it seems to
have evinced antiperiodic virtues.
fully equal to those of quinia.

Dr. A. Paul Turnor, of the Physicians to
the Howard Hospital for incurables,
in 1864 published a history of one hun-
dred cases in which he had tried the
remedy for the purpose of testing its
value as compared with the sulphate
of quinia. In ninety-nine of these cases
the progress of the disease was arrested.

In writing, in speaking of the result of
his experiments, says, "in slightly inured
doses cinchonide is equal as an antipode to
quinia; so much so, that in private
practice where either can be prescribed
under the former with as much assur-
ance of success as if the latter were."
used." The remedy, whatever preparation
be used, should begin without any
preparatory treatment, unless some speci
cial indication be present. If the case
to be anticipated, a mild laxative may
be given. If the stomach be constipated,
an emetic may be had recourse to;
and indeed, an emetic given a short
time prior to the expected paroxysm, will
frequently prevent its occurrence.
Such a discussion has been had as
up to the proper time and manner
of administering the antifebrile
remedy; some maintaining that it
more likely to be most effective when
administered in small doses at short

intervals, so as to occupy the greater part of the intermission; others, that the amount to be given should be administered all at once immediately after the paroxysm; but perhaps the best mode is to give it in moderate doses, say, six grains of Sulphate of Quinia or a proportionate amount of any other preparation every three hours until a sufficient quantity be taken, which will be determined by the occurrence of clinchism, tinimities, aurium, amounting to its suppression. After the paroxysms have been interrupted, small doses of the remedy should be given at intervals of several days for a month or more.
in order to insure the permanence of
the cure.
This plan of treatment will generally
be found sufficient to arrest the par-
oxysms, but if the preparations of
the Peruvian bark prove insufficient,
reasons may be had to various other
remedies. Among these, the arsenite
of potassa holds a high rank. Fowler's
solution is the form generally used, and,
given in eight or ten drops doses: thrice
daily, may be considered as next in
crude to the preparations of bark.
It is generally advisable to give this
remedy for not more than a week
at a time, as it might produce it
poisonous effects if administered for a longer period. Whenever therefore any puffiness of the under eyelids, or irritability of stomach is produced, this medicine should be suspended for a time at least. Salacin appears useful in a number of cases. The sulphate of beereine has been used, it is said with marked success in quite a number of cases. Common salt has affected a number of cases. Nitric acid has arrested the disease in a certain proportion of cases. Nearly all the vegetable tonics have, in one case or the other, exerted a beneficial influence, but all of them are inferior to the prepar-
ations of bark. These remedies are principally indicated in its intermission. During the paroxysm the treatment is somewhat different. A dose of morphine, given at the resuming of the paroxysm, is often found beneficial in lessening its violence and shortening its duration. Lapping or the application of sinapisms to the spine has been known to have cut short a paroxysm. Sometimes when the child is unusually prostrated and a warm bath may be used advantageously. Warm drinks may also be given with propriety during this stage. When
the patient seems greatly prostrated,
it is advisable to give stimulants. Carbonate of ammonia and oil of turpentine are among the best. During the hot stage, cooling drinks should be given. If the surface be very hot, tepid water may be used externally to calm the febrile excitement. Irritability of the stomach should be treated with a mild emetic, if there be imperative efforts to vomit. If it still continue, a compression to the epigastric region may prove beneficial. Effervescent draughts may be also given with propriety. During the third stage, care should be taken that the patient be not exposed to the cold.
The preparations of bark, taken in small doses, daily, when exposed to the malarious poison, have proved very efficient as prophylactics.

Pernicious or remittent Fever.

In this form of the disease, all the symptoms are very much intensified, and a fatal result may occur within a few days or even hours. . . . in other frequent occurrences, and even in any regions is almost unknown. . . . in most cases the first passage is or passes gentle, or of a mild character; but in another class of cases the virulence of the attack is manifested from the very outset. . . .
The regularity of the different stages is often broken into. Different cases may be characterized by coma, delirium, or convulsions; marked reduction of temperature may attend other causes. The fever is small, subfever, and angular. It is often intense and frequently attended with an internal burning heat. Chills, nausea, and vomiting are of very frequent occurrence. The breathing is in many cases so exceedingly labored, that in fact it has emerged from a pneumonia, danger is to be apprehended, in the event of another, in proportion to the degree of severity of the primary pneumonia. As soon as there is reason to fea-
It is considered that the disease is of a febrile nature. Tendency to sleepiness, active treatment should be immediately instituted. If the patient be first seen during the paroxysm, the treatment should be directed to the safe conduct of the patient through the paroxysm, and also to prevent the recurrence of another. If the condition be greatly imperfect, the patient should be given freely. If on the other hand, the force and frequency of the heart's action is greatly augmented, together with active central congestion, it may be advisable to perform resection. If the con-
face be cold, warm blankets, hot
steam in water, should be applied
Phialis may be given, if great rest-
lessness or insomnious are present;
also when irritability of the stomach
and bowels are prominent symp-
toms. One of the preparations of tar
should also be given during this
stage. It should be given in larger
quantity in this than in the simple
form, for the reason that it seems to
be better borne, and one can account
of the importance of paring around
to the facies. The Chatton
should be protected and main-tain-
ed during the intense warmth, but not
in a steamer directly. After the conclusion of the passenger, the same crew should be procure as in the simple variety.
AN
Inaugural Dissertation
ON
TYPHOID FEVER,
Submitted to the Examination
OF THE
Provost, Regents and Faculty
OF
PHYSIC,
OF THE
UNIVERSITY OF MARYLAND,
FOR THE DEGREE OF
Doctor of Medicine,
By
D. Myers Eckenrode.
Of
GETTYSBURG, PA.
Session of 1867-8.
Typhoid Fever

I propose in this essay to treat of typhoid fever as it
prevailed in the southern section of Pennsylvania in the prac-
tice of Dr. J. C. Klinger, his
 brother, the late Dr. J. G. Klun-
gar of Littlestown, Pa., and
within my own observation, merely alluding to other sec-
tions as historical facts.

That it is a subject
which has been ably, and I
might almost add fully dis-
cussed; one need only refer
to the standard works on Pra-
lice of medicine of the present
day. Indeed, so much has been
said, that to the student, it
seems almost impossible that
more could be added.
Yet the art of modern ex-
cerise, assisted by the micro-
scope, chemistry, practical anatomy,
and physiology, is constantly
developing new facts, new the-
ories, and now is. yet to
consider the great body of the
science: it today is advanced by
new and research; has that the
practice of yesterday, of toto
disseminated has been economy.
but the best that he could afford. And if the informa-

tion and suggestions that I shall give in this chapter

are to be of any kind of value to the science of medicine, then

indeed shall I be simply承担able for the labor bestowed

in preparing it.

Supposed Fever is a common

feverish affection, part of a

considerable diversity of symp-
yms, yet of diversified announce-
cent, recognizable character,

and probably constituted in
all its forms, and the same disease.

It prevails throughout the United States endemically, but is more common in the southern states and extends northward. It is not uncommon to believe that these calls are not in vain. Except, and in those sections of country in which it is not common, I believe that there is a great partiality for an unlimited slaughter and under such circumstances most malignant. Let it be

ordinarily to these animals.
for many small erroneous
factors, it is conceivable and
indeed I think I can safely assert, but it belongs
to the same human family,
though designated at different
times, and by different authors,
under different nomenclature.
Indeed at the present day its
nomenclature is still unsettled
and perplexing. Some authors
naming it as less dangerous
from our symptoms than
according to the similarity,
represent to other diseases
of the same class. I have
adopted the name which he had
this essay, because in the lan-
guage of Professor McIntyre of
this University "it is good eno-
ugh for me" and is eminently
distinctive of the disease under
consideration.
True many other necessary
present lightened symptoms, and
may assume a lightened by a
hunting the crescent; but they
are not so eminently to be
the disease we are now consid-
ering. As where the great go-
ald with us, and small cow
of bulge in one of these thin
from the very inception of the disease.

As soon as he goes abruptly with a chill, followed by the usual symptoms of fever, one as it occurs in the winter of country life. I may say, and in the practice of my correspon- dent and co-workers, I call C. Ewing of Letheloud, To and others, any one observing these are suspended, and are run- ning gradually, I think, due to the impossi- ble to face the disease point at which the sick oot
The patient is of an uncomfortable, 0000.

pain, of course, 0000.

of the mucus in the bowels.

be accelerated, the tongue is dry, and it is slightly coated with a film which forms the apple of the palate is very much confirmed, daughter.-not generally until the last.

These symptoms are due to an inflammatory abdomen. As.

in one ease, the sooner the hastier.

from the

this
sick and was completely to the bed. They are generally convalescent. Coming on with great desire by inward revealing, and the patient being drenched as yet with fire during the morning and early part of the day. Sometimes during the blood-stirring chamber to the bowels, and often to the recumbent; but it often happens that the patient complains of no incontinence whatever, and where the disease is fully formed at the commencement of the disease. There is also during the course...
The descent dangerous and very difficult; and a line of rocks, masses of stone, grey and grayish, with polished, flushed faces at their base, and living beds of apple, thistles, and grass, over which the trees, and presenting a general, unpaved surface. The trees, though bare, are in the
moderately apetite was on

ending for the little man, &

rather flat & listless, to a

must seem & especially in

females, with the time, they

shrank and shrunk, often

commencing to about 150 to 180

suppose. The first was the fac-

es characteristic of the deri-

true even simple or not the

in their structure, and de-

in a manner, is generally

a certain tendency of the

compensation of the time &

les very startling. It occurred on

was before.

and was able.
The patient is generally restless and cannot sleep. Eclampsia is of frequent occurrence. Daily examinations are often the best and commonest way to ascertain the state of the placenta. If it has undergone deciduation, there is not so much pressure on the patient as in the other cases: the pressure is softer and more diffuse. The above symptoms continue with little alteration.
pain can, especially in the lungs, pleura, and lymphatic distribution in the head, as precede in progression, with a combing sound, then passed over by the hand. Cough frequently sets areAXFishing the chest; some time, this can often with muscular contraction; and the physical signs of bronchitis are discovered on careful note. The ascents generally considerably changed; being high unsual, and affluation. At about the second day, the above symptoms decrease.
much aggravated, and when
are super-added. It is then
the tongue which is first
been moist, and clammy; be-
comes dry, and dark-colored
and deglutition is often bad
of it and difficult. The sput-
umen now becomes deformed
and offensive in appearance. The li-
ter symptoms are of dyspepsia
and constipation in this disor-
ner. I think it would be well now to
place it under examination, and
then under treatment, and the
effect of the fluids is often
have sometimes, particularly in those
members of one sex and nation,
but after-wet blistering, in
some cases extending over
the whole body. And in one
case that occurred in the prac-
tice of Dr. Bingen the patient
a little girl ten years of age
was covered all over with large
purpuraceous spots.
The nervous symptoms were no
more decided (except a
slight-fever state) in phase
of headache with which the pa-
ient had been before connected.
Bingen, still lying in the studio,
Using the example of the autumn and often late, the patient kind of science in one half. Our ears are often closed too. The sun is too difficult to produce this, and seems almost as slowly toumble through the universe. If the chapter is uncorked in some fashion, tapping connection to undertone and dead yea. The autumn is put outside quickly dry, after the quiet and here, as the inverted with a brown to black coming, while dark clouds collect upon the sky, game, and. as. The fall is known, accordingly, apparently.
and gable. The surface is generally hot, moist, and a peculiar rapid movement of air or the body itself. Leaden
numbness and twitching of the face.

receded, are not oppressive, and even of life itself. Fate may
have contraction of the muscles,
make their application. The
line dropped sharply, having
in the back, and often the
line retaliation to their loss is bel
to pick up the bed clothes, or
a robe or bearing down objects
the arm, most of all formed
other conclusion. In order to a
profund camera, and some few
consequences from this last, and
leads extended upon the floor.
Involuntary final exsanguination,
intention of union, and the
enlight from the fourth and
of frequent occurrence. During
this stage, vitality is to be
lost in the pulse, blue disclo-
ed surface, often rough, and
malignant exanthem are produ-
ced in part, expected to precede
as soon the case may in objects
in life.
Finally if the case be in an
unfavorable state, the pulse apere
way, and become utterly wastes and fluttering, or slow and scarcely perceivable, the extremities become cold and clammy, to the whole surface is bated as a clammy sweat; the abdomen is enormously distended; his cough sometimes occurs; the countenance assumes the hippocratic aspect; and death is quickly and almost insensibly extinguished. The eye sometimes when death takes place is in an emerald bound, interspersed by apparently peaceful struggles and convulsions.
Then a favorable moment is about to take place, the tongue becomes moist, and begins to clean gradually from the tip, and border, the pulse becomes less frequent and acquires greater fulness; the skin relaxes becoming cooler and less dry; the stupor or delirium subsides; the patient is more attentive to objects around him; the abdominal distention subsides, and some indication of appetite manifested. Constipation also subsides.
To the great joy of the most elegant part of the same description of people, and of the noble and happy subjects of the French in the course of it, I am persuaded to expect to find all the above symptoms in each and every one.

That the disease is generated by all ventilation and respiration, and that they are not those of a mere doctrine of a single opinion in the present age of the country, and I have reason to suppose, in the most destitute parts of the kingdom, that
But in its extreme, it is a common
extent I think is now established
by most of the officers. But on many
of my own cases, I have given
before an extra, but partially
proved and attended during
an attack which was not on
their necks; and there were
many other cases in which the
could be no doubt of it con-
sequent cure. In some cases,
the lead was frequently
had used, once, and in one case
seven patients on the same
family, and it generally succeeded
in removing it.
being attached at the same time. Sometimes it occurs with second, third, and even fourth degree, shows a long day particularly for certain diseases, but it is apparent to be most frequent between 20 and 40 years of age, but I have seen it in very young children, and in persons over 40 years of age. It almost never occurs more than once in the same individual. It may occur at any season of the year, but it is most frequent in autumn and winter. Er.
millet and lyphoid, the former however, may usually be distinguished by its more regular and decided symptoms, by the vomiting, constipation and yellowness of the brain that frequently accompany it, by its short duration, and by the absence or comparative rarity of the characteristic symptoms of lyphoid fever, such as diarrhoea, aching, complexion, dullness of expression, itching, lymphanites, and nose external of old. And lyphous symptoms are much less common in bilious than in lyphoid fever. The latter, by consolidation of the brain
by the difference in the color of
eruption, which intyphus fever
is sometimes quite dark; by its
not disappearing under pressure,
and showing no peculiarities in
any particular portion of the body.
It is eminently contagious, origi-
nally from over crowding, and
ill ventilation, and is exceedingly
epidemical. Yet the practitioner
should be very guarded in pro-
nouncing his diagnosis, as it

is often mistaken by
many doctors, and
the disease may be
-four days, to kill wished the
and taken off of infected persons.
not, O. P it seems. The subject
in disease, as well in preventive
and cure, requires the
careful attention, and there is
no substitute for the medical
influence of local means. True it
cannot be suddenly cured, or to
prospect, but I have seen cases
that had, may soon be completely
healed, and still more favorably
conducted to a favorable
outlook in a locality perhaps
unnatural. The following is the process.
and very successful plan of treatment, founded on the same
found and introduced by T. C. King
and his brother, the late much
famed John C. King, in
their very extensive practice at
Littleton. Mr. Louis in his
own language, he says, I have
always found that Hg. C. c. with
opium in good dose and
considering the acuteness of liver
which is almost always present
in the beginning of this disease
after that match the symptoms
and treat as they arise if
the disease has a tendency toward
the brain; I have always found that, as bilious measles of youth will have left a general constipation and small dose of the opium very kindly. If it settles in the bowels this leaver abdomen, and administer Quinine Chloride, resin, and gum acacia in aqua. If the disease settles in the lungs, counter-irritation with C. c. fulvipii et specieae with some of the stimulating expectorants. Then I find not only the patient fail in strength but depend on port or sherry wine or brandy in small doses frequently recur.
ed in order that the stimulant effects may not wear off before the stimulant is repeated. This is but a general plan and must in every case be so changed as to suit the case under treat-
ment. The acid treatment now highly recommended by members of this faculty has been very suc-
cessful in University Hospital. But after all what are formulas in the treatment of a disease which presents such a multih
diverse variety of symptoms and is so varied in form? The best practitioner who carefully
and closely watches the symptoms, and treats them as they arise. The diet should in all cases be as generous as the condition of the patient will permit; though light, and easy of digestion. The hygienic condition of the patient should always deserve their attention. The hands and mouth should always be well washed and shall be clean, and if not so, then the hands and the mouth should be washed.

Whether I have accomplished the object for which I set out, I shall have done so, and
The topic he honor to examine
this paper I have endeavored to
conclude, as concisely as possible,
point out the principal symp-
toms of typhoid fever, its diag-
nosis, and prognosis, and
have also given a general plan
of treatment.
In conclusion, it gives me plea-
sure to state, that I have been
aided, in arriving at the views
above presented, by a careful
study of Bennet's practice,
Woode's practice, and the
belief, by the probable fore-
bidity, and timing of
Lis the H. B. Biddle of Pulite and J. O. Kinger of Pa; and by the valuable lecture and instructions received from the eminent members of the faculty of the University of Maryland.

I trust that the eminent men who compose this faculty may long live to remained the University of Maryland and may the institution continue to prosper as has done in the past to educate and send forth to the field of duty many good
men learned in the science of medicine, who will adore the profession of their choice, by administering in a scientific manner to the wants of the afflicted, and by a constant aim to still further advance this the most useful and important of all sciences.
AN Inaugural Dissertation
on
Pneumonia
Submitted to the Examination
of the
Provost, Regents and Faculty
of
Physic,
of the
University of Maryland,
for the degree of
Doctor of Medicine,
By
C. Tipton, Emonia
of
Fredericksburg, Md
Session of 1837/38
upon that which reflects on
thoughts and observations of such
indubitable or mistaken facts
or these. But simply to conv
by my own crude deduction,
inferring if they reflect on
their author, they
will bring the discredit upon
your teaching.

The disease itself
at the same time gives its refor-
mation of the relation of the
things. The pathology is

\[\text{Equation} \]

\[\text{Equation} \]
And _transatlantic for convenience of description I propose to divide it into three different forms.

By _ethnics, _ethnics, _ethnics...

Then I first propose to write this conclusion in _pathology by referring to its _symptomology.

Biology &c. the thing may be.

And therefore I finish it.

The classification of this disease in its different forms is based on the peculiar...
natural characteristics of each attack. The ethmic form of this disease is recognized in the
When itself implies by high
inflammating action, fluid action
force, fluidity, to strong con-
stitution He. The whole, or
ethmic divine everything
in accordance with mental.
delity. The thing is as named
from its strong resemblance
in many respects to physiological
fire. This ethmic being
based on ... space for taking
very much of the nature of
That disease when it existing
is known as Typho Pneumonia.
The nature that determines
of this disease enunciates from
change in the subcutaneous
substance itself they are
important as principally by
auscultation + percussion.
which the patient could
be to appreciate changes
Effect in inflammation in the lungs of the lung tissue, which it is very essential in always known for without a perfect knowledge of theamba Anatomy of Phrenome, we cannot have a groundwork to study its patho-
ygy. Thus one's time is ill
marked conditions in this
disease. The first known as
the stage of engorgement, due
to active congestion of the lung.
tissue in this condition it
is palpable like under tension
than natural & air cells
can fill a room or lie with
and the action of lymphatic
contributing much to form
the minute capillaries which
is manifestable evidence
of engorgement. Which may
in perfect or completely
obliterate the natural or
micellar tissue &
which if it does is conclusive
that the inflammation is
still progressing. Whence on
the other hand should Bupita
come to replace by that of
natural inspiration, we can
conclude that resolution is
going on. At the Commis-

sion of the flag of engagement
the minute constitution or
Crackling of Phenomenia or
Vesicularis follows it up.
ultimately mixed with mental inspiration. But as inspiration advances the healthy frame is drowned by the excitement which gives from time to time distinct to be finally the only one coming from directed life or feeling. Allowing clearly that it is growing more true to emerge. This condition exists during the time line of Pennsylvania Bone.
firm to second stage or period of solidification. When tending to solidify caused by expansion of pantry. The air is included rendering respiration impossible in described title or better. Firmly excluding the patient's...
Acculturation confirms the belief that the second is develope by Branchial respiration and Branchial voice. Two views important forms which may perhaps be present or absent. The first of these is influenced by the fate and light of the disease. The second by descent of Patient being with a percivne Branchi, often in conjunction with this.
Find Rhinile inspiration.
This priva is one of great width
& to live it occurs the formula of
acknowledging whether it will
return fully back to its original
state or advance into that of
plummet infiltration. If the
former there will be a tim-

tion of the media because
which characteristic tradition
only a honored virtue without
expiration is accomplished.
it into the third
diaphragmatic region may be
anticipated if Patient be fully
not able to bear it long
even if that separation may
take place. Peritonitis is usu-
ally accompanied by a chill, in
creased heat of skin. Rapid pulse
generally pain in the flanks
+ near the nipple. Conclusion
almost of Plural Pleuritis.
Cough Voice Of Affection
in the chest. Tachypnoea. Tachycardia. Tachypnoea is almost a general indication of disease. The Murmur of the heart is peculiar to the condition of the heart. It diminishes as the heart weakness. It is aggravated by cough. Percussion, sudden change of position. The respiration is sometimes quick at times, slight. It is increased by lying on healthy sides. The patient on rales. The above are not to be relieved.
Owing to the variety of structure of the breathing apparatus in different persons, it is sometime known to occur that the patient cannot lie down. The face grows living and or pale, the retina is dilated and the patient is difficult as almost to cardine up air and did not enter the bronchi. It is claimed erroneously a theory of the condition of things. Shows that the arterialization of the blood.
Her not seldom placed that

The inflammation is letting

through the circulation of blood

Blood upon the brain. Refracting

its usual usual Excel. I could

say hardly than it to mind

the lower lots of either long

more frequently than any

either forming that of right

side of more than left. The

higher of the inflammation

The man refractate the phosphor.
The etiology of this disease is by no means imperfect. Some of the recurring attributable to apparent cause, while there are many capable of developing it. Cold exposure to light air, damp weather, traumatic injuries, and all causes of brought on by the last named cause. It seldom extends over a whole bone. The diagnosis is sometimes
dilemma arising is the result of the disease in common complications. In such instances vaccination and circumcision cannot be so
highly appreciated. The progress of uncomplicated is generally
favorable. Much depends upon previous health habits and constitution of the individual.
I have noted the intrinsic tendency of the disease is its morbid-
Up to now I have dilated sufficiently upon my subject. Though I know justice has not been done it, I will conclude with some general remarks concerning its treatment. If, during an operation, the anodyne is to allay pain to produce quiet, one must to some extent relieve the patient, as is usually called for it. Should the pulse be too accelerated as to seem an actual
Sideline would select the
virulence tincture and avoid green
verdantilating expect in a thing
robust constitution at the
commencement. If urgency
was being great indeed notubate
to abstract blood locally. Blister
on thin indication together with
stimulants when vital force on
feeling. End of it and ample
hygienic regulations are the most
important that proved themselves.
Respectfully yours,
That’s Byrne, o’mine.
AN INaugural Dissertation
ON
Fractures
Submitted to the Examination
OF THE
Provost, Regents and Faculty
OF
PHYSIC,
OF THE
UNIVERSITY OF MARYLAND,
FOR THE DEGREE OF
Doctor of Medicine,

By

James Purves

of
Pennsylvania

Session of 1867 & 1868
The preparation must take place in any of the compound parts of animal organization. Any part of the animal may be injured or even affected, but the parts nearest the joints are most liable to disease for the reason that the Cercus Muscles being attached nearest the joint are...
The extremities of the long bones, or grand exception to this rule may arise from the fact of the bone being fragile from constitutional causes. Fractures of the soft parts may be divided into those of muscles, arteries, veins, nerves, and skin in the dermal tissue. They may be divided into those of bones and joint tissues. The general various results following fracture of the dermal tissues.
on these, which came by deposition of the constricting membrane of the cecum. The complete and empty of the intestinal tract makes this very evident. It came out this view of separation of the leaves as to increase in the most considerable formation of animal tissue.

This impression is due to a different physiological process from that of the animal tissues.
it is by a system of
particular trusts and
appropriation of the said
appropriation of the said
said through the

This part of section
through the
Canals and the said

The section proceeded
by Third section of
the cause of the

For return to the immediate
Subject of my letter, like physiological points have a practical bearing. The functions have their bearings and what it has physiological point at a time of this section on analysis of the bond is absolutely necessary. To separate the immediate end and release those that are said from those that are free is one of the chief attainment problems.
This is a compound fluid which has been called the fluid of physics as it is called fluid. It is a real fluid which contains no atom but it contains no ionic structure what it appears to the demands of Nature.

This is on the edge of ionic simple compound. Compound ionic simple compound is ionized.

Simple fraction one again included into
Compound fractions are those that have been reduced to a greater or more complex form. It is shown by the proposition of the theorem (see page 12) that such fractions are those in which their numerator is greater than a single digit and their denominator is less than the product of the two factors.
of the same place. These divisions may be
numerous at the bottom that produce them and
the centers are unions in preparation to the fragmen-

ture.

The wood contained in the camp was
instructed. This includes all
the others. Here we have
large and well-known
woods. Location is a
decision. Description
without defense is a
worth effort of standing.
The application is accomplished by
the use of friction, and the last does comfort to the
patient, but engenders the attention of many serious
possible accidents. Any apparatus may be applied
for analasic inflammation, and
a description of the
method of treatment is not
the subject of the present
book. The subject of the
fracture of a long
bone,
the电视台net of prompt
of presentation.
and the same plastic elements that have to some
resemblance with an act as to damages is
practically illustrated and
daily demonstrated in
the Clinic, that is the
practical Surgeon's physiologic
and Anatomic clinic
a definite opinion in the
case of the Cancer Static
and metastasis action
of the Tumor is to search
the Center of the Tumor to
the Hypodermal
The introduction, function
is produced by an
Standing on a ship
an anchor I to do.

The anchor with the
weight of the body in reful
sent to being into a position
the anchor could be by a
line.

Then lift the anchor it
original into the luggage
of surgery being care
and the anchor is

Precious to have wanted
by counterfeit when
the rope parts to an amount
of the weight of the body
being determined by the
weight of the anchor and the
Thus having the Universe best explained and its various and philosophical bearings and uses, Cameran
described a reputation, both in fiction and its Cameran
and raised the arts, through its long
enchanting its imagination. The application of this
plant being to the ship
I wrote a note about
in order to explain the
itself Cameran. A principle
of common facts
of a complicated procedure.

It was practiced on the

may be subject to objectionable feeling by the controverted parties, as a legal detriment.

Second, the application is made after being heard in *Apparatus of the* first hearing and of the plaintiff (acting, not included) to the court of the defendant. The judgment appeal is the appeal from original, and therefore, a case at common law. It may be added that the motion of the plaintiff must be supported by affidavit.
sations and is equally
secure. The hard a past
covered with an exam-
any resistant landage
and paste board being
adjusted after being
moistened.
A layer of flour starch
covers this and a
matter is applied on
that which is continually
damped and until the
brown.
The process of
lumping is also carried
out of
contact and the
paste used for binding.
been in an immediately
convenient, which can at
the proper time be
removed by the stable
means of
surgical drawing.
It was passed as
the old method preda-
ted by Pasteur and
Paris, while the former
is accomplished by

[...]

The performance had to
the body from the
be localized at a certain
on the disease and
the catheterization
If calculation were to be done.
AN

Inaugural Dissertation

on

God Liveth

Submitted to the Examination

of the

Provost, Regents and Faculty

of

PHYSIC,

of the

UNIVERSITY OF MARYLAND,

for the degree of

Doctor of Medicine,

by

Edwin C. Alderson,

of

Mannington, West Virginia

Session of

1867-8.
Cod Liver Oil

After much thought and consideration I have determined to place before you a Thesis on Cod Liver Oil, although I feel a great delicacy even in attempting such a thing after such eminent and distinguished precepts. Nevertheless I feel compelled to add another to the already filled Thesis Books. Cod Liver Oil is obtained from the liver of the garlic.
Norhual" found in great abundance on the coast of Newfoundland. There are other kinds from which the oil is procured but I will content myself with mentioning one other only, the "Astellus Triatus" or the dune found mostly on the Norwegian coast. I shall only give a description of the common as I have neither time nor space to describe any of the rest.
The common haddock is about three feet long, with brownish or yellow spots on his back and covered with small scales with the exception of his head which has none. The fins are soft. The jaws are furnished with irregular teeth in several rows. The gills are large with seven rays. Preparation of the oil.

There are three methods of obtaining the haddock liver oil, viz., by
Boiling the liver with water and then filtering. 2d by making tall vats which are furnished with taps to draw the oil off. You then put the livers into the vats and expose them to the sun to favor the separation of the oil. 3d method by exposing the livers to a temperature of 150° until all the oil has drained from it.
Description & Varieties. There are three kinds of Oil known in this market: the White or Pale Yellow, the Brownish Yellow, and the Dark Brown. The Pale variety is considered the best. It is the only kind ordered in the Pharmacopia. It has a specific gravity of 0.917. The Oil has a feeble acid reaction and is soluble in Ether in all proportions.

Officinal Characters. Pale Yellow
With a fishy taste and color
Composition. Fresh cod liver oil
contains principally of oleine,
being about 80 per cent, 15 per
cent of margarine, and a
peculiar substance called codmire
very analogous to one of the bile
acids, besides these it contains
cholic, acetic and butyric acids
and at times indications of iodine.
Because although authors differ about this latter
substance, that for cod liver oil...
Sulphuric acid has been used as a test, on the addition of a drop of acid the solution assumes a violet color and then passes into a brownish red. This coloration is thought to depend on the action of sulphamic acid on one or more organic constituent of the oil. It is also thought to be due to the presence in the oil of one of the
constituents of the bile.

Cholic acid produces the
same color with sugar and
sulfuric acid as bile, so
that the test doubtless acts
on this acid. It follows
from what has just been
stated that sulfuric acid
is the test for liver oils,
as it distinguishes them from
all other kinds of oil, but
does not distinguish one liver
...
oil from another. Neither does it distinguish bad from pure oil. Purity. The oil as contained in the cells of the liver, when fresh is nearly colorless. It is obvious therefore from what has been said concerning the different varieties of oil that the colorless oil contains made from the fresh livers of the fish must possess the constituents
of the oil in its fluid state. Darker vanities. These are obtained either at a higher temperature or from the livers in which purification has made more or less progress. This vanity contains more bilians and decomposed material than the rest. God Liver Oil is said to differ from other oils in not yielding glycerine on saponification.
Physiological Effects. Cod Liver Oil when first given causes nausea, disagreeable emulsions, and occasionally vomiting.

It acts as a diaphoretic, laxative, and diuretic, in doses of a tablespoonful; although some authors deny its diuretic and diaphoretic powers. It has also been known to act as an Emmenagogue in some instances.

The superior Therapeutic
powers of God.

Liver Oil is thought by some to be due to some peculiar constitution of its oleine. It is certainly known that no oyle can begin to compare with it in the diseases in which it is used. Dr. Williams thinks it is nutritious and more capable of being absorbed than any of the other kinds of fats. And it is the opinion of other
Artens that when given to phthisical patients that their blood grows riper in the red corpuscles. Therapeutics. It was employed to a considerable extent and for a long time in Northern Europe before it was anywhere else. It was first brought to the notice of the profession at large by the German practitioners and acquired great distinction on the Continent before it was used in Great Britain.
But it was not employed in the United States until the attention of the American profession was called to it by Professor Bennett of Edinburgh in the year 1841. At the present day it is esteemed as one of the most important remedies in the catalogue of Materia Medica. It has been employed in a long list of diseases, but I will mention only the important
ones such as Verofeea, Pittirin, Rheumatism, Scrofula, and indeed in all cases of emaciation and deficient nutrition. It has also been found useful in various cutaneous eruptions such as ulcers of the mouth, Lupus, &c. It may be given for constipation, incontinence of urine, and various other diseases. But the disease in which it has been found most efficacious and in which it has gained the greatest
reputation, is that of Parma.

Phthisis; but it will have to be persevered in for sometime before any benefit can be derived from its employment. As to its "Modus Operandi" there is a difference of opinion. Some thinking it merely a nutritive agent and having the advantage over other oleaginous substances in being more readily taken in the system and in being more easily assimilated.
While others believe it is due

to a peculiar constitution of its

decline. To conclude with it,

Therapeutic uses, it may be given

in all chronic cases with hope

of success. Administration. The dose

of God Liver Oil for an adult is a

Teaspoonful three times a day and for

a child a Teaspoonful. It may be given

alone or with some of the aromatics.

But the best vehicle in my estimation

is the froth of Porter.
AN

Inaugural Dissertation

on

Intermittent Fever

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

By

John W. Bayne

of

Prince George's County, Maryland

Session of 1868
Introduction

The profession of medicine at the present day commands the universal admiration and esteem of an enlightened world. Second in importance only to that noble profession, which has for its object the salvation of the soul. What can be more self-sacrificing and noble than the errand of the true physician? Exposed to the vicissitudes of the weather, to the caprices of individuals, he must battle manfully ere he reach the goal. But while so many difficulties are
embraced, yet the pride of physicians
in one—gentlemanly duty—was to impress
himself into the confidence—respect of
fellow—creatures.

The practice of medicine is not like other
professions with its hours of ease and safety,
diable to be summoned at the mid—night,
right to the bed of suffering and pain, with the
anxious eyes of each bystander, reading the
expression of his countenance, it remains
for him to show by his decision of character
and knowledge of his profession that he is
worthy of the confidence bestowed upon him.
The case may be an urgent one, needing prompt
immediate aid, no time for vacillation. If
doubt remains, but a single stroke of effec-
tive treatment, may redound with such
credit & credit, that the reputation & laurel
of the practitioner will be at once established.

But if on the other hand, the physician
approach the case with doubt & uncer-
tainty, well may the patient ponder &
consider him unacquainted with his
science. The power of the physician in cases
of sickness is powerful for good or evil,
his slightest motion & action is watched,
his smallest command obeyed with that
scrupulous accuracy, which caused Sir
Walter Scott to say, 'The sick chamber
of the patient is the kingdom of the
physician.' The study of medicine is
now enwrapt in so many mysteries, as
in the olden eras. The study, however,
of science and investigation, has swept
away many ingeniously contrived and
subtle theories, gotten up to palliate the
ignorance of the age. He who invaded the
sanctity of the grave was regarded as a
monster, meriting conflagration.
Ciatc: Jcu

But now—with the steady
advance of civilization, the world is begin-
ing to look upon post-mortem inspec-
tions as not only justifiable, but necessary
to a proper understanding of the anatomi-
cal relations of the internal lesions
caused by disease. It is by these exam-
inations alone that such wonderful ad-
vances have been made in pathology
of morbid anatomy, thus rooting up
the fallacies that have held sway
in the medical profession for years.
But the question naturally arises. Do these investigations into the pathology of disease and the rapid advances made in other branches of medical science, begin to manifest the existence of human life? The answer to this question we have only to point with pride to the mortuary and statistical reports where it will be conclusively shown that not only is longevity increased, but lives are often snatched from the jaws of death. But while the strength of the science is often able to relieve the suffering and alleviate,
of death renders inert the resources of medicine. Buried to suffering and disease in all its various phases it is natural to presume that the feelings and sensibilities of the physician would become blunted to ordinary feelings of humanity. But I am not aware that such is the case, for as a class I think the profession bears a favorable contrast with any other collection of individuals. Of course the
Every medical man should bear in mind the honor and interests of his profession, and by his labor and research leave behind him a name that will live in future ages, as associated with some important discovery in the science of his adoption.
Intermittent Fever.

Intermittent fever commonly in successive paroxysms. This form of disease is attended with a decided intermission. Sometimes an attack makes its appearance without any previous warning, but not infrequently does we find it initiate the attack with certain well marked phenomena. — viz. — The patient will complain for a day or two previous to the regular setting in of the disease, of a feeling of general lassitude, indisposition to engage in any species of employment.
appetite, muscular pains situated in the back and ribs. Constant disposition to yawn, a feeling of incoherence. The above is a synopsis of the principal \underline{premonitory symptoms.}

The paroxysm is divided into 3 stages, cold, hot, sweating stage. In the first \underline{a sensation of coldness and chilliness passes over the body, generally commencing in the lumbar region. Suddenly the extremities become iccered, twitched, and \underline{muscular}}
Contractions take place; face becomes pale—lips of a livid color, countenance anxious and depressed, patient often now leaves a deep sigh. Pulse, weak and insignificant. Patient manifests a great desire for more cover, but tricks to his feet. The thermometer applied under the axilla exhibits an actual increase in temperature. The hot stage sometimes begins without a previous cold stage. The duration of the cold stage varies much, sometimes lasting only a few minutes, or for two hours.
Hot stage. Sometimes this stage comes
more directly, but more gradually and gently. At such places in
a room upon the head, the patient no longer feels the desire for covering enroiled
during the chill — the muscular constric-
tions cease, coldness passes off and the
fever takes its place. Pulse before small
and weak, now becomes quick and full.
Headache still remains, pains less
through limbs disappear. Surface of the
body feels hot, thirst very great.
Thermometer indicates temperature
From 100 to 105. This stage usually lasts 3 or 4 hours. Next the sweating stage sets in. Perspiration appears upon the surface usually beginning on the face. It is now that the febrile symptoms abate. Headache, thirst, no comfort annoy the patient, the tossing to and fro ceases. The patient now sinks into a delightful repose, awaking comparatively well, though quite debilitated. The urine of examined will be found to have an excess of urine, uric acid, and often all albumen. Having completed
the paroxysm, the intermission takes place, which lasts from the end of one paroxysm to the beginning of the next, and is distinguished by its duration being from the beginning of one paroxysm to the beginning of the next. This disease exhibits 3 special varieties, denominated respectively Quotidian, Tertian, and Quartan. In the Quotidian the paroxysms come on every 24 hours, in Tertian every 48 hrs. Quartan every 72 hours.
As regards the comparative frequency of the three varieties, we find the duration to occur most frequently— tertian next to quartan very seldom. The paroxysms occur generally in the forenoon seldom coming on at night. It is apt to choose some particular hour of the day, appearing within a few minutes of it. If the attack comes on at a later period of the day than the preceding, the disease is subsiding; if on the other hand it occurs earlier it is an evidence of the increased severity. Lumbi Aquila is a species
when the paroxysm is distinctly painless, tongue coated with moisture and desire for food greatly diminished, and when close attention is paid, the attacks are noticed to be regular. Intermittent fever is found associated with other diseases, pneumonia, meningitis, neuralgia &c. in this state it is said to be masked. Neuralgia occurs often periodically, it well generally yield to the treatment of intermittent fever. The length of an attack of intermittent fever varies greatly, it may terminate spontaneously.
to give way to the temporary system, and producing a state of derangement. Not infrequently do we find it lurking insidiously in the system, making its appearance again in the spring. One attack predisposes to another.

Anatomical Characteristics. There is nothing pathognomonic of this disease. The spine is generally enlarged and softened. The internal organs are congested. The peculiar complexion of persons residing in various districts, is often the subject of remark.

The intervention of a writer, a writer, during war...
...is distinctly brought about in prophylactic exposure requires Pneumonia pulmonalis, but not in every instance being true, as we might readily suppose by its tendency to break down the system, that it would rather favor the advancement of that disease, if there be any hereditary leaning. Prognosis, in the uncomprehensive form we may give a favorable prognosis, if there is any change, it is generally when it takes on a pulmonary form. Diagnosis. This affects the ordinary intermittent but often takes a violent turn.
When attention is to the thoroughness of the process of fermentation, we can readily form a correct opinion. There might seem difficulty with to a form known as morsel, and aque, this may often be discovered by the action of lactic acid upon the system.

Caution: Heat and moisture seems to be necessary to its development. Vegetable is thought to be a prolific cause. The disease is most to appear in hot and moist locations. Persons on the first floor will be affected while those in the second story not infrequently escape the poisonous influence.
rice. The poison seems to be a solution of specific gravity, travelling along in ceaseless proximity to the earth. Puffs of wind and frequently convey it to previously uninfected regions. Some climates are so repeate with the poison that it amounts to certain death to pass a single night exposed to its influence. Many instances are reported of travellers who slept over night in some poisonous locality, such as many portions of Africa, to wake no more.

The quantity of poison is largely increased at night. Large evolutions of carbon date
act as exciting causes. Water absorbs the poison in a great measure, so we will often remark that those who reside just on the banks of a river will be exempt while, while those living but a short distance back, will suffer repeatedly.

Recent investigations of Prof. Salisbury seem to establish the fact that intermittent fever is due to a peculiar cryptogamic growth, which is found in all malarious districts. Dr. Salisbury draws his conclusions from the following observations. He found that the microscopic
appearance of the oozing secretions from nose.

spectacular, in the burning of persons residing in a malarious region showed one of an algid type, resembling strongly those of the palmyrae, to be the only constant bodies present, these bodies were invariably absent when examined in the secretions of persons residing above the summit plane of agra.

As a country becomes drained and cleared off we find this type of fever disappearing. Clumps of trees also exert a great protective influence, etc. A remarkable instance of this has come under my
Immediate notice, My father's residence facing the marsh bordering the Potomac river twenty years ago, was constantly subject to the influence of the marsh's poison.

Since then numerous evergreens & deciduous trees have grown up, completely enclosing the exposed side of the house, furnishing a barrier which seems to act as a filter or sieve, sifting the air, absorbing the poison & giving complete protection. Malaria is generally brought to a sudden termination by a temperature below 60° F.
Treatment. It is here that the science of medicine can point with triumph to its
grand specific, which controls with the utmost certainty this disease. If there is a specific for any disease, they all
yield precedence to Quinine. The discovery of the peculiar property of Cinchona
marks one of the brightest pages in the Book of Medical literature. Recent investigations
seem to establish its physiological action to be its supply of a peculiar waste in
the system (Quinia), but Theory Prof. S.C. Cheer noted in his course of
lactur. It has likewise exercised this remarkable influence as a curative agent; it also possesses great prophylactic power, so that individuals visiting a malarious neighborhood may entirely escape the effects by taking Quinine in the due proportions. This however is not the sole agent in the treat, though cases continually yield to its administration alone. The first use remedies for the relief of the paroxysms - than for the cure of the disease. If the bowels are constipated, give a mild laxative. Calomel & Phreoe, five grains of each
The therapy for a cholera or, quinine, should be administered immediately after the paroxysm, or as long before the next as possible. This however is subject to exceptions in the case of continuos intermitent fever, when we administer the drug periodically regardless of the paroxysm.

For an adult 20 gr. will generally be found sufficient to check the disease, given in broken doses of 5 gr. every 4 hrs. Certain cases call for the administration of larger amounts. We can generally judge when to sufficient...
quantity has an action of a very similar nature to that of quinine, and its use appears to increase the effects of the other drugs employed in the same disease. It is most effective, however, when given in solution, its solubility being easily affected by the addition of one or two drops of aromatic bitters or dilute acid to the 31. This is an objectionable mode of using it, owing to the intense bitterness of the substance, hence it is more commonly given in a peculiar form. In this case much gastric irritability it may be administered for"
me method is too strong arguements in
its favor, it acts more especially, and
it is said that it is the usual and is
dissufficient. But while this mode of adminis-
tration has these two strong arguements
in its favor, it also has its objections.
And it is obnoxious to the patient, and some
times troublesome abuses are formed.
This more used in the ag in Remittent.
& Pernicious never than in Perniament.
Palliative measures are often highly
by beneficial, in full dose of opium given
in the beginning of the being taken with
happy effects. Sunburn is the common got.

If coma comes on, letting the foot in hot water

Mustard affords relief. In the hot stage
cold sponging is very grateful to the

patient's feelings, cool beverages, such

as lemonade & ice water, crushed ice
during the fever very nice. Next to the

preparations of Cinchona, Fowler Solu-
tion of arsenic — will act best.

Dose GTT VI or VIII, 3 or 4 times daily.

Dr. W. H. Hammond has reported a

number of cases in which he found nitric

acid in doses of 1/2 X. 3 times daily to
The disease is a useful mixture to follow the sulphate. The disease shows a tendency to reappear about the 14th day, this can be counteracted by the administration of a large dose of Quinine a day or two before the expected return. The spleen may be sensibly diminished in size, by the application of an ointment of the biniolide of mercury. Iron is also used in this disease, yet as an antiperiodic in this disease they all yield the palm to the Cinchona Bark.
AN

Inaugural Dissertation

on

The Circulation

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

By

Samuel G. Thompson

of

Maryland

Session of 1867 & 1868.
The Adult Circulation.

The blood is that element which nourishes the tissues, and imparts harmony and strength to all the functions. It has been termed the River of Life.

It may not be amiss to take a brief review of its History.

To the Ancients, the Circulation was considered as concealed by three grave errors:

First, that the arteries contained only air. Secondly that the septum between the two ventricles of the heart-
was perforated. Third, that the veins conveyed blood to the extremities instead of bringing it from them.

With whom did these errors originate—Who discovered them, and substituted in their place truth. Erasistratus maintained that the arteries contained air rather than blood—He believed it penetrated the lungs by the trachea, where it passed into the venous arteries, which is now known as the pulmonic vein, then to left ventricle—
thence to the arteries and was conveyed by them throughout the system. What was then recognized as the arterial or aeryian, and the venous or sanguineous system — is now termed the sanguineous or circulating system.

It belonged to Galen to show that the arteries contained not air but blood; if, argues he, the arteries contain air, when one of them is pierced, air should come out, and not blood — which he satisfied himself by demonstration was not the case.
but vice versa. He further demon-
strated the fact by placing two lig-
atuas upon an artery, and making
an opening between them, when
blood and not air met his
investigation. But the followers
of Erasistratus attacking him with
the inquiry, that if arteries con-
tained blood, how could air
pass into all parts of the body—
he answered, it does not go there
but is rejected. It serves the pur-
pose of respiration by its temperature.
5. and not its substance, it cools the blood, that being the object of respiration. In that opinion Galen was far from the truth—expiration does not cool the blood but heats it. Yet Galen had discovered a great truth, as air does save the purpose of respiration. He had defeated the doctrine of Ennepistasis that air passed into the arteries in substance—distended them and caused the arterial pulsation—"he had cleared up one erro
and substituted in its place is the important fact, that the arteries contained blood, thus illustrating the principle that everything in a science cannot be discovered at once, that the greatest perfection is arrived at by time, careful study and investigation — the accumulation and wisdom of ages. He saw it to his genius that a true foundation was laid, one which could be built upon, that in the future years
was to be so happily completed, without which, the true circulation might have much longer moved gently on its course, unknown to man, a source of difficulty to him—a perplexity which might long have resisted his most eager investigations, a true balm to his genius.

Galen also discovered in some way, that there are two kinds of blood: the arterial or spiritual, and the venous—the arterial nourishing our delicate organs, such as the lungs.
and supposed it to be generated in the left ventricle, and the vessels supplying grossa aquare, and pertaining to the right side of the heart and the veins. Thus Galen opened the way to greater discoveries.

Vesalius, who has been termed the Father of modern anatomy declared that our septum between the ventricles existed, and the second error was dismissed.

Savantes with no less ingenuity perceived this truth and built
united he too affirmed that no
septum existed between the ventricles
that the blood passed through the
arterial vein into the lungs, and was
turned by the venous artery.

The words it is vena arteriosæ in
arterium venosam transfunditione
significant—indicating a new and
brilliant era to mankind. In this
way did he state the pulmonary
circulation, and foreshadow the cause
of it: Where the large carotid, or the
pulmonary artery, expands he, and
the great quantity of blood conveyed to
the lung, if its nutrition alone be
regarded; and especially, why does
such phenomena exist, when in
the foetus no blood is conveyed to
the lung in that manner—
He believed the air had some influ-
ence upon the blood in the lung.
The oxygenation of the blood, while
passing through the lungs was pre-
dicted by this great man—
Benedetto Crescius six years after
asserted the same fact.
Celsus, as it now appears, had ascended the same cul-de-sac of fame — he mentioned the passage of blood through the lungs, and actually called it the circulation. Celsus did much more by discovering that the veins carried blood to the heart, instead of from it. He also conceived the general circulation. Then he had the three great errors been exposed and frustrated.

Fabricius is credited with two times: viz. the discovery of the valves of
the sun, and being the teacher of Num. 13.

Of these values are an anatomical
proof of the circulation of the blood.

We will next notice Harvey—

When he entered upon the field of
Science—in which he was destined
to be crowned with immortal fame
whose name was to be handed to
posterity, and cherished with a se-
cond remembrance, for the great
work he conferred upon mankind—

nearly every thing relating to the cir-

had been suspected as indicated.
yet nothing satisfactory had been established; so true is this, so prominently does it appear as a fact, that Fabricius, who came after Galen, the discoverer of the valves of the veins, was in darkness regarding the circulation. Casalpino, who pursued the true circulation, maintained the error of a preposterous, deceptive. Severus seemed to know nothing of the general circulation. Columbus held to the doctrine, that the veins originated in the liver, and
Clouds and darkness had not yet disappeared, and given place to sunshine and light. So Flavio was left to perceive the whole truth to digest it, and to present facts and doctrines, bearing true relations to each other—having the appearance of order and harmony—where before there was but disorder and confusion—to present the circulation of the blood, which he did in the year 1616. Modern Physiology.
begins from the discovery of the circula-
lation. The Moderns made their entrance into science from the date of this important event—an event which shook the authority of the Ancients to its foundation rocks—inflicted upon it a blow from the effects of which it never recovers.

After this brilliant and beauti-
ful discovery, the Moderns clung
to walk alone—they no longer saw
by Galen, they saw by Harvey
Having taken a brief review of the history of the circulation, we will now proceed to describe the organs and vessels by which it is affected.

First comes the heart—the great center of circulation. That organ which receives the blood sends it to the lungs, again receives it, and propels it throughout the system.

The heart lies upon the cardiac portion of the diaphragm, between the pleurae in the cavity of the thorax.
the lung—Physiologically the lungs are between the heart. It is a hollow muscular organ, enveloped by the pericardium. It is conical in shape, yet somewhat flattened on the side resting upon the diaphragm. Its apex is on the left side, between the fifth and sixth ribs. Its dimensions are five inches and a half from its apex to its base—diameter of base three inches and a half—its weight is about seven ounces. It is characterized by four cavities—The amulet
which receive blood, and the ventricles 13. which propel it. The right atrium is larger than the left. Belonging to it is an appendix atriale and five openings: namely, the superior cava — inferior cava — coronary vein — Thalamus Thelaei — Annulus ventricularis — two valves — the Eustachian and coronary — two remnants of fetal structure Annulus ovales, and fossa ovales — and two characteristics in the structure of the atrium — the Tuberculum Serrae, and Musculi pectinati.
The superior vena cava conducts the
conducts blood from the upper part
of the body, opening into the upper and
back part of the auricle —
the inferior vena cava on the contrary
brings blood from the lower half
of the body, emptying into the
auricle through the lower and pos-
terior wall near the septum auricu-
ularum — The coronary sinus returns
blood from the substance of the heart
opening into the auricle, between the
inferior vena cava and auricle ventricu-
opening under shelter of the coronary valve.- The annulus ventricularis opening communicates between the auricle and ventricle.- The coronary valves stretch across the mouth of the coronary veins, preventing a reflux of blood into the veins during the auricular contraction. The muscular pectinati are small muscular columns situated in the appendix annulare— they are numerous in number, and arranged parallel with each other. The right ventricle
contains two openings, namely, the atrio-
val ventricular—opening of Pulmonary
artery—two valvular apparatus—tricus-
pid and semilunar. the Chordae ten-
dinae and Carinae columnae.

The left atrioventricular orifice is small
or yet thicker than the right—It
has for examination six openings
thus: four pulmonic pairs, two
from the right and two from
the left, being emptying into cor-
responding sides of the atricle.

Sometimes they terminate by a com-
mon
2. opening—auricle ventricular, communicating between auricle et ventricle and the musculi pustinali, situated as in right auricle. The left ventricle is conical in shape, forming the apex of the heart; it has for examination two openings two valves, the chordae tendineae, and muscular columns, they are the auricles ventricles, and aortie, the mitral valves which are attached around the auricle ventricular opening and the truncus or left ventricle,
and semilunar valves, situated around the commencement of arteries like those on the right side, are placed around the pulmonary artery. The chordae tendineae attach the tricuspid and mitral valves to the columnae carneae.

The arteries are branching tubes beginning with the aorta, and distributing blood throughout the body. They have three coats viz: an internal tunica mucosa coat, a middle tunica propria of elastic muscular fibers, an external cellular, constituted of layers of
The combined area of branches of
the trunk is greater than that of the original vessel; consequently
the combined area of the small arteries is much greater than that
of the arterioles which the arterial system springs. Since then,
the blood flows through larger spaces in its passage from the heart
toward the periphery, the rapidity of its circulation must be diminished
in proportion as it reaches from
the heart. The passage of blood through the arteries is caused by contractions of the heart, modified by the elasticity of the vessels.

The veins have also three coats consisting of a smaller quantity of muscular and elastic fibres, but a larger proportion of cavernous tissue. Their office is to convey blood to the heart. They are provided with valves to prevent its flowing back to the extremities.

The passage of blood through
The heart acts upon the united action of three different forces—first, inspiration, second contraction of the voluntary muscles, and third, the vis a turgis of the capillary circulation. The capillaries are minute tubes, distributed among the tissues, imparting to them their nourishing properties; they have only one coat. The nerves which impel the blood through the capillaries are, elasticity of arteries,
elastieity of the capillaries, and 21.
elastieity of tissues through which it passes, the affinity of the
tissues for the blood is also sup-
poed to exert a favorable influence
upon its windings through the
capillary vasculations.

Having noticed the parts
which convey the blood, we will
proceed to state the adult cir-
culation, which is as follows—
The blood is collected in the veins
and emptied in the right atria.
from the superior at inferior vena cava, thence it takes the right ventricle through the auriculo-ventricular opening, then conveyed to the lungs by means of the pulmonic artery, it becomes arterialized-reaching the left auricle through the pulmonic veins. It flows inward through auriculo-ventricular opening to left ventricle from which place it is forced into the aorta and distributed throughout the system, imparting beauty, strength and...
AN
Inaugural Dissertation
on
Progressive Medicine
Submitted to the Examination
of the
Provost, Regents and Faculty
of
PHYSIC,
of the
UNIVERSITY OF MARYLAND,
for the degree of
Doctor of Medicine,
By
Frank Hinghuff
of
Calvert County, Maryland.
Session of 1867-68.
Our age is progressive. The ways of our fathers are no longer trodden by feet content to follow whither their lives have led. Successive ages, successive changes and successive revolutions have opened to us new fields for speculation. Each generation has taken its data from the last and built excursions of the preceding; a work is begun by one mind, continued by a second, and completed by a third. Thus year after year, has change followed change, and improvement followed improvement, until the young man of the present day contemplates with awe the ignorance in which our ancestors were satisfied to remain. In ignorance of things known to us, but to a how is the credit due of lifting the veil from our eyes? It has
scarcely been our fortunate fate to have
selected the truth from all former theories.
If such was the case, then were we perfect
at the present time, as all that had been
conceived by our predecessors. But unfortu-
nately, how much that has been received
by our age as true, has been found by
future ages to be false. We may judge of
the merits of former sages, and with not
one truth part of their force of mind and
genius, point out where they were wrong
and where they were right. Time has
educated and cultivated our minds, and
the works of former authors, are the inex-
hensible from which we may gain points
to cherish from or theories already worked
out for our benefit. Time has educated and
cultivates our minds, but the glory of genius and the force of intellect cannot be gained by study, but must be a gift to us from nature herself. Our literature is full of elegances of swiftness and of harmony, but can we boast of anything to surpass the force of Virgil, the beauty of Homer or the elegance of Cicero? Our battles are gained by the excellence of invention, by the calculation of genius, and the practical use of deadly implement. But is there more fatal determination or more patriotic virtue, than was displayed by savage gladiators on the ancient arena, or the noble Spartan at the base of Themistocles? Our profession has been gained by the most brilliant minds.
of all ages; but is there one that shines with as much brilliant light than the father of medicine, Galen of old? Granting that genius is not confined to the nineteenth century alone, there are many other things combined with the good common sense and indomitable industry of our present teachers, that justly give them the name of teachers in a progressive age, and students in a progressive science.

Medicine has made rapid strides in advancement. Some indeed have been too rapid, and have only to be retrenched again by the patient worker. None have however been taken to our distinct advantage. For if they have been at

named, that have had to have been
called, they have only served to point out the dangerous pitfalls, into which the unwary are likely to stumble, and stand as landmarks to guide us along the straight path forward path to truth. Medicine has advanced gradually, and in no one department has it advanced faster than in another. Anatomy, as though it must have been clearly understood from the beginning, since the scalpel of the surgeon must have touched with increasing certainty the deepest parts of the human body. But this was not the case, as we know that the circulation of the blood was not fully discovered until the eighteenth century, when Harvey the great English anatomist made his name to conspicuous
among the bright luminaries of medical literature, by the publication of a discovery, now to extend to every medical student. Even thus, the subject was looked upon dubiously and not till the middle of the seventeenth century, when that grand instrument the microscope was brought into use was it generally believed in. Thus has it been in every department of anatomy. Since the explorers have been made to delve up its secrets and speak unknown and unthought of languages through their most eloquent oracles Prof. Ewell. As in Anatomy, so has it been in every other branch of medical science. Physiology, until a few score years ago, was dead to all medical students, but what branch can now
boast of more beautiful discoveries, more
fascinating researches, or more important
results? Is it not laid a foundation
on which the entire edifice of rational
Medicine has been raised? And how
are we more indebted for all this,
than, to the men of our own day-
the men of this progressive age. Do
we not know the use of every organ
of the human body, from the minute
hairstyle to the heart, and
diffusely over the entire body, to the
very centre of life itself, that most
vital, important organ, the Heart?
Have we not been shown the wonderful
beauty of the human economy and
been taught to respect it as very part.
the least as well as the greatest? All this has physiological research discovered and its careful observers made clear and lucid for the benefit of the modern student. In its important researches into the truths of the human organism, Physiology owes indelible thanks to another of its sister arts, Chemistry. No longer does the Alchemist sit poring over his crucibles, in his midnight researches after an ephemeral substance, but in the broad daylight of Modern Science, takes his place as one of the true workers after the good of mankind. How different is the status of the two, the ancient sorcer, and the modern Chemist. The brightest minds were formerly looked
upon with feelings akin to horror—owing to the secret work of their investigations and the beneficent effects of their discoveries. He himself bowed down to the God of gain. Spent his life in seeking the elixir of life or the philosopher’s stone, a boon to be gained simply for his own benefit, and an instrument rather for the destruction than the salvation of the lives of his fellow men. The Chemist works not for the lengthening of life for himself, but in the fond hope of being able to discover the true elements of health, and to be able to hold forth his hand to succor the afflicted, and make the short span of life allotted to each as long and as
Comfortable as may be - is it not to the Chemist that is due the discovery of the elements of every secretion of the body, and thereby giving to the Physiologist the opportunity of applying his skill to the maintenance of health and the proper balancing of all the workings of the human body? Was not the materia medica over all its preparations to the skill of the Chemist and by his works employ the active principles of otherwise useless and unpalatable drugs, or such a form as to be not only not disgusting, but even pleasant to the suffering and debilitated patient. Even the horrors of the Surgeon's knife are avoided.
blessed by his preparations, and the
maimed and crippled soldier sleeps
quietly on the battle field, while
the sharp blade of cut through this
his life blood ceases to flow and he
is saved. As surgery has employed
the results of Chemistry, so has each
branch benefited by the results of
the other until Medicine now stands
one harmonious whole, giving life to
the dying, health to the sick, and
even when the end must come, letting
those whom the departed leave behind,
know that no human skill could arm
the calamity, but that the voice of
his maker had called him away, and
man was Providence to save.
This stands our noble profession. A science not merely in name, but in fact. Speculation
cares to be a dweller in one mode, and the bright sunshine of practical truths
holds its undisputed sway. A practical science itself, and one that gleams the truth
from all its lesser sciences to make it
more perfect and more practical. It may
be said that the formulation of one
science was laid in conjecture, and in
darkness, but this is not so. What medicine
was in former ages, is no criterion from
which to judge of its present state. A
science based upon conjecture is like a
house whose foundation is laid upon sand,
but the temple of modern medicine has

Its foundation laid upon the adamantine rocks of practical research. A temple not to be shaken down by the tempest, nor scattered by the hands of ruthless barbarians. Built in no spirit of arrogance or display of wealth, as was the temple of Solomon, nor James like to tell a nation when their was peace or when there was war. But a temple reared by the energy of a class whose sole object is peace, and whose humble contributions are laid upon this, the shrines of their ambition, by the weary pilgrims plodding their way into the mysteries of nature. It is no idea of perfection that lends the judicial man, to gaze with pride upon this huge edifice. For he cannot but be aware of
the incompleteness of it, in many respects, on the time and labor that has been required to bring it to its present state. But he knows that patient labor has done this much, and why cannot patient labor do more. Can a life be spent with greater aim than to try to aid one science in its progressive course? And what more enduring monument can he leave behind him, than to have his name written upon one single tablet in this great temple. Monuments have been built to the memories of great heroes. Kings have bowed to them, and nations have become their humble slaves. But with them ends their glory, and the world must hear with pleasure that one whose highest ambition
was now taking the lives of his yellow
was now ceased to live.

In entering upon the study of medicine,
each student has this bright prospect
work for, and it is his highest aim to
emulate the deeds of those great and
good men that his name also may be
enrolled in their joyful galaxy. To him
does not shower his favor upon the humble,
his fame will rise to the heavens, the
brow of fortune's favorite. True merit is
more appreciated in this, than in any other
profession. And short years from the time
as a student if it opens a medical door
and he is diploma'd a M.D. Armed with
this license, he takes his place among the
rest of the profession. Young as you are, it

\textit{...}
character scarcely yet formed, and totally inexperienced, he was entrusted to the care of the
least tie that binds man to this world. Is it to be wondered at, that the confidence of
Commodore is so religiously withheld from him, and that the grey hair of the father alone are alone seen
worthy? Had it been thus wise, it otherwise for
during three years of probation, must the young
physician make good the time her eyes? to
have been spent in obtaining his diploma. It
is during this year that he must soon himself
from the enticings of the world, and that
his mind gradually, to the task of his God and the
impulse upon him of, that in the end the youthful
may be

Illeus aeternae meminisse dulcis
Eamus in pustis

Frank Tingeff
AN

Inaugural Dissertation

on

The Physiology of Food.

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

by

John Leonidas Waring

of

Prince George's County, Md.

Session of 1878
In order that the functions of the body should be properly performed, it is necessary that the system should be supplied with proper sustenance at stated intervals, and this, as is well known, constitutes an invariable law of nature. Therefore when we take food proper to the organism into our mouths, it stimulates the salivary glands while we are masticating it. This food, having been properly masticated, and mixed with the saliva, is carried into the stomach and there excites a healthy action; stimulating
the secretion of the gastric juice be then have chyme formed which passes through the pyloric orifice into the duodenum, and excites all the adjacent organs of digestion to healthy action.

The perfection of everything requires that certain conditions be fulfilled, alike true in nations as in individuals, but requiring a closer observance in the proper government of the human body, and these laws will be spoken of under four heads in the order in which they come: Quantity, Quality, Manner, and Condition
of the system. When taken, it is obvious that the quantity of food varies, which is necessary for the system. More food, comparatively speaking, is taken during the periods of childhood and youth, because at this time, because at this time it is necessary for the growth of the different parts of the system; the digestive process is much more active; the appetite is stronger, and all the functions are more energetic. When the age of maturity arrives, food is only required for the organism, which is more fully
formed and consequently less is taken. If now the same quantity of food be taken as in former years, and indolent habits are indulged in, the digestive functions are powerless to provide for the proper disposition of the curdles, and dyspepsia and its accompaniments follow. Debility supervenes, and the whole system is impaired. In many instances the body becomes weakened from disease or starvation, and food can be given until the demands of nature are satisfied but in a careful and gradual manner
ner. It is a law in nature that the greater the activity, the greater the waste; and we find when we change a life of indolence or sedation, for one of labor and activity, that the experimented matters are thrown off from the body in larger quantity; the blood circulates more rapidly, and the red corpuscles, which carries the food to the system deposits it more rapidly; and as the chyle supplies the blood with substances necessary for nutrition, and as the chyle is formed directly from the food, we must expect that
food twice be demanded in proportion to the chyle taken up. Unless the nervous system which is our trumpet has been impaired, when the sensation of hunger is experienced, its suggestions should be properly attended to, as it shows the system is in want of nourishment. We are not one of those who believe that a person should get up from the table hungry for if hunger be, as it must ascend, is a demand of the system for food, why should we not identify that demand unless contraindicated.
by some disease of the stomach? and even in those cases, we have means of supplying the system, as by enema. On the other hand, when we exchange a life of activity for one of inactivity, the heat of the system is less, and therefore does not require the same amount of food. It is frequently seen in colleges that students who have come from the country, where their lives have been one of activity, that consequent upon the sedentary life which they must necessarily lead, the system often becomes impaired, because the ne-
Bodily energy which should be conveyed to the stomach, is more or less called or drawn off by the mental labor which their duties require, and they may suffer more from impaired digestion than those who have always led a life of idleness, and are now subjected to the same life because the change is greater in the one case than in the other. The heat of the body is greater, in reference to the greater change of tissue, and the rapidity with which it is removed; and if the body requires more food in winter, and the-
line it does, does not that show that the waste must be greater at that time, and if the change be more active, is not more heat produced? Those who are ill fed, or who suffer from more assimilation consequent upon indigestion, or any other cause require more clothing than those who are well fed and nourished, and whose functions of digestion and assimilation are perfect. If it be true that we require more food in winter because of more waste, and also for calorigenic purposes too
it not followed that a less amount is required during the warm months, because of less waste, and because also of the heat furnished by the sun. If our digestive organs are weakened, and unable to retain or prepare our food, then we should only take such quantities as can be disposed of, a small quantity until the organs have resumed their proper tone. When it can be increased to meet the demand for healthy nutrition. This may be a sensation of hunger, which happens most frequently in glut-
tons whose stomachs have been
inordinately distended by too
much food, and upon failure
to introduce the usual quantity,
they have a sensation of hunger
not from a healthy desire but
from the diseased sensation of
the stomach, and which is palla-
sions. Many of us have observed
the stupidity or languidness of
the snake, after swallowing a
bird or toad; a precisely similar
effect is produced upon the hu-
man system when we take an
excess of food into our stom-
achs. The stomach is a very
The text on this page is not legible due to the quality of the image.
vascular and nervous organs, and when an excess of food is taken, it demands and draws upon the system for a larger portion of blood and nerve force, than it receives in ordinary acts of digestion; and it is a law of our nature that when we have an afflux of vital force, or a concentration of action in any one portion of our system, we must have depression more or less felt at some other portion, consequently we have languor and debility when our stomachs are too full. In conclusion, we may
in reference to the quantity of food taken, assert that there is no absolute rule for governing all classes of persons. Hunger, though nearly always, is not an invariable rule, while its absence is not "proof positive" that food is not needed. A false sensation which may be mistaken as a demand of the system for food, may be, and indeed, often is created by what are called by drank drinkers, "appetizers", or the various condiments in use. On the other hand, disorder of the nervous sys-tem may prevent a cognizance...
If the sensations of the stomach when the body actually requires and demands nourishment.

The quality of the food next demands our attention. The influence of food for "good or evil" is modified by various circumstances; habits, reason, and mode of preparation are exert their influence. It should be perfectly obvious as based upon reason and fact, that those articles of food which have the greatest number of constituents which are also found in the human body are
the most fit for food, because they supply a substance lost to the organism. And we find accordingly that milk and eggs, which come nearest in constituent elements to the human body, are really highly nutritious as articles of food, and are used throughout the world. Boiled food is more healthy than when prepared in any other manner, because the tissues are more properly broken down and disintegrated, and are more easily acted upon by the gastric juice. But food which is the
most easily digested, is not always
the most fit for nutrition; it is
a law of the stomach as well as
the muscular system at large,
that an increase of action brings
an increase of growth of power,
and food may be introduced into
the stomach which only gently
excites the secretion of the gastric
juice, and if we have only this
feeble stimulation, and if the
stomach is called upon to exert
at all times only a moderate
degree of action, it will soon
lose its tone. We see this in con-
trast to the consequences from disease, the
Stomach has lost much of its power from inanition, although
the patient may have been taking a medicine of food, and
here we have to gradually introduce proper aliment to support
the system. Human beings cannot thrive on any exclusive
class of food, as animal or vegetable; though in warm climates
we find almost an exclusive vegetable diet, because more cooking;
and in the cold regions we find the inhabitants subsisting
almost entirely on animals and
sils, because more heating, while
in our own climate we partake of a mixed regimen, as the seasons dictate; a mixed diet is holden for all persons, no matter where they reside, most conducive to health. It is said that nutritious food should have an inscrutables element to excite the stomach by its mechanism influence, and that substances which have not this inscrutables element, although highly nutritious in themselves, will not excite properly the secreting glands of the stomach. Animal food has been found the highly
Stimulating, and therefore indicated in the cold weather of our own climate, and in the summer months we have a desire for vegetable food which as I have before said is more cooling.

Age generally requires more animal food, and in changing our diet, we should do so gradually even from a bad to a good habit.

Manner of taking food.

As a starting point we will begin by saying we should take our food at regular intervals, which intervals are regulated by habit, exercise, age, &c. of the individual.
Digestion goes on more rapidly in the young, vigorous, and industrious, than in the aged, debilitated and idle, and as waste is greater in the young and vigorous, their systems of course require more food, in order to supply, or build up the waste of tissue. Food is generally digested in from two to four hours, though it is sometimes more or less, according to the character of the food, and the size of the individual, and ordinarily a period of four or five hours should elapse before our stomachs are again called upon for its labor.
If food be taken before the stomach has recovered from its expansion in digesting, or reducing to chyme a previous meal, then we have secretion of the gastric juice in perfectly performed. Here there is great debility to the stomach it is really important to bear this in mind. Unless the process of masticating our food be properly performed, the stomach is called upon to perform a "double duty," that is first separating the particles of food, and then acting upon them in their reduction to chyme. There is one great error, many display
in eating. Very many gulp down their food so fast that the stomach has not time to impart any knowledge of its reflection to the system, and consequently we have an overloaded stomach and this is a great source of the indigestion which so troubles the American people. Great draughts of water or other drinks are decidedly injurious during meals, not only does the food become moistened by the fluid itself, which should be done by the secretions of the salivary glands but those glands are tu
by lift—without performing their proper function, that of insalivation, which I think must gradually tend towards their atrophy or disease; or if the saliva be secreted, it is diluted by the fluids taken, and renders it thus far an inert matter and unfit it for the part it performs in digestion. Fluids taken at meals also dilute the gastric juice, retarding digestion. We believe this—large draughts of water, or other fluid during meals comes of habit—more than from any real necessity.
man is the only animal which leaves his food "to take a drink". Food which is moderately warm is more healthy than when very cold or hot; cold food taken in the stomach causes the walls of the stomach to part with its heat in order to bring the mass to the same temperature, and when unduly heated if it does not scald the parts, it excites an a stimulant action which de- litates the organ as heat does our bodies. It is said that cows steeed in cities on slops and refuse matter from kitchens.
loose their teeth in about two or three years, and it is questionable whether such will be fit food for infants or even adults.

Condition of the System
The system should be in a state of equilibrium at the time of taking food. Each organ requires and demands a certain amount of vascular and nervous influence, if this be called off from the stomach, as it will be by any undue exertion the stomach is thereby rendered unfit for the "time being" for the reception of food.
From a half, to three quarters of an hour should elapse between the cessation of active exertion and the taking of food. The stomach then will have received its proportion of blood and nerve force which had been called off during exercise of other parts of the system. An evening from the counting-room to dinner, and from thence to the counting-room is a fruitful source of lethargie. After taking a free meal, it is natural for us to feel lethargie, this shows that a certain amount of nerve
and vascular force has been drawn from the system to the stomach; and if we now turn our attention to our daily avocations, whether they be mental or physical, we draw away from the stomach again the agents necessary for the promotion of digestion; therefore some time should elapse after meals before returning our employment. Subjects which require much mental effort should be avoided at the "social board" the brain refuses to impart its nervous energy, and the proces
of digestion is consequently re-
tarded. Distorted mental vision
turned "nightmare", is brought-
on by retiring to our beds before
the last meal has been digested,
and as such is the case, several
hours should pass before retiring
to rest. During sleep the function
of digestion are less active, if
therefore we eat a hearty meal
just before retiring, there is less
nerve power manifested over
the stomach, which being the
case the food would remain
undigested, which would then
through sympathy distribute
brain; the unaltered food remaining in the stomach, becomes as if it were a foreign body, irritates the nerves supplying that organ, which sensations are communicated to the brain thereby causing those unpleasant interruptions to our shamers. In persons recovering from disease, or who have had food long withheld, food should be introduced carefully and considerately, and as animal broths are both nutritious and easily absorbed, they are indicated until the stomach becomes strong.
enough to bear a protracted digestion. The movements of the
muscles of respiration are a
decided stimulus to digestion,
and anything which interferes
with these movements of these
muscles, such as tight-lacing
is a fruitful cause of indiges-
tion. Pure blood being abso-
lutely necessary to healthy digestion,
anything which interferes with
the oxygenation of the blood, such
as ill ventilated apartments, can
not fail to produce its deleterious
effects upon the stomach and
fortifying the digestive organs and
functions, and diminishing the desire for food.
An Inaugural Dissertation

On

The Pathology & Treatment of Cataract

Submitted to the Examination

of the

Provost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

by

Louis McLane Tiffany

of

Maryland

Session of 1867-5/68
The term cataract, strictly applied, denotes a partial or complete opacity of the lens or its capsule or of both.

In a state of health they are perfectly transparent, after 30 years however in most persons, the lens assumes a pale yellow tinge, which
increases with advancing age until in old subjects it may be quite amber coloured.

It will not be inapt, I think, to glance at the anatomy of the lens before considering the affection of which I speak. The lens is biconvex, more so posteriorly than anteriorly. It is surrounded...
by a strong fibrous sheath, quite transparent and of a perfectly homogeneous consistence.

From the ciliary processes passes off the "suspetory ligament of the lens" to this capsule, and becomes incorporated with its substance.

The central portion of the lens is more hard than its periphery.
forming a nucleus. The fibres, generally speaking, are disposed in planes converging from without inwards, more or less curved, according as they approach the anterior or posterior surfaces of the lens.

Looking at the anatomy therefore it is not very difficult to account for the various forms of cataract.
thus, an opacity commencing at the centre would give rise to a white cataract with diverging radii; a good example of this kind of cataract is found in the congenital variety where the centre is opaque, while the periphery may be quite transparent.

Of late years the existence of so called
capsular cataract has been denied. Stellwag of Germany first pointed out the fact that having examined about 50 cases of this so-called variety, in all instances, he found the opacity to result from a deposit on the inner surface of the capsule.
Substance of the capsule itself.
Cataract may be of all colours and consistencies, varying from pure white, grey, yellow, to absolute blackness; these last are extremely rare, being usually intersected by a few minute, grey striae. The substance may be so soft as to fall asunder at the
first touch of the
needle, while in other
cases the cataract will
be of almost stone
hardness. A third class
is fluid, surrounded by
a thin envelope; this is
turned, the Morgagnian
cataract.
To better consider the
subject let it be divided
into Congenital, Adult
and Traumatic.
Congenital cataract.

The extent of opacity may be very great. The most simple form is a small white dot on the centre of the lens [catalecta centralis] beneath the capsule. As the patient is frequently ignorant of its existence interference would be injudicious.

Again, the cataract may
assume a conical form on the anterior surface, constituting the cataraceta pyramidata. The most common form is that of opaque nucleus and with radiating lines, perhaps also the periphery may be quite transparent or with fine white lines intersecting it. Some rare forms are those in which the lens is
bands scattered throughout or when the opacity becomes apparent from 7 to 10 years of age.

This variety of cataract is often accompanied by a twitching of the eyebrows and eyelids termed nystagmus.

Congenital cataract usually affects both eyes, although this peculiarity is not constant.
Adult Cataract

Except as result of an injury, rarely between puberty and middle age does cataract result.

It usually commences at the periphery and advances towards the nucleus. Converging radii are first visible, these fail and degenerate, cholestrin in crystals may become visible, the substance may.
often and become
morgagnian. This latter
variety may be distinguished
from other forms
by the fact of the
fluid gravitating towards
the lower part of the
lens & thrusting the iris
forward.
The traumatic variety
results, as the name
implies, from an injury.
A penetrating wound.
of the lens is almost certain to produce an opacity; a blow producing defective nutrition would cause a like effect. Should the humours of the eye enter the lens it will produce its absorption & disappearance; this first probably suggested the treatment by solution.
The diagnosis of traumatic cataract, as distinct from
other varieties would rest on the existence of adhesions resulting from iritis; the pupil would be filled up by a flattened disk, very opaque, white, more remote than true lens, patchy area, the whole margin may be adherent to the iris, black spots may appear on a white ground, in fact, it may assume all colours and figures.
Now in regard to the treatment. This must be operative as to the present time, no solvent for an opaque lens has been discovered.

As to the propriety of operating. The superimposition of inflammation being very frequent, it is not judicious to interfere until the other eye may become affected and sight fail.
as one eye will be sufficient for most purposes and the inflammation resulting from the treatment may cause the loss of the sound eye.

Three modes of operating are open for consideration that by depression or inclination, that by extraction, that by solution.
The operation by depression or reclusion.
This consists in entering a needle through the sclerotic and depressing the lens from the line of vision. It is thus performed.
The patient's head being well supported and the eyelids held open, the operator, seated before the patient, using the hand to the side of the eye.
to be operated on, enter the needle through the sclerotic about two lines behind the margin of the cornea, directing the point of the needle towards the apex of the eye, as by it he controls its motions. The point of the needle is passed in front of the lens, which is then pressed backwards and downwards out of
the line of vision. The lens is held a moment in this position, when the needle is slowly withdrawn. I do not think that this operation is a good one, as sooner or later the lens sinks down by its own weight and resting on the retina set up a destructive irritation resulting in amaurosis.
The operation is solution.
The steps of this operation are precisely similar to the previous one, with the exception that the needle is forced into the lens and breaks it up, giving entrance to the humours of the eye which cause the solution and absorption of the fragments; it is well to force some of the
fragment into the anterior chamber of the eye in this operation, as such, absorption is thereby accelerated.

The operation by extraction consists in making a section of the globe of the eye, introducing a hook and removing the lens through the incision.

Different surgeons at different times have advocated
various modes of performing this operation, some by
section of the cornea, some by that of the sclerotic;
the one most generally in use at present is
that of Grafe which consists in an incision
through the sclerotic, introduction of curette, etc., etc.
After the operation the patient should be kept
in a dark room for a
few days until symptoms of inflammation shall have subsided. Should such results follow the operation however, they are to be combated by the so-called antiphlogistics of local depilation, watery solution of oitum.

The patient after recovery will have a very good sight with
the employment of the cataract graft.

Louis
AN

Inaugural Dissertation

on

Pneumonia

Submitted to the Examination

of the

Provoost, Regents and Faculty

of

Physic,

of the

University of Maryland,

for the degree of

Doctor of Medicine,

By

Charles AVJ Barron

of

Covin Carolina

Session of 1807-18
Pneumonia is an inflammation of the substance or parenchyma of the lung. The true seat of the disease is in the membrane lining the air cells, and the bronchides. Each case may be said to consist of three well defined, and regular stages, corresponding to the intensity of the inflammation, and the time the lung has been affected. The 1st stage is called the stage of active congestion or engorgement; 2nd, red hepatisation, and the 3rd stage of grey hepatisation or prevalent infiltration. During the first stage, there is an accumulation of blood in the substance of the lung; a state of active congestion hence increased inflation. The lung is thicker than normal, and it loses its elasticity; and if an incision be made into it, blood and bloody sputum looking frothy and full of little bubbles will accu-
out of it. Its strength is lessened, and it is more easily broken down; it looks somewhat like the spleen, hence this stage of the inflammation is called splenification of the lung. During this stage very little and can be gained by the sounds which we hear on puncturing the chest; consequently we place our chief reliance upon the accumulating signs in diagnosis. This stage does not last long. Emphysema soon begins, in this case, in all cases when a space in the brain is involved in inflammation, one filling of the air cells and minute bronchial tubes in a distant stage and the air and fill it or a gradually become free. The lung becomes solidified, looking like the liver; somewhat, hence the second stage is called delapitization of the lung. In this condition the lung contains no air, and is more nearly broken down due to the softening of the vascular
The solution had of late been brought to the level of the urine, on the occasion of a condensation of oesophagus in one of the observers. In the present case, this amounting to a condensation in every form and in every portion of the oesophagus, was a remarkable fact. It is the result of a rare and unusual constitution, forming fusions which in nature are so rare that the condensation was not uncommonly the formation of an oesophagus in the patient. The condition is so rare that a similar case has not been reported in medicine.
A page from a handwritten document, possibly a letter or a record, with unclear handwriting. The content is not legible due to the style of writing and the quality of the scan.
...it is generally much on account of the
fluctuations. Sometimes markedly in my
actions and in the night's drive from home to
the boat. Other times, however, they seem less
important, sometimes as low as 10%. But, in any
case, we are not sure of their cause or
meaning. Sometimes as high as 100%. We have
tried to dig into our conditions for causes, but
they vary, not only on the surface of the
human being, but also deeply in the human
mind. We have sometimes been asked to
explain the cause of the expected ...
at every part of the conveyance of the present but this,
deprived of the improvement of hope, or the
expectation of the benefit of association of others
by the lines. The disappearance is done to the last
minute. The figure at least three, but it could not
attend such the most violent attacks, as well as to
characteristic of present society. The sense of the whole is
due to the natural adoration of the sacred
line from its appearance and constant touchstone. "The
tale, and nature of the present firmament is the
intimate of the observer." The entire truth in the
world is due to the presence of the diploma of victory
for the season of vision. There is a determination of
a "holy" in the minds. There is a determination in
(Come in a more unfavorable situation. If we
are in terms at all capable of national
prizes, the same place in a situation containing
victories to, but such a make the cause
Diagnosis. In all cases, and occurred in many different
kinds of patients, it is accompanied with other symptoms. On examination
by a child of one, more of the abdominal
parts, as the rectum, one of the characteristic
features of the disease, the child was found
to be in an advanced stage of the disease, with perforation. The condition
remained in a state of activity and continued unimproved. A careful and con-
sequent course of premedication was taken in the child's
case, and the treatment was continued until the
condition was improved. From the early symptoms it is
not difficult to distinguish from the usual complaint which is known
as a benign affection as well as a chronic condition. In
recovery, the child's health improved, and a
reaction of the body to the medication was
marked. The fever subsided, and the child's appetite
increased. Complications were very frequent, and
measures were taken to prevent them. In
the final stages, the child's health improved, and
the symptoms lessened. It is important to
note that the treatment was continued,
and the child's condition improved. In
many cases, a similar course of treatment
was followed, with considerable success.
In conclusion, there is a frequent one. The patient's
placard candidly with great tenacity to the indication; but to
consequently, the instance of the disease is removed a distance
with it. In the treatment of the patient, one is to replace
with the primary disease a substantial body. It never
and simple precautions and repeated questions on such
as great indications have sometimes containing an
substitute treatment. Prevent the looking
for the in a case of variable and diverse
dimensions, and the disease lends to removing without
a rule of medicine. But generally the observations when
the early and annual of the influence on time is high
with the various conditions. The duration of
its attack, the disease is long to the amount of long
substance internal. This said of substance's
should be one from the simple to the most
necessary to come down, and difficult in which the
want one in the condition. The rise would indicate that
To the author, our efforts to bring to
existence a system of northern agriculture
were never in the desired manner success-
ful. It is difficult to comprehend that the
present agricultural system is based on
transmission—"in cases, in force with a
idea of securing the
many of present society. The chief policy
are new. It is independent, but yet it
society, the judgment does not must pre
be a correct main opinions desired in the
form of the Society, but in opinion—furnishing an
attack on said and entirely endow an opinion on
the entire system, it is in principle and
based on the following: of which greatly as the
the help of the society in which it is to
be performed in their own

should itself, on one or another point, so

2

Materials. The last two years, according to the

2

complete stage of destruction has been expected

to a particular stage of destruction has been expected

the destruction according to the

2

and tend to action in the process in all

admitting destruction, apparently, of any

think they were then the violence throughout

some are as things adapted to the form

swept, but others, and the cabinet council, are

declared a President, and embraced one must

more of council instruction, and have considered

of the invasion, in which instruction they will

very scarcely as one of the political, no admission

the rise in marrying the admission.
It is really wonderful to read how effective each plan of treatment, and each remedial agent are when administered and employed by the originators, and given according to his directions. A better acquaintance with the pathology of pneumonia, and a more correct knowledge of physiology have almost wrought a complete change in the treatment of this disease.

Blood letting once considered indispensable is now rarely resorted to, not at all indicated except in a febrile or malacitic patient, and where the circulation is greatly impeded, nor then only in the first stage of the disease. In the first stage it may act as a curative agent, as well as a palliative. If the site of bleeding from the lungs be known and may be obtained by cough and coughs over the chest, Blood should be taken with great caution; for if we bear in mind the physiological flow of blood and supply an artfully prepared species that sends the blood to the medium.
of safely and ought it should be taken with great caution, and only such a quantity as will relieve the infected circulation and stop pain— and one should never lose any time in possibly the sooner amount of good medicines floods to meet the demands of the system to expel the poison caused by the loss of blood.

If the patient be not a young and delicate object with a bounding pulse, the same ends may be attained by hypodermics as well by the administration of some active cathartic, followed by a free dose of spirits to relieve the poison, and to transpose it from the system. Spirit rests a direct effect when the inflammation, as it becomes the poison, by obtaining the sensitivity of the nerves, and also acts as a sedative to the heart action, and thereby diminishes the flow of blood to the certain long-term fermentation, such as putrefaction. Salts or properly directed fermentation will also assist in relieving the pain.
The temperature of the room should not be allowed to fall below 65° Fahr and should be kept moist by steam. Such are the general indications to be attended the 1st stage of the disease. The indications in the 2nd stage are still to retain prime and quiet nerve irritability, to

come to terminate the absorption of the conversation in the lungs and support the power of life during the attack and state of convalescence. To relieve pain

nothing will be found more beneficial than ammonia and some of the other common analagous. Carbomele of ammonia has the property of relieving pain as well as a

stimulating effect, and as stimulants are generally

called for during this stage it may fulfill both indications and indolent state. To promote absorption there

is no agent better suited to this purpose than indigo

in some of its various forms. The indigo powder is the

best form, and the indigo of wooll is called for not only

for its soothing effects but for its tonic property.
The trachea should be aspirated with a bronchus and
the ducts. The Lactose of Poliomyelitis is also a very
valuable agent. Paracrine is almost always found
and should be given in conjunction with some other
tonic, such as arnica, or some vegetable tonic.
Rheums should not be used as they interfere with
catarrhal conditions of the chest. The patient should be
well nourished from the very beginning of the disease.
with good nutrition food, such as beef tea, new egg,
and milk. When indications of exhaustion appear
stimulants should be given, such as wine, brandy,
and egg mustard. If there be great fatigue or breathless
without any tendency to great excitement give morphia.
While stimulants should mostly be commenced
too early; Continued too long or given in too great
quantities. The best indication for morphia in con-
mionia or in other diseases is when the action of the
heart becomes feeble, frequent and intermittent.
...Continued... Should be regulated by the action of the head. During Convalescence the patient Should be allowed a good wholesome diet, fresh air and plenty of exercise. His clothing such that he will not be affected by the temperature of the room. Such is the plan of treatment I should adopt in a case of simple acute (obs.- pneumonia...